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Fundamental Physical Constants 

Quantity Symbol Value 

Avogadro’s number N A 6.02214129(27) × 1023 / mol 
Boltzmann’s constant kB 1.3806488(13) × 10−23 J/K 
Coulomb constant k e = 1/ 4πε0 8.987551787×109  N ⋅m2 ⋅C−2 

Elementary charge e 1.602176565(35) × 10−19 C 
Electron mass m e 9.10938215(45) × 10−31 kg 
Gravitational constant G 6.67384(80)×10−11  N ⋅m2 ⋅ kg−2 

Neutron mass m n 1.674927351(74) × 10−27 kg 
Permeability of free space µ0 4π × 10−7 T ⋅ m/A 
Permittivity of free space ε0 = 1/ µ0c

2 8.854187817×10−12 C2 / N ⋅m2 

Planck’s constant h 6.62606957(29) ×10−34 J ⋅s 
Proton mass m p 1.672621777(74) × 10−27 kg 
Speed of light c 2.99792458 ×108 m ⋅s−1 



                              
 
 

  

    
     

   
   

  
  

     
     

   
   

  
  

     
    

 
   

   
 

Astronomical Data 

Earth 

Solar mass 
Earth mass 
Earth mean radius 
Mean solar day 

Earth-Sun Orbit 
Aphelion 
Perihelion 
Eccentricity 
Orbital Period 

Moon 
Moon mass 
Moon mean radius 
Moon orbital period 
(sidereal month) 
Moon synodic period 

Value 

(1.98855 ± 0.00025) ×1030 kg 
5.97219 × 1024 kg 
6.371009 ×106 m 
8.6400 ×104 s 

1.52098232 ×1011 km 
1.470098290 ×1011 km 
0.01671123 
3.15581495 ×107 s 

7.3477 × 1022 kg 
1.73710 ×106 m 

2.3605847 ×106 s 

2.5514429 ×106 s 
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Chapter 1 The History and Limitations of Classical Mechanics 

Chapter 1.1 Introduction 

Classical mechanics is the mathematical science that studies the displacement of bodies 
under the action of forces. Gailieo Galilee initiated the modern era of mechanics by using 
mathematics to describe the motion of bodies. His Mechanics, published in 1623, 
introduced the concepts of force and described the constant accelerated motion of objects 
near the surface of the Earth. Sixty years later Isaac Newton formulated his Laws of 
Motion, which he published in 1687 under the title, Philosophiae Naturalis Principia 
Mathematica (Mathematical Principles of Natural Philosophy). In the third book, 
subtitled De mundi systemate (On the system of the world), Newton solved the greatest 
scientific problem of his time by applying his Universal Law of Gravitation to determine 
the motion of planets. Newton established a mathematical approach to the analysis of 
physical phenomena in which he stated that it was unnecessary to introduce final causes 
(hypothesis) that have no experimental basis, “Hypotheses non fingo (I frame no 
hypotheses), but that physical models are built from experimental observations and then 
made general by induction. This led to a great century of applications of the principles of 
Newtonian mechanics to many new problems culminating in the work of Leonhard Euler. 
Euler began a systematic study of the three dimensional motion of rigid bodies, leading to 
a set of dynamical equations now known as Euler’s equations of motion. 

Alongside this development and refinement of the concept of force and its 
application to the description of motion, the concept of energy slowly emerged, 
culminating in the middle of the nineteenth century in the discovery of the principle of 
conservation of energy and its immediate applications to the laws of thermodynamics. 
Conservation principles are now central to our study of mechanics; the conservation of 
momentum, energy, and angular momentum enabled a new reformulation of classical 
mechanics. 

During this period, the experimental methodology and mathematical tools of 
Newtonian mechanics were applied to other non-rigid systems of particles leading to the 
development of continuum mechanics. The theories of fluid mechanics, wave mechanics, 
and electromagnetism emerged leading to the development of the wave theory of light. 
However there were many perplexing aspects of the wave theory of light, for example, 
does light propagate through a medium, the “ether”? A series of optics experiments, 
culminating in the Michelson-Morley experiment in 1887 ruled out the hypothesis of a 
stationary medium. Many attempts were made to reconcile the experimental evidence 
with classical mechanics but the challenges were more fundamental. The basics concepts 
of absolute time and absolute space, which Newton had defined in the Principia, were 
themselves inadequate to explain a host of experimental observations. Albert Einstein, by 
insisting on a fundamental rethinking of the concepts of space and time, and the relativity 
of motion, in his special theory of relativity (1905) was able to resolve the apparent 
conflicts between optics and Newtonian mechanics. In particular, special relativity 
provides the necessary framework for describing the motion of rapidly moving objects 
(speed greater than v > 0.1 c ). 
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A second limitation on the validity of Newtonian mechanics appeared at the 
microscopic length scale. A new theory, statistical mechanics, was developed relating the 
microscopic properties of individual atoms and molecules to the macroscopic or bulk 
thermodynamic properties of materials. Started in the middle of the nineteenth century, 
new observations at very small scales revealed anomalies in the predicted behavior of 
gases (heat capacity). It became increasingly clear that classical mechanics did not 
adequately explain a wide range of newly discovered phenomena at the atomic and sub-
atomic length scales. An essential realization was that the language of classical 
mechanics was not even adequate to qualitatively describe certain microscopic 
phenomena. By the early part of the twentieth century, quantum mechanics provided a 
mathematical description of microscopic phenomena in complete agreement with our 
empirical knowledge of all non-relativistic phenomena. 

In the twentieth century, as experimental observations led to a more detailed 
knowledge of the large-scale properties of the universe, Newton’s Universal Law of 
Gravitation no longer accurately modeled the observed universe and needed to be 
replaced by general relativity. By the end of the twentieth century and beginning of the 
twenty-first century, many new observations, for example the accelerated expansion of 
the Universe, have required introduction of new concepts like dark energy that may lead 
once again to a fundamental rethinking of the basic concepts of physics in order to 
explain observed phenomena. 
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Chapter 2 Units, Dimensional Analysis, Problem Solving,
 
Estimation, and Error Analysis
 

But we must not forget that all things in the world are connected with one another 
and depend on one another, and that we ourselves and all our thoughts are also a 
part of nature. It is utterly beyond our power to measure the changes of things by 
time. Quite the contrary, time is an abstraction, at which we arrive by means of 
the change of things; made because we are not restricted to any one definite 
measure, all being interconnected. A motion is termed uniform in which equal 
increments of space described correspond to equal increments of space described 
by some motion with which we form a comparison, as the rotation of the earth. A 
motion may, with respect to another motion, be uniform. But the question whether 
a motion is in itself uniform, is senseless. With just as little justice, also, may we 
speak of an “absolute time” --- of a time independent of change. This absolute 
time can be measured by comparison with no motion; it has therefore neither a 
practical nor a scientific value; and no one is justified in saying that he knows 
aught about it. It is an idle metaphysical conception.1 

Ernst Mach 

2.1 The Speed of light 

When we observe and measure phenomena in the world, we try to assign numbers to the 
physical quantities with as much accuracy as we can possibly obtain from our measuring 
equipment. For example, we may want to determine the speed of light, which we can 
calculate by dividing the distance a known ray of light propagates over its travel time, 

distance 
speed of light = . (2.1.1)

time 

In 1983 the General Conference on Weights and Measures defined the speed of 
light to be 

c = 299, 792, 458 meters/second . (2.1.2) 

This number was chosen to correspond to the most accurately measured value of 
the speed of light and is well within the experimental uncertainty. 

2.2 International System of Units 

The system of units most commonly used throughout science and technology today is the 
Système International (SI). It consists of seven base quantities and their corresponding 
base units, shown in Table 2.1. 

1 E. Mach, The Science of Mechanics, translated by Thomas J. McCormack, Open Court
Publishing Company, La Salle, Illinois, 1960, p. 273. 
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Table 2.1 International System of Units 

Base Quantity Base Unit 
Length meter (m) 
Mass kilogram (kg) 
Time second (s) 
Electric Current ampere (A) 
Temperature kelvin (K) 
Amount of Substance mole (mol) 
Luminous Intensity candela (cd) 

We shall refer to the dimension of the base quantity by the quantity itself, for example 

dim length ≡ length ≡ L, dim mass ≡ mass ≡ M, dim time ≡ time ≡ T. (2.2.1) 

Mechanics is based on just the first three of these quantities, the MKS or meter-
kilogram-second system. An alternative metric system, still widely used, is the CGS 
system (centimeter-gram-second). 

2.2.1 Standard Mass 

The unit of mass, the kilogram (kg), remains the only base unit in the 
International System of Units (SI) that is still defined in terms of a physical artifact, 
known as the “International Prototype of the Standard Kilogram.” George Matthey (of 
Johnson Matthey) made the prototype in 1879 in the form of a cylinder, 39 mm high and 
39 mm in diameter, consisting of an alloy of 90 % platinum and 10 % iridium. The 
international prototype is kept in the Bureau International des Poids et Mèsures (BIPM) 
at Sevres, France, under conditions specified by the 1st Conférence Générale des Poids et 
Mèsures (CGPM) in 1889 when it sanctioned the prototype and declared “This prototype 
shall henceforth be considered to be the unit of mass.” It is stored at atmospheric pressure 
in a specially designed triple bell-jar. The prototype is kept in a vault with six official 
copies. 

The 3rd Conférence Générale des Poids et Mèsures CGPM (1901), in a declaration 
intended to end the ambiguity in popular usage concerning the word “weight” confirmed 
that: 

The kilogram is the unit of mass; it is equal to the mass of the international 
prototype of the kilogram. 

There is a stainless steel one-kilogram standard that is used for comparisons with 
standard masses in other laboratories. In practice it is more common to quote a 
conventional mass value (or weight-in-air, as measured with the effect of buoyancy), than 
the standard mass. Standard mass is normally only used in specialized measurements 
wherever suitable copies of the prototype are stored. 
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Example 2.1 The International Prototype Kilogram 

In order to minimize the effects of corrosion, the platinum-iridium prototype kilogram is 
a right cylinder with dimensions chosen to minimize the surface area for a given fixed 
volume. The standard kilogram is an alloy of 90 % platinum and 10 % iridium. The 
density of the alloy is ρ = 21.56 g ⋅ cm−3 . Based on this information, (i) determine the 
radius of the prototype kilogram, and (ii) the ratio of the radius to the height. 

Solution: The volume for a cylinder of radius r and height h is given by 

V = πr 2h . (2.2) 

The surface area can be expressed as a function of the radius r and the constant volume 
V according to 

2 + 
2VA = 2πr 2 + 2πrh = 2πr . (2.3)
r 

To find the smallest surface area for a fixed volume, minimize the surface area with 
respect to the radius by setting 

dA 2V0 = = 4π r − , (2.4)
dr r 2 

which we can solve for the radius 
1/3 

⎛ V ⎞ r = . (2.5)
⎝⎜ 2π ⎠⎟ 

Because we also know that V = πr 2h , we can rewrite Eq. (2.5) as 

2hπ r r3 = , (2.6)
2π 

which implies that ratio of the radius to the height is 

r 1 = . (2.7)
h 2 

The standard kilogram is an alloy of 90% platinum and 10% iridium. The density of 
platinum is 21.45 g ⋅cm−3 and the density of iridium is 22.55 g ⋅cm−3 . Thus the density of 
the standard kilogram is 

ρ = (0.90)(21.45 g ⋅cm−3) + (0.10)(22.55 g ⋅cm−3) = 21.56 g ⋅cm−3 , (2.8) 
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and its volume is 

V = m / ρ = (1000 g) / (21.56 g ⋅cm−3 ) = 46.38 cm3 . (2.9) 

For the standard mass, the radius is 

r = 
V 
2π 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

1 3 

= 
46.38 cm3 

2π 

⎛ 

⎝⎜ 
⎞ 

⎠⎟ 

1 3 

≅ 1.95 cm . (2.10) 

Because the prototype kilogram is an artifact, there are some intrinsic problems 
associated with its use as a standard. It may be damaged, or destroyed. The prototype 
gains atoms due to environment wear and cleaning, at a rate of change of mass 
corresponding to approximately 1 µg / year , (1 µg ≡ 1microgram ≡ 1× 10-6 g ). 

Several new approaches to defining the SI unit of mass [kg] are currently being 
explored. One possibility is to define the kilogram as a fixed number of atoms of a 
particular substance, thus relating the kilogram to an atomic mass. Silicon is a good 
candidate for this approach because it can be grown as a large single crystal, in a very 
pure form. 

Example 2.2 Mass of a Silicon Crystal 

A given standard unit cell of silicon has a volume V0 and contains N0 atoms. The 
number of molecules in a given mole of substance is given by Avogadro’s constant 

= 6.02214129(27) ×1023 mol-1 . The molar mass of silicon is given by Mmol . Find the N A 

mass m of a volume V in terms of V0 , N0 , V , Mmol , and N A . 

Solution: The mass m0 of the unit cell is the density ρ of the silicon cell multiplied by 
the volume of the cell V0 , 

(2.11)m0 = ρV0 . 

The number of moles in the unit cell is the total mass, m0 , of the cell, divided by the 
molar mass Mmol , 

(2.12)n0 = m0 / Mmol = ρV0 / Mmol . 

The number of atoms in the unit cell is the number of moles times the Avogadro constant, 
N A , 

ρV0 N A= . (2.13)N0 = n0 N A 
 Mmol 
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The density of the crystal is related to the mass m of the crystal divided by the volume V 
of the crystal, 

ρ = m / V . (2.14) 

The number of atoms in the unit cell can be expressed as 

mV0 N AN0 = 
VMmol 

. (2.15) 

The mass of the crystal is 

m = 
Mmol 

N A 

V 
V0 

N0 (2.16) 

The molar mass, unit cell volume and volume of the crystal can all be measured directly. 
Notice that Mmol / N A is the mass of a single atom, and (V / V0 is the number of )N0 

atoms in the volume. This accuracy of the approach depends on how accurate the 
Avogadro constant can be measured. Currently, the measurement of he Avogadro 
constant has a relative uncertainty of 1 part in 108, which is equivalent to the uncertainty 
in the present definition of the kilogram. 

2.2.2 Atomic Clock and the Definition of the Second 

Isaac Newton, in the Philosophiae Naturalis Principia Mathematica (“Mathematical 
Principles of Natural Philosophy”), distinguished between time as duration and an 
absolute concept of time, 

“Absolute true and mathematical time, of itself and from its own nature, 
flows equably without relation to anything external, and by another name 
is called duration: relative, apparent, and common time, is some sensible 
and external (whether accurate or unequable) measure of duration by 
means of motion, which is commonly used instead of true time; such as an 
hour, a day, a month, a year. ”2. 

The development of clocks based on atomic oscillations allowed measures of 
timing with accuracy on the order of 1 part in 1014 , corresponding to errors of less than 
one microsecond (one millionth of a second) per year. Given the incredible accuracy of 
this measurement, and clear evidence that the best available timekeepers were atomic in 
nature, the second [s] was redefined in 1967 by the International Committee on Weights 

2 Isaac Newton. Mathematical Principles of Natural Philosophy. Translated by Andrew
Motte (1729). Revised by Florian Cajori. Berkeley: University of California Press, 1934. 
p. 6. 
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and Measures as a certain number of cycles of electromagnetic radiation emitted by 
cesium atoms as they make transitions between two designated quantum states: 

The second is the duration of 9,192,631,770 periods of the radiation 
corresponding to the transition between the two hyperfine levels of the 
ground state of the cesium 133 atom. 

2.2.3 Meter 

The meter [m] was originally defined as 1/10,000,000 of the arc from the Equator to the 
North Pole along the meridian passing through Paris. To aid in calibration and ease of 
comparison, the meter was redefined in terms of a length scale etched into a platinum bar 
preserved near Paris. Once laser light was engineered, the meter was redefined by the 
17th Conférence Générale des Poids et Mèsures (CGPM) in 1983 to be a certain number 
of wavelengths of a particular monochromatic laser beam. 

The meter is the length of the path traveled by light in vacuum during a 
time interval of 1/299 792 458 of a second. 

Example 2.3 Light-Year 

Astronomical distances are sometimes described in terms of light-years [ly]. A light-year 
is the distance that light will travel in one year [yr]. How far in meters does light travel in 
one year? 

Solution: Using the relationship distance = (speed of light) ⋅ (time) , one light year 
corresponds to a distance. Because the speed of light is given in terms of meters per 
second, we need to know how many seconds are in a year. We can accomplish this by 
converting units. We know that 

1 year = 365.25 days, 1 day = 24 hours, 1 hour = 60 minutes, 1 minute = 60 seconds 

Putting this together we find that the number of seconds in a year is 

1 year =(365.25 day) 24 hours 
1 day 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

60 min 
1 hour 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

60 s 
1 min 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

=31,557,600 s . (2.2.17) 

The distance that light travels in a one year is 

1 ly = 
299,792,458 m 

1s 
⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

31,557,600 s 
1 yr 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ (1 yr) = 9.461×1015 m . (2.2.18) 

The distance to the nearest star, a faint red dwarf star, Proxima Centauri, is 
4.24 ly . 

2-6



  

 
  

 
         

            
    

  
  

 
         

            
              

             
  

 
     
 

                  
          

            

   
 

 
 

   
 

              
               

              

    

 
 

  
 

  

  
 

   

  

  

  
 

 

  

 
   

   

2.2.4 Radians 

Consider the triangle drawn in Figure 2.1. The basic trigonometric functions of an angle 
θ in a right-angled triangle ONB are sin(θ) = y / r , cos(θ) = x / r , and tan(θ) = y / x . 

 O

r

B

y
s

ANx X

P

Figure 2.1 Trigonometric relations 

It is very important to become familiar with using the measure of the angle θ 
itself as expressed in radians [rad]. Let θ be the angle between two straight lines OX 
and OP . Draw a circle of radius r centered at O . The lines OP and OX cut the circle 
at the points A and B where OA = OB = r . Denote the length of the arc AB by s , 
then the radian measure of θ is given by 

θ = s / r , (2.2.19) 

and the ratio is the same for circles of any radii centered at O -- just as the ratios y / r 
and y / x are the same for all right triangles with the angle θ at O . As θ approaches 
360 , s approaches the complete circumference 2πr of the circle, so that 
360 = 2π rad . 

tan( ) 

sin( ) 

/ 2 
0 

1.0 

/ 2 

Figure 2.2 Radians compared to trigonometric functions. 

Let’s compare the behavior of sin(θ) , tan(θ) and θ itself for small angles. One 
can see from Figure 2.1 that s / r > y / r . It is less obvious that y / x > θ . It is very 
instructive to plot sin(θ) , tan(θ) , and θ as functions of θ [rad] between 0 and π / 2 
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on the same graph (see Figure 2.2). For small θ , the values of all three functions are 
almost equal. But how small is “small”? An acceptable condition is for θ << 1 in radians. 

We can show this with a few examples. Recall that 360 = 2π rad , 57.3 = 1rad , so an 
angle 6 ≅ (6 )(2π rad / 360o ) ≅ 0.1 rad when expressed in radians. In Table 2.2 we 
compare the value of θ (measured in radians) with sin(θ ) , tan(θ ) , (θ − sinθ ) / θ , and 
(θ − tanθ ) / θ , for θ = 0.1 rad , 0.2 rad , 0.5 rad , and 1.0 rad . 

Table 2.2 Small Angle Approximation 

θ [rad] θ [deg] sin(θ ) tan(θ ) (θ − sinθ ) / θ (θ − tanθ ) / θ 
0.1 5.72958 0.09983 0.10033 0.00167 -0.00335 
0.2 11.45916 0.19867 0.20271 0.00665 -0.01355 
0.5 28.64789 0.47943 0.54630 0.04115 -0.09260 
1.0 57.29578 0.84147 1.55741 0.15853 -0.55741 

The values for (θ − sinθ ) / θ , and (θ − tanθ ) / θ , for θ = 0.2 rad are less than ±1.4% . 
Provided that θ is not too large, the approximation that 

sin(θ)  tan(θ)  θ , (2.2.20) 

called the small angle approximation, can be used almost interchangeably, within some 
small percentage error. This is the basis of many useful approximations in physics 
calculations. 

Example 2.4 Parsec 

A standard astronomical unit is the parsec . Consider two objects that are separated by a 
distance of one astronomical unit, 1AU = 1.50 ×1011 m , which is the mean distance 
between the earth and sun. (One astronomical unit is roughly equivalent to eight light 
minutes, 1AU = 8.3light-minutes .) One parsec is the distance at which one astronomical 
unit subtends an angle θ = 1arcsecond = (1/ 3600) degree . Suppose is a spacecraft is 
located in a space a distance 1 parsec from the Sun as shown in Figure 2.3. How far is the 
spacecraft in terms of light years and meters? 

Earth 

Sun 

1 AU 1 arcsecond 

spacecraft 

1 parsec 

Figure 2.3 Example 2.4 
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Because one arc second corresponds to a very small angle, one parsec is therefore equal 
to distance divided by angle, hence 

(1 AU) ⎛ 1.50 ×1011 m ⎞1pc = = (2.06 ×105 AU) 
⎠⎟ 
= 3.09 ×1016 m

(1/3600) ⎝⎜ 1AU 
. (2.2.21)

⎛ 1ly ⎞ 
= (3.09 ×1016 m) 

⎠⎟ 
= 3.26 ly 

⎝⎜ 9.46 ×1015 m 

2.2.5 Steradians 

The steradian [sr] is the unit of solid angle that, having its vertex in the center of a sphere, 
cuts off an area of the surface of the sphere equal to that of a square with sides of length 
equal to the radius of the sphere. The conventional symbol for steradian measure is Ω , 
the uppercase Greek letter “Omega.” The total solid angle Ωsph of a sphere is then found 
by dividing the surface area of the sphere by the square of the radius, 

Ωsph = 4π r2 / r2 = 4π (2.2.22) 

This result is independent of the radius of the sphere. 

2.2.6 Radiant Intensity 

“The SI unit, candela, is the luminous intensity of a source that emits 
monochromatic radiation of frequency 540 × 1012 s-1 , in a given direction, 
and that has a radiant intensity in that direction of 1/683 watts per 
steradian.” 

Note that "in a given direction" cannot be taken too literally. The intensity is measured 
per steradian of spread, so if the radiation has no spread of directions, the luminous 
intensity would be infinite. 

2.3 Dimensions of Commonly Encountered Quantities 

Many physical quantities are derived from the base quantities by a set of algebraic 
relations defining the physical relation between these quantities. The dimension of the 
derived quantity is written as a power of the dimensions of the base quantities. For 
example velocity is a derived quantity and the dimension is given by the relationship 

dim velocity = (length)/(time) = L ⋅ T-1 . (2.3.1) 

where L ≡ length , T ≡ time . Force is also a derived quantity and has dimension 
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(mass)(dim velocity) 
dim force = . (2.3.2)

(time) 

where M ≡ mass . We can also express force in terms of mass, length, and time by the 
relationship 

(mass)(length) 
= M ⋅ L ⋅ T-2 dim force = . (2.3.3)

(time)2 

The derived dimension of kinetic energy is 

dim kineticenergy = (mass)(dim velocity)2 , (2.3.4) 

which in terms of mass, length, and time is 

(mass)(length)2 

= M ⋅ L2 ⋅ T-2 dim kineticenergy = . (2.3.5)
(time)2 

The derived dimension of work is 

dim work = (dim force)(length) , (2.3.6) 

which in terms of our fundamental dimensions is 

(mass)(length)2 

= M ⋅ L2 ⋅ T-2 dim work = . (2.3.7)
(time)2 

So work and kinetic energy have the same dimensions. Power is defined to be the rate of 
change in time of work so the dimensions are 

dim work (dim force)(length) (mass)(length)2 

= M ⋅ L2 ⋅ T-3 dim power = = = .(2.3.8)
time time (time)3 

In Table 2.3 we include the derived dimensions of some common mechanical quantities 
in terms of mass, length, and time. 

2.3.1 Dimensional Analysis 

There are many phenomena in nature that can be explained by simple relationships 
between the observed phenomena. 
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Table 2.3 Dimensions of Some Common Mechanical Quantities 

M ≡ mass , L ≡ length , T ≡ time 

Quantity Dimension MKS unit 
Angle dimensionless Dimensionless = radian 
Solid Angle dimensionless Dimensionless = sterradian 
Area L2 m2 

Volume L3 m3 

Frequency T-1 s−1 = hertz = Hz 
Velocity L ⋅ T-1 m ⋅ s−1 

Acceleration L ⋅ T-2 m ⋅ s−2 

Angular Velocity T-1 rad ⋅ s−1 

Angular Acceleration T-2 rad ⋅ s−2 

Density M ⋅ L-3 kg ⋅ m−3 

Momentum M ⋅ L ⋅ T-1 kg ⋅ m ⋅ s−1 

Angular Momentum M ⋅ L2 ⋅ T-1 kg ⋅ m2 ⋅ s−1 

Force M ⋅ L ⋅ T-2 kg ⋅m ⋅s−2 = newton = N 
Work, Energy M ⋅ L2 ⋅ T-2 kg ⋅ m2 ⋅ s−2 = joule = J 
Torque M ⋅ L2 ⋅ T-2 kg ⋅ m2 ⋅ s−2 

Power M ⋅ L2 ⋅ T-3 kg ⋅ m2 ⋅ s−3 = watt = W 
Pressure M ⋅ L-1 ⋅ T-2 kg ⋅ m−1 ⋅ s−2 = pascal= Pa 

Example 2.5 Period of a Pendulum 

Consider a simple pendulum consisting of a massive bob suspended from a fixed point by 
a string. Let T denote the time interval (period of the pendulum) that it takes the bob to 
complete one cycle of oscillation. How does the period of the simple pendulum depend 
on the quantities that define the pendulum and the quantities that determine the motion? 

Solution: What possible quantities are involved? The length of the pendulum l , the mass 
of the pendulum bob m , the gravitational acceleration g , and the angular amplitude of 
the bob θ0 are all possible quantities that may enter into a relationship for the period of 
the swing. Have we included every possible quantity? We can never be sure but let’s first 
work with this set and if we need more than we will have to think harder! Our problem is 
then to find a function f such that 

2-11



  

     
 

  
 

     
 

   
     

     
     

     
 

    

 
  
        

       
      

      
          

 

 
  

  

 
            

 

 
   

  

 
         

    
       

    
 

 
  

  

 
            

   
 

 

 

 

 
   

 

 
   

  

T = f (l,m, g,θ0 ) (2.3.9) 

We first make a list of the dimensions of our quantities as shown in Table 2.4. 

Table 2.4 Dimensions of Quantities Relevant to the Period of Pendulum 

Name of Quantity Symbol Dimensional Formula 
Time of swing t T 
Length of pendulum l L 
Mass of pendulum m M 
Gravitational acceleration g L ⋅ T-2 

Angular amplitude of swing θ0 
No dimension 

Our first observation is that the mass of the bob cannot enter into our relationship, 
as our final quantity has no dimensions of mass and no other quantity has dimensions of 
mass. Let’s focus on the length of the string and the gravitational acceleration. In order to 
eliminate length, these quantities must divide each other when appearing in some 
functional relation for the period T . If we choose the combination l / g , the dimensions 
are 

length 
dim[l / g] = = (time)2 (2.3.10)

length/(time)2 

It appears that the time of swing may proportional to the square root of this ratio. Thus 
we have a candidate formula 

1/2 
⎛ l ⎞T  . (2.3.11)
⎝⎜ g ⎠⎟ 

(in the above expression, the symbol “  ” represents a proportionality, not an 
approximation). Because the angular amplitude θ0 is dimensionless, it may or may not 
appear. We can account for this by introducing some function y(θ0 ) into our relationship, 
which is beyond the limits of this type of analysis. The period is then 

1/2 
⎛ l ⎞T = y(θ0 ) . (2.3.12)
⎝⎜ g ⎠⎟ 

We shall discover later on that y(θ0 ) is nearly independent of the angular amplitude θ0 

for very small amplitudes and is equal to y(θ0 ) = 2π , 
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 T = 2π 

l 
g 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

1/2 

(2.3.13) 

2.4 Order of Magnitude Estimates - Fermi Problems 

Counting is the first mathematical skill we learn. We came to use this skill by 
distinguishing elements into groups of similar objects, but counting becomes problematic 
when our desired objects are not easily identified, or there are too many to count. Rather 
than spending a huge amount of effort to attempt an exact count, we can try to estimate 
the number of objects. For example, we can try to estimate the total number of grains of 
sand contained in a bucket of sand. Because we can see individual grains of sand, we 
expect the number to be very large but finite. Sometimes we can try to estimate a number, 
which we are fairly sure but not certain is finite, such as the number of particles in the 
universe. 

We can also assign numbers to quantities that carry dimensions, such as mass, 
length, time, or charge, which may be difficult to measure exactly. We may be interested 
in estimating the mass of the air inside a room, or the length of telephone wire in the 
United States, or the amount of time that we have slept in our lives. We choose some set 
of units, such as kilograms, miles, hours, and coulombs, and then we can attempt to 
estimate the number with respect to our standard quantity. 

Often we are interested in estimating quantities such as speed, force, energy, or 
power. We may want to estimate our natural walking speed, or the force of wind acting 
against a bicycle rider, or the total energy consumption of a country, or the electrical 
power necessary to operate a university. All of these quantities have no exact, well-
defined value; they instead lie within some range of values. 

When we make these types of estimates, we should be satisfied if our estimate is 
reasonably close to the middle of the range of possible values. But what does “reasonably 
close” mean? Once again, this depends on what quantities we are estimating. If we are 
describing a quantity that has a very large number associated with it, then an estimate 
within an order of magnitude should be satisfactory. The number of molecules in a breath 
of air is close to 1022 ; an estimate anywhere between 1021 and 1023 molecules is close 
enough. If we are trying to win a contest by estimating the number of marbles in a glass 
container, we cannot be so imprecise; we must hope that our estimate is within 1% of the 
real quantity. These types of estimations are called Fermi problems. The technique is 
named after the physicist Enrico Fermi, who was famous for making these sorts of “back 
of the envelope” calculations. 

2.4.1 Methodology for Estimation Problems 

Estimating is a skill that improves with practice. Here are two guiding principles that may 
help you get started. 

(1) You must identify a set of quantities that can be estimated or calculated. 
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(2) You must establish an approximate or exact relationship between these quantities 
and the quantity to be estimated in the problem. 

Estimations may be characterized by a precise relationship between an estimated quantity 
and the quantity of interest in the problem. When we estimate, we are drawing upon what 
we know. But different people are more familiar with certain things than others. If you 
are basing your estimate on a fact that you already know, the accuracy of your estimate 
will depend on the accuracy of your previous knowledge. When there is no precise 
relationship between estimated quantities and the quantity to be estimated in the problem, 
then the accuracy of the result will depend on the type of relationships you decide upon. 
There are often many approaches to an estimation problem leading to a reasonably 
accurate estimate. So use your creativity and imagination! 

Example 2.6 Lining Up Pennies 

Suppose you want to line pennies up, diameter to diameter, until the total length is 
1 kilometer . How many pennies will you need? How accurate is this estimation? 

Solution: The first step is to consider what type of quantity is being estimated. In this 
example we are estimating a dimensionless scalar quantity, the number of pennies. We 
can now give a precise relationship for the number of pennies needed to mark off 1 
kilometer 

totaldistance # of pennies = (2.4.1)
diameter of penny 

. 

We can estimate a penny to be approximately 2 centimeters wide. Therefore the number 
of pennies is 

totaldistance (1km) 
# of pennies= = 

lengthof a penny (2 cm)(1km / 105 cm) (2.4.2) 
= 50,000 pennies = 5 ×104 pennies. 

When applying numbers to relationships we must be careful to convert units 
whenever necessary. How accurate is this estimation? If you measure the size of a penny, 
you will find out that the width is 1.9 cm , so our estimate was accurate to within 5%. 
This accuracy was fortuitous. Suppose we estimated the length of a penny to be 1 cm. 
Then our estimate for the total number of pennies would be within a factor of 2, a margin 
of error we can live with for this type of problem. 

Example 2.7 Estimation of Mass of Water on Earth 

Estimate the mass of the water on the Earth. 

Solution: In this example we are estimating mass, a quantity that is a fundamental in SI 
units, and is measured in kg. We start by approximating that the amount of water on 
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Earth is approximately equal to the amount of water in all the oceans. Initially we will try 
to estimate two quantities: the density of water and the volume of water contained in the 
oceans. Then the relationship we want is 

mass = (density)(volume) . (2.4.3) 

One of the hardest aspects of estimation problems is to decide which relationship applies. 
One way to check your work is to check dimensions. Density has dimensions of 
mass/volume, so our relationship is correct dimensionally. 

The density of fresh water is ρ = 1.0 g ⋅cm−3 ; the density of seawater is slightly 
higher, but the difference won’t matter for this estimate. You could estimate this density 
by estimating how much mass is contained in a one-liter bottle of water. (The density of 
water is a point of reference for all density problems. Suppose we need to estimate the 
density of iron. If we compare iron to water, we might estimate that iron is 5 to 10 times 
denser than water. The actual density of iron is ρiron = 7.8 g ⋅ cm-3 ). 

Because there is no precise relationship, estimating the volume of water in the 
oceans is much harder. Let’s model the volume occupied by the oceans as if the water 
completely covers the earth, forming a spherical shell of radius RE and thickness d 
(Figure 2.4, which is decidedly not to scale), where RE is the radius of the earth and d is 
the average depth of the ocean. The volume of that spherical shell is 

2volume ≅ 4π Rearth d . (2.4.4) 

RE 

d 

Figure 2.4 A model for estimating the mass of the water on Earth. 

We also estimate that the oceans cover about 75% of the surface of the earth. So we can 
refine our estimate that the volume of the oceans is 

volume ≅ (0.75)(4π RE 
2d) . (2.4.5) 
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We therefore have two more quantities to estimate, the average depth of the ocean, which 
we can estimate as d ≅ 1km , and the radius of the earth, which is approximately 

≅ 6 ×103km . (The quantity that you may remember is the circumference of the earth, RE 

about 25,000 miles . Historically the circumference of the earth was defined to be 
4 × 107 m ). The radius RE and the circumference s are exactly related by 

s = 2π RE . (2.4.6) 
Thus 

s (2.5×104 mi )(1.6 km ⋅ mi-1 )
= = = 6.4 ×103 km (2.4.7)RE 2π 2π 

We will use RE ≅ 6 ×103km ; additional accuracy is not necessary for this problem, since 
the ocean depth estimate is clearly less accurate. In fact, the factor of 75% is not needed, 
but included more or less from habit. Altogether, our estimate for the mass of the oceans 
is 

mass = (density)(volume) ≅ ρ(0.75)(4π RE 
2d) 

⎛ 1g ⎞ ⎛ 1 kg ⎞ ⎛ (105 cm)3 ⎞ 
mass ≅ 

⎠⎟ 
(0.75)(4π )(6 ×103 km)2(1km) (2.4.8)3⎝⎜ cm ⎠⎟ ⎝⎜ 103 g⎠⎟ ⎝⎜ (1km)3 

mass ≅ 3×1020 kg ≅ 1020 kg. 
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Chapter 3 Vectors 

Philosophy is written in this grand book, the universe which stands 
continually open to our gaze. But the book cannot be understood unless 
one first learns to comprehend the language and read the letters in which 
it is composed. It is written in the language of mathematics, and its 
characters are triangles, circles and other geometric figures without 
which it is humanly impossible to understand a single word of it; without 
these, one wanders about in a dark labyrinth.1 

Galileo Galilee 
3.1 Vector Analysis 

3.1.1 Introduction to Vectors 

Certain physical quantities such as mass or the absolute temperature at some point in 
space only have magnitude. A single number can represent each of these quantities, with 
appropriate units, which are called scalar quantities. There are, however, other physical 
quantities that have both magnitude and direction. Force is an example of a quantity that 
has both direction and magnitude (strength). Three numbers are needed to represent the 
magnitude and direction of a vector quantity in a three dimensional space. These 
quantities are called vector quantities. Vector quantities also satisfy two distinct 
operations, vector addition and multiplication of a vector by a scalar. We can add two 
forces together and the sum of the forces must satisfy the rule for vector addition. We can 
multiply a force by a scalar thus increasing or decreasing its strength. Position, 
displacement, velocity, acceleration, force, and momentum are all physical quantities that 
can be represented mathematically by vectors. The set of vectors and the two operations 
form what is called a vector space. There are many types of vector spaces but we shall 
restrict our attention to the very familiar type of vector space in three dimensions that 
most students have encountered in their mathematical courses. We shall begin our 
discussion by defining what we mean by a vector in three dimensional space, and the 
rules for the operations of vector addition and multiplication of a vector by a scalar. 

3.1.2 Properties of Vectors 

A vector is a quantity that has both direction and magnitude. Let a vector be denoted by    
the symbol A . The magnitude of A is | A |≡ A . We can represent vectors as geometric 
objects using arrows. The length of the arrow corresponds to the magnitude of the vector. 
The arrow points in the direction of the vector (Figure 3.1). 

1 Galileo Galilei, The Assayer, tr. Stillman Drake (1957), Discoveries and Opinions of
Galileo pp. 237-8. 
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Figure 3.1 Vectors as arrows. 

There are two defining operations for vectors: 

(1) Vector Addition: 
     

Vectors can be added. Let A and B be two vectors. We define a new vector, C = A + B ,   
the “vector addition” of A and B , by a geometric construction. Draw the arrow that    
represents A . Place the tail of the arrow that represents B at the tip of the arrow for A   
as shown in Figure 3.2a. The arrow that starts at the tail of A and goes to the tip of B is    
defined to be the “vector addition” C = A + B . There is an equivalent construction for the   
law of vector addition. The vectors A and B can be drawn with their tails at the same 
point. The two vectors form the sides of a parallelogram. The diagonal of the    
parallelogram corresponds to the vector C = A + B , as shown in Figure 3.2b. 

C = A + BC = A + B 
B B 

A A 

(a) head to tail (b) parallelogram 

Figure 3.2a Figure 3.2b 

Vector addition satisfies the following four properties: 

(i) Commutativity: 

The order of adding vectors does not matter; 
 
A
+
 
 
B
=
 
 
B
+
 
 
A
.
 (3.1.1)
 

Our geometric definition for vector addition satisfies the commutative property (3.1.1). 

We can understand this geometrically because in the head to tail representation for the
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addition of vectors, it doesn’t matter which vector you begin with, the sum is the same 
vector, as seen in Figure 3.3. 

C = B + A C = A + B B 

A 

B 
A 

Figure 3.3 Commutative property of vector addition. 
(ii) Associativity: 

When adding three vectors, it doesn’t matter which two you start with 
      

(A + B) + C = A + (B + C) . (3.1.2) 

 
B
+
 
 
C
) +
 

 
A
, and use commutativity to get 

 
A
 

 
B
+
 
 
C
) . In figure, In Figure 3.4a, we add ( + (
 

 
A
+
 
 
B
) +
 

 
C
we add ( to arrive at the same vector as in Figure 3.4a. 

B + C 

CA 
A + (B + C) (A + B) + C 

B 
A + BB
 

AC 

Figure 3.4a Associative law. 

(iii) Identity Element for Vector Addition: 

 
There is a unique vector, 0 , that acts as an identity element for vector addition. For all  
vectors A ,      

A + 0 = 0 + A = A . (3.1.3) 

(iv) Inverse Element for Vector Addition: 

  
For every vector A , there is a unique inverse vector −A such that 
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A
+ (−
 

 
A
) =
 


0
. (3.1.4)
 

    
The vector −A has the same magnitude as A , | A | |= −A |= A , but they point in opposite 
directions (Figure 3.5). 

A A 

Figure 3.5 Additive inverse 

(2) Scalar Multiplication of Vectors: 
 

Vectors can be multiplied by real numbers. Let A be a vector. Let c be a real positive  
number. Then the multiplication of A by c is a new vector, which we denote by the    
symbol c A . The magnitude of c A is c times the magnitude of A (Figure 3.6a), 

  
cA = c A . (3.1.5) 

  
Let c > 0 , then the direction of c A is the same as the direction of A . However, the 

  
direction of −c A is opposite of A (Figure 3.6). 

A c Ac A 

 
Figure 3.6 Multiplication of vector A by c > 0 , and −c < 0 . 

Scalar multiplication of vectors satisfies the following properties: 

(i) Associative Law for Scalar Multiplication: 

The order of multiplying numbers is doesn’t matter. Let b and c be real numbers. Then 

    
( A) = bc)A = (cb A) = c b( A) . (3.1.6)b c ( 

(ii) Distributive Law for Vector Addition: 

Vectors satisfy a distributive law for vector addition. Let c be a real number. Then 
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c( 
 
A
+
 
 
B
) = c 

 
A
+ c 

 
B
.
 (3.1.7)
 

Figure 3.7 illustrates this property. 

c(A + B) c A + cB 

C = A + B 

cB c A 
B 

A 

Figure 3.7 Distributive Law for vector addition. 

(iii) Distributive Law for Scalar Addition: 

Vectors also satisfy a distributive law for scalar addition. Let b and c be real numbers. 
Then 

(b + c) 
 
A
= b 

 
A
+ c 

 
A
 (3.1.8)
 

Our geometric definition of vector addition and scalar multiplication satisfies this 
condition as seen in Figure 3.8. 

A bA 

c A 

(b + c) A bA + c A 

Figure 3.8 Distributive law for scalar multiplication. 

(iv) Identity Element for Scalar Multiplication: 

The number 1 acts as an identity element for multiplication, 

  
1 A = A . (3.1.9) 
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Unit vector: 

Dividing a vector by its magnitude results in a vector of unit length which we denote with 
a caret symbol 

Â = 
A

 . (3.1.10)

A 

 ˆNote that A = A / A = 1 . 

3.2 Coordinate Systems 

Physics involve the study of phenomena that we observe in the world. In order to connect 
the phenomena to mathematics we begin by introducing the concept of a coordinate 
system. A coordinate system consists of four basic elements: 

(1) Choice of origin 

(2) Choice of axes 

(3) Choice of positive direction for each axis 

(4) Choice of unit vectors at every point in space 

There are three commonly used coordinate systems: Cartesian, cylindrical and spherical. 
In this chapter we will describe a Cartesian coordinate system and a cylindrical 
coordinate system. 

3.2.1 Cartesian Coordinate System 

Cartesian coordinates consist of a set of mutually perpendicular axes, which intersect at a 
common point, the origin O . We live in a three-dimensional spatial world; for that 
reason, the most common system we will use has three axes. 

(1) Choice of Origin: Choose an origin O at any point that is most convenient. 

(2) Choice of Axes: The simplest set of axes is known as the Cartesian axes, x -axis, y -
axis, and the z -axis, that are at right angles with respect to each other. Then each point 
P in space can be assigned a triplet of values (xP , yP , zP ) , the Cartesian coordinates of 
the point P . The ranges of these values are: −∞ < xP < +∞ , 
−∞ < yP < +∞ , −∞ < zP < +∞ . 

(3) Choice of Positive Direction: Our third choice is an assignment of positive direction 
for each coordinate axis. We shall denote this choice by the symbol + along the positive 
axis. In physics problems we are free to choose our axes and positive directions any way 
that we decide best fits a given problem. Problems that are very difficult using the 
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conventional choices may turn out to be much easier to solve by making a thoughtful 
choice of axes. 

(4) Choice of Unit Vectors: We now associate to each point P in space, a set of three 
ˆ ˆ ˆunit vectors (îP , ĵP ,k̂ 

P ) . A unit vector has magnitude one: = 1 , and= 1 , = 1 .iP jP k P 

We assign the direction of îP to point in the direction of the increasing x -coordinate at 

the point P . We define the directions for ĵP and k̂ P in the direction of the increasing 
y -coordinate and z -coordinate respectively, (Figure 3.10). If we choose a different point 
S , and define a similar set of unit vectors (îS , ĵS , k̂ 

S ) , the unit vectors at S and P 

satisfy the equalities 
îS = îP , ĵS = ĵP , and k̂ 

S = k̂ 
P , (3.2.1) 

because vectors are equal if they have the same direction and magnitude regardless of 
where they are located in space. 

Figure 3.10 Choice of unit vectors at points P and S . 

A Cartesian coordinate system is the only coordinate system in which Eq. (3.2.1) holds 
for all pair of points. We therefore drop the reference to the point P and use (î, ĵ, k̂) to 
represent the unit vectors in a Cartesian coordinate system (Figure 3.11). 

+z 

+ y 

+x 
xP 

yP 

zP . 
P 

0 

k̂ 
ĵ

î 

Figure 3.11 Unit vectors in a Cartesian coordinate system 
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3.2.2 Cylindrical Coordinate System 

Many physical objects demonstrate some type of symmetry. For example if you rotate a 
uniform cylinder about the longitudinal axis (symmetry axis), the cylinder appears 
unchanged. The operation of rotating the cylinder is called a symmetry operation, and the 
object undergoing the operation, the cylinder, is exactly the same as before the operation 
was performed. This symmetry property of cylinders suggests a coordinate system, called 
a cylindrical coordinate system, that makes the symmetrical property under rotations 
transparent. 

First choose an origin O and axis through O , which we call the z -axis. The 
cylindrical coordinates for a point P are the three numbers (r,θ , z) (Figure 3.12). The 
number z represents the familiar coordinate of the point P along the z -axis. The 
nonnegative number r represents the distance from the z -axis to the point P . The points 
in space corresponding to a constant positive value of r lie on a circular cylinder. The 
locus of points corresponding to r = 0 is the z -axis. In the plane z = 0 , define a 
reference ray through O , which we shall refer to as the positive x -axis. Draw a line 
through the point P that is parallel to the z -axis. Let D denote the point of intersection 
between that line PD and the plane z = 0 . Draw a ray OD from the origin to the point 
D . Let θ denote the directed angle from the reference ray to the ray OD . The angle θ is 
positive when measured counterclockwise and negative when measured clockwise. 

r 

(r, , z)
. 

z 

y 

r 

r 

P 

O 

D 
. 

x 

+x 

+ y 

+z 

(r, ,0) 

Figure 3.12 Cylindrical Coordinates 

The coordinates (r,θ) are called polar coordinates. The coordinate transformations 
between (r,θ) and the Cartesian coordinates (x, y) are given by 
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x = r cosθ , (3.2.2) 
y = r sinθ . (3.2.3) 

Conversely, if we are given the Cartesian coordinates (x, y) , the coordinates (r,θ) can 
be determined from the coordinate transformations 

2 + y2 )1 2 r = +(x , (3.2.4) 
θ = tan−1( y / x) . (3.2.5) 

We choose a set of unit vectors (r̂P ,θ̂ P ,k̂ 
P ) at the point P as follows. We choose k̂ 

P to 
point in the direction of increasing z . We choose r̂P to point in the direction of 

ˆincreasing r , directed radially away from the z -axis. We choose θP to point in the 
direction of increasing θ . This unit vector points in the counterclockwise direction, 
tangent to the circle (Figure 3.13a). One crucial difference between cylindrical 
coordinates and Cartesian coordinates involves the choice of unit vectors. Suppose we 

ˆ ˆconsider a different point S in the plane. The unit vectors (r̂ ) at the point S areS ,θS ,k S 

ˆ ˆalso shown in Figure 3.13. Note that r̂ ≠ r̂ and θ ≠ θ because their direction differ.P S P S 

We shall drop the subscripts denoting the points at which the unit vectors are defined at 
and simple refer to the set of unit vectors at a point as (r̂,θ̂,k̂ ) , with the understanding 

ˆthat the directions of the set (r̂,θ) depend on the location of the point in question. 

. 
P 

O 

+x 

+ y 

+z 

ˆ 
P 

r̂
P 

k̂ 
P. r̂

S 

S 

k̂
S 

ˆ 
S 

Figure 3.13a Unit vectors at two different points in cylindrical coordinates. 
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r̂ˆ ĵ 
î 

+ x 

+ y 

Figure 3.13b Unit vectors in polar coordinates and Cartesian coordinates. 

The unit vectors (r̂,θ̂) at the point P also are related to the Cartesian unit vectors ( î, ĵ ) 
by the transformations 

r̂ = cosθ î + sinθ ĵ , (3.2.6) 
θ̂ = −sinθ î + cosθ ĵ . (3.2.7) 

Similarly the inverse transformations are given by 

î = cosθ r̂ − sinθ θ̂ , (3.2.8) 
ĵ = sinθ r̂ + cosθ θ̂ . (3.2.9) 

A cylindrical coordinate system is also a useful choice to describe the motion of an object 
moving in a circle about a central point. Consider a vertical axis passing perpendicular to 
the plane of motion passing through that central point. Then any rotation about this 
vertical axis leaves circles unchanged. 

3.3 Vectors 

3.3.1 The Use of Vectors in Physics 

From the last section we have three important ideas about vectors, (1) vectors can exist at 
any point P in space, (2) vectors have direction and magnitude, and (3) any two vectors 
that have the same direction and magnitude are equal no matter where in space they are 
located. When we apply vectors to physical quantities it’s nice to keep in the back of our 
minds all these formal properties. However from the physicist’s point of view, we are 
interested in representing physical quantities such as displacement, velocity, acceleration, 
force, impulse, and momentum as vectors. We can’t add force to velocity or subtract 
momentum from force. We must always understand the physical context for the vector 
quantity. Thus, instead of approaching vectors as formal mathematical objects we shall 
instead consider the following essential properties that enable us to represent physical 
quantities as vectors. 
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3.3.2 Vectors in Cartesian Coordinates 

(1) Vector Decomposition: Choose a coordinate system with an origin, axes, and unit 
vectors. We can decompose a vector into component vectors along each coordinate axis 
(Figure 3.14). 

+z 

+ y 
+x 

. 
0 

A A z 

A y 

A x 

Figure 3.14 Component vectors in Cartesian coordinates. 

 
A vector A at P can be decomposed into the vector sum, 

 
A
=
 
 
A
 +
 

 
A
 +
 

 
A
 ,
 (3.3.1)
x y z 

 
where A is the x -component vector pointing in the positive or negative x -direction,x   
A y is the y -component vector pointing in the positive or negative y -direction, and A z 

is the z -component vector pointing in the positive or negative z -direction. 

(2) Vector Components: Once we have defined unit vectors (î, ĵ, k̂ ) , we then define the 
components of a vector. Recall our vector decomposition, 

 
A
=
 
 
A
 +
 

 
A
 +
 

 
A
 . We define x y z 

 
the x-component vector, Ax , as 

 ˆAx = Ax i . (3.3.2) 

In this expression the term Ax , (without the arrow above) is called the x -component of 
 

the vector A . The x -component Ax can be positive, zero, or negative. It is not the 
 

2 1/ 2 magnitude of A which is given by (A ) . The x -component A is a scalar quantity x x x  
and the x -component vector, Ax is a vector. In a similar fashion we define the y -

 
component, Ay , and the z -component, Az , of the vector A according to 

 ˆ ˆA = A j, A = A k . (3.3.3)y y z z 
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A vector A is represented by its three components ( A , A , A ) . Thus we need three x y z 

 
numbers to describe a vector in three-dimensional space. We write the vector A as 

 ˆ ˆ ˆA = A i + A j + A k . (3.3.4)x y z 

 
(3) Magnitude: Using the Pythagorean theorem, the magnitude of A is, 

2 2 2A = A + A + A . (3.3.5)x y z 

 
(4) Direction: Let’s consider a vector A = (Ax , Ay ,0) . Because the z -component is zero, 

  
the vector A lies in the x y plane. Let θ denote the angle that the vector A makes in -
the counterclockwise direction with the positive x -axis (Figure 3.15). 

+y 
ĵ 

îA 
A y

P A x 
+x 

Figure 3.15 Components of a vector in the xy -plane. 

Then the x -component and y -component are 

Ax = Acos(θ), Ay = Asin(θ) . (3.3.6) 

We now write a vector in the xy -plane as 

 ˆ ˆ= Acos( ) i + Asin( ) θ j (3.3.7)A θ 

Once the components of a vector are known, the tangent of the angle θ can be 
determined by 

Ay Asin(θ)
= = tan(θ) , (3.3.8)

Ax Acos(θ) 

and hence the angle θ is given by 
⎛ Ay ⎞θ = tan−1 
⎜ ⎟ . (3.3.9)
⎝ Ax ⎠ 
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Clearly, the direction of the vector depends on the sign of Ax and Ay . For example, if 

both A > 0 and A > 0 , then 0 < θ < π / 2 . If A < 0 and A > 0 then π / 2 < θ < π .x y x y 

If A < 0 and A < 0 then π < θ < 3π / 2 . If A > 0 and A < 0 , then 3π / 2 < θ < 2π . x y x y 

Note that tan(θ ) is a double valued function because 

− A A A − A y y y y= , and = . (3.3.10)
− A A − A A x x x x 

  ˆ ˆ ˆ ˆ(5) Unit Vectors: Unit vector in the direction of A : Let A = A i + A j + A k . Let Ax y z 
 

denote a unit vector in the direction of A . Then 

 
ˆ A A x î + Ay ĵ + Az k̂A =  = . (3.3.11)2 + 2 + 2 )1/ 2 ( A A AA x y z 

  
(6) Vector Addition: Let A and B be two vectors in the x-y plane. Let θA and θB   
denote the angles that the vectors A and B make (in the counterclockwise direction) 
with the positive x -axis. Then 

 
A = Acos(θ A ) î + Asin(θ A ) ĵ , (3.3.12) 
 
B = Bcos(θB ) î + Bsin(θB ) ĵ (3.3.13) 

   
In Figure 3.16, the vector addition C = A + B is shown. Let θC denote the angle that the 

 
vector C makes with the positive x-axis. 

C = A + B 

A 

B 

A x 

A y 

B x 

B y 

C x = A x + B x 

C y = A y + B y 

+x 

+ y 

A 

B 
C 

Figure 3.16 Vector addition using components. 

 
From Figure 3.16, the components of C are 

C = A + B , C = A + B . (3.3.14)x x x y y y 
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In terms of magnitudes and angles, we have 

Cx = C cos(θC ) = Acos(θ A )+ Bcos(θB ) (3.3.15)
Cy = C sin(θC ) = Asin(θ A ) + Bsin(θB ). 

 
We can write the vector C as 

 
C = ( A + B ) î + ( A + B ) ĵ = C cos(θC ) î + C sin(θC ) ĵ , (3.3.16)x x y y 

Example 3.1 Vector Addition 

   ˆ ˆ ˆ ˆ ˆ ˆGiven two vectors, A = 2 i + −3 j + 7 k and B = 5i + j + 2k , find: (a) ; (b) ; (c) A B 
    ˆ ˆA + B ; (d) A − B ; (e) a unit vector A pointing in the direction of A ; (f) a unit vector B 

pointing in the direction of B . 

Solution: 
  

52 +12 + 22(a) A = (22 + (−3)2 + 72 )1/2 
= 62 = 7.87 . (b) B = ( )1/2 

= 30 = 5.48 . 

  
A + B = ( A + B ) î + ( A + B ) ĵ + ( A + B ) k̂ 

x x y y z z 

(c) = (2 + 5) ̂i + (−3+1) ̂j + (7 + 2) k̂ 

= 7 î − 2 ĵ + 9 k̂. 

  
A − B = ( A − B ) î + ( A − B ) ĵ + ( A − B ) k̂ 

x x y y z z 

(d) = (2 − 5) ̂i + (−3−1) ̂j + (7 − 2) k̂ 

= −3 î − 4 ĵ + 5 k̂. 

  
(e) A unit vector Â in the direction of A can be found by dividing the vector A by the  
magnitude of A . Therefore 

  
Â = A / A = (2 î + −3 ĵ + 7 k̂ ) / 
  

(f) In a similar fashion, B̂ = B / B = (5î + ĵ + 2k̂ ) / 
Example 3.2 Sinking Sailboat 

62 . 

30 . 
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A Coast Guard ship is located 35 km away from a checkpoint in a direction 52 north of 
west. A distressed sailboat located in still water 24 km from the same checkpoint in a 
direction 18 south of east is about to sink. Draw a diagram indicating the position of 
both ships. In what direction and how far must the Coast Guard ship travel to reach the 
sailboat? 

Solution: The diagram of the set-up is Figure 3.17. 

52 
18 

35 km 

24 km 
sailboat 

N 

W E 

S 

checkpoint 

Coast Guard 
ship 

Figure 3.17 Example 3.2 

NCoast Guard 
ship 

sailboat 

W E 

1 

î 
ĵ 

2 

r1 

r2 

+ x 

+ y 

S 

Figure 3.18 Coordinate system for sailboat and ship 

Choose the checkpoint as the origin of a Cartesian coordinate system with the positive x -
axis in the East direction and the positive y –axis in the North direction. Choose the 
corresponding unit vectors î and ĵ as shown in Figure 3.18. The Coast Guard ship is 
then a distance r1 = 35 km at an angle θ1 = 180 − 52 = 128 from the positive x -axis, 

and the sailboat is at a distance r2 = 24 km at an angle θ2 = −18 from the positive x -
axis. The position of the Coast Guard ship is then 
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 r1 = r1(cosθ1 î + sinθ1 ĵ) 

r  = −21.5km ̂i + 27.6km ̂j 

and the position of the sailboat is 

 r2 = r2(cosθ2 î + sinθ2 ĵ) 

r  2 = 22.8km ̂i − 7.4km ĵ. 

NCoast Guard 

W E 

21 

S 

ship ĵ 

r1 
r2 r1 

r2 sailboat 

Figure 3.19 Relative position vector from ship to sailboat 

The relative position vector from the Coast Guard ship to the sailboat is (Figure 3.19) 

î
 

 −r2 
 


 r1 = (22.8km ̂i − 7.4km ĵ) − (−21.5km ̂i + 27.6km ̂j) 

−r2 r1 = 44.4km ̂i − 35.0km ̂j. 

The distance between the ship and the sailboat is 

 − 
 r r = ((44.4km)2 + (−35.0km)2 )1/2 = 56.5km 2 1 

The rescue ship’s heading would be the inverse tangent of the ratio of the y - and x -
components of the relative position vector, 

= tan−1(−35.0km/44.4km) = −38.3 .θ21 

or 38.3 South of East. 

Example 3.3 Vector Addition 
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B = 2 ATwo vectors A and B , such that , have a resultant 

 
C
=
 
 
A
+
 
 
B
 of magnitude 

26.5 . 
 

The vector C makes an angle θC = 41 with respect to vector 
 
A . Find the 

  
magnitude of each vector and the angle between vectors A and B . 

 
Solution: We begin by making a sketch of the three vectors, choosing A to point in the 
positive x -direction (Figure 3.20). 

C = A + B 
B 

ĵ 
î 

�A 

C 

Figure 3.20 Choice of coordinates system for Example 3.3 

 
)2 + (C )2Denote the magnitude of C by C ≡ = (Cx y = 26.5 . The components of C 

 
C
=
 
 
A
+
 
 
B
 are given by 

C = A + B = C cosθC = (26.5)cos(41 ) = 20 (3.3.17)x x x 

Cy = By = C sinθC = (26.5)sin(41 ) = 17.4 . (3.3.18) 

 
B = 2 AFrom the condition that , the square of their magnitudes satisfy 

(B )2 + (B )2 = 4( A )2 . (3.3.19)x y x 

Using Eqs. (3.3.17) and (3.3.18), Eq. (3.3.19)becomes 

)2 + (C )2 )2(C − A = 4( A x x y x 

)2 )2(C )2 − 2C A + ( A )2 + (C = 4( A . x x x x y x 

This is a quadratic equation 
0 = 3( A )2 + 2C A − C 2 

x x x 

which we solve for the component Ax : 
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A = 
−2C x ± (2C x )

2 + (4)(3)(C 2 ) 
= 
−2(20) ± (40))2 + (4)(3)(26.5)2 

= 10.0, x 6 6 

where we choose the positive square root because we originally chose Ax > 0 . The 
 

components of B are then given by Eqs. (3.3.17) and (3.3.18): 

B = C − A = 20.0 −10.0 = 10.0 x x x 

By = 17.4 . 

 
)2 + (B )2The magnitude of = (Bx y = 20.0 which is equal to two times the magnitude B 

   
of A = 10.0 . The angle between A and B is given by 

 
θ = sin−1(By / B ) = sin−1(17.4 / 20.0 N) = 60 . 

Example 3.4 Vector Description of a Point on a Line 

. 
. 

P1 

P2 

. 
A 

a 
ad 

î 
ĵ 

+ x 

+ y 

r1 2 
r1 2 

r rr1 2 
r 

Figure 3.21 Example 3.4 

Consider two points, P1 with coordinates (x1, y1) and P2 with coordinates (x1, y1) , that 
 

are separated by distance d . Find a vector A from the origin to the point on the line 
connecting P1 and P2 that is located a distance a from the point P1 (Figure 3.21). 

 Solution: Let r1 = x1 ̂i + y1 ĵ be the position vector of P1 and r2 = x2 ̂i + y2 ĵ the position 
 − 
vector of P . Let r r be the vector from P to P (Figure 3.22a). The unit vector 2 1 2 2 1 

r̂21pointing from PP2 1 is given by = (
 −
 ) /
 −
 = (
 −
 ) / d , whereto 

)2 )1/2 d = ((x2 − x1)2 + ( y2 − y1 
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P1 . 
. 

A 

P1r1 r2 

A 

r1 

. s = a(r1 . ) / d
r2 

.P2 r1 P2 
r2 r2 

 
The vector s in Figure 3.22b connects A to the point at r1 , points in the direction of r̂12 , 

1 

Figure 3.22 Figure 3.22b: Relative positio : Relative position vectorn vectora

r
 
 
  
A

s= ar̂21and has length a . Therefore = a( −
 ) / d . The vector . Therefore+
s r1 r2 =
 


 
 

 
 r1 −


 r2 

r1 + (a / d)
 r2A =
 

A = (1− a / d)(x1
 

−
 − a( ) / d = (1− a / d)r1 s = r1

î + y1 ĵ) + (a / d)(x2 î + y2 ĵ) 

⎛ − x1) ⎞ ⎛ − y1) ⎞a(x2 + 
a( y2 

⎝⎜ ((x2 − x1)2 + ( y2 − y1)2 )1/2 ⎠⎟ ̂
i + 

⎝⎜ 
y1 ((x2 − x1)2 + ( y2 − y1)2 )1/2 ⎠⎟ ̂

j. 

 
A =
 x1 + 

3.3.2 Transformation of Vectors in Rotated Coordinate Systems 

Consider two Cartesian coordinate systems S and S ′ such that the (x′, y′) coordinate 
axes in S ′ are rotated by an angle θ with respect to the (x, y) coordinate axes in S , 
(Figure 3.23). 

ĵĵ îî ĵ+ y 
rotation + y ' 
by angle î 

+x ' 
+ x 

Figure 3.23 Rotated coordinate systems
 

The components of the unit vector î′ in the î and ĵ direction are given by 


î′ î′cosθ = cosθ and i′ = sinθ = sinθ . Thereforei′ = y 

î′ = ix ′ î + i′ y ĵ = îcosθ + ̂jsinθ . (3.3.20) 
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A similar argument holds for the components of the unit vector ĵ′ . The components of ĵ′ 

in the î and ĵ direction are given by jx ′ = − ĵ′ ĵ′sinθ = −sinθ and j′ y = cosθ = cosθ . 

Therefore 
ĵ′ = jx ′ î + j′ y ĵ = ĵcosθ − ̂isinθ . (3.3.21) 

Conversely, from Figure 3.23 and similar vector decomposition arguments, the 
components of î and ĵ in S ′ are given by 

î = î′cosθ − ̂j′sinθ , (3.3.22) 
ĵ = î′sinθ + ̂j′cosθ . (3.3.23) 

Consider a fixed vector r = x î + yĵ with components (x, y) in coordinate system S . In 
coordinate system S ′ , the vector is given by r = x′ î′ + y′̂j′ , where (x′, y′) are the 

components in S ′ , (Figure 3.24). 

x ' y ' 

î
ĵî 

ĵ 

rotation 
by angle 

x 

y 
r 

r 

Figure 3.24 Transformation of vector components 

Using the Eqs. (3.3.20) and (3.3.21), we have that 

 r = x î + yĵ = x( î′cosθ − ̂j′sinθ ) + y( ĵ′cosθ + ̂i′sinθ ) 
(3.3.24) 

r  = (xcosθ + ysinθ )î′ + (xsinθ − ycosθ ) ĵ′. 

Therefore the components of the vector transform according to 

x′ = xcosθ + ysinθ , (3.3.25) 
y′ = x sinθ − ycosθ . (3.3.26) 

We now consider an alternate approach to understanding the transformation laws for the 
components of the position vector of a fixed point in space. In coordinate system S , 

 rsuppose the position vector r has length r = and makes an angle φ with respect to 
the positive x -axis (Figure 3.25). 
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x ' y ' 

î
ĵî 

ĵ 

rotation 
by angle 

x 

y 
r 

r 

Figure 3.25 Transformation of vector components of the position vector 

Then the components of r in S are given by 

x = r cosφ , (3.3.27) 
y = r sinφ . (3.3.28) 

In coordinate system S ′ , the components of r are given by 

x′ = r cos(φ −θ ) , (3.3.29) 
y′ = r sin(φ −θ ) . (3.3.30) 

Apply the addition of angle trigonometric identities to Eqs. (3.3.29) and (3.3.30) yielding 

x′ = r cos(φ −θ ) = r cosφ cosθ + r sinφ sinθ = xcosθ + ysinθ , (3.3.31) 
y′ = r sin(φ −θ ) = r sinφ cosθ − r cosφ sinθ = ycosθ − xsinθ , (3.3.32) 

in agreement with Eqs. (3.3.25) and (3.3.26). 

Example 3.5 Vector Decomposition in Rotated Coordinate Systems 
 

With respect to a given Cartesian coordinate system S , a vector A has components 
A = 5 , A = −3 , A = 0 . Consider a second coordinate system S ′ such that the (x′, y′)x y z 

coordinate axes in S ′ are rotated by an angle θ = 60 with respect to the (x, y) 
coordinate axes in S , (Figure 3.26). (a) What are the components A and A of vector x ' y '  
A in coordinate system S ′ ? (b) Calculate the magnitude of the vector using the ( Ax , Ay ) 

components and using the ( A , A ) components. Does your result agree with what you x ' y ' 

expect? 
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î 
ĵ 

�A 

A x 

A y 

ĵ î 

rotation 
= 60by angle 

= 60 
�A 

Figure 3.26 Example 3.4 
 

Solution: a) We begin by considering the vector decomposition of A with respect to the 
coordinate system S ,  

A = Ax ̂i + Ay ̂j . (3.3.33) 

Now we can use our results for the transformation of unit vectors î and ĵ in terms of î′  
and ĵ′ , (Eqs. (3.3.22) and (3.3.23)) in order decompose the vector A in coordinate 
system S ′  

A = A î + A ĵ = A (cosθ î′ − sinθ ĵ′) + A (sinθ î′ + cosθ ĵ′)x y x y 

= ( Ax cosθ + Ay sinθ )î′ + (− Ax sinθ + Ay cosθ ) ĵ′ (3.3.34) 

= A î + A ĵ,x′ y′ 

where 
A = A cosθ + A sinθ (3.3.35)x ′ x y 

A = − A sinθ + A cosθ . (3.3.36)y′ x y 

We now use the given information that Ax = 5 , Ay = −3 , and θ = 60 to solve for the 
 

components of A in coordinate system S ′ 

A = A cosθ + A sinθ = (1/ 2)(5− 3 3) ,x′ x y 

A = − A sinθ + A cosθ = (1/ 2)(−5 3 − 3) . y′ x y 

b) The magnitude can be calculated in either coordinate system 

 
)2A = ( Ax )

2 + ( Ay = (5)2 + (−3)2 = 34 

 
A = ( A )2 + ( A )2 = ((1/ 2)(5− 3 3))2 

+ ((1/ 2)(−5 3 − 3) )2 
= 34 . x′ y′ 

 
This result agrees with what I expect because the length of vector A is independent of 
the choice of coordinate system. 
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3.4 Vector Product (Cross Product) 
  

Let A and B be two vectors. Because any two non-parallel vectors form a plane, we   
denote the angle θ to be the angle between the vectors A and B as shown in Figure     
3.27. The magnitude of the vector product A × B of the vectors A and B is defined to   
be product of the magnitude of the vectors A and B with the sine of the angle θ 
between the two vectors, 

 
A
×
 
 
B
 =
 

 
B
 

 
A
 sin(θ) . (3.3.37) 

The angle θ between the vectors is limited to the values 0 ≤θ ≤π ensuring that 
sin( ) ≥ 0 .θ 

Figure 3.27 Vector product geometry. 

  
The direction of the vector product is defined as follows. The vectors A and B form a 
plane. Consider the direction perpendicular to this plane. There are two possibilities: we 
shall choose one of these two (the one shown in Figure 3.27) for the direction of the   
vector product A × B using a convention that is commonly called the “right-hand rule”. 

3.4.1 Right-hand Rule for the Direction of Vector Product 

  
The first step is to redraw the vectors A and B so that the tails are touching. Then draw   
an arc starting from the vector A and finishing on the vector B . Curl your right fingers 
the same way as the arc. Your right thumb points in the direction of the vector product   
A × B (Figure 3.28). 
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C = A B 

A 

B 

Figure 3.28 Right-Hand Rule. 

  
You should remember that the direction of the vector product   A × B is perpendicular to 
the plane formed by A and B . We can give a geometric interpretation to the magnitude 
of the vector product by writing the magnitude as 

 
A
×
 
 
B
 =
 

 
A
(
 B
sinθ ) . (3.3.38) 

  
The vectors A and B form a parallelogram. The area of the parallelogram is equal to the 
height times the base, which is the magnitude of the vector product. In Figure 3.29, two 
different representations of the height and base of a parallelogram are illustrated. As   
depicted in Figure 3.29(a), the term B sinθ is the projection of the vector B in the 

 
direction perpendicular to the vector B . We could also write the magnitude of the vector 
product as

 
A
×
 
 
B
 =
(
  A
sinθ )  B
 .
 (3.3.39)
 

  
AThe term sinθ is the projection of the vector A in the direction perpendicular to the 

 
vector B as shown in Figure 3.29(b). The vector product of two vectors that are parallel 
(or anti-parallel) to each other is zero because the angle between the vectors is 0 (or π ) 
and sin(0) = 0 (or sin( ) π = 0 ). Geometrically, two parallel vectors do not have a unique 
component perpendicular to their common direction. 

A sin B sin B B 

A A 

(a) (b) 
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Figure 3.29 Projection of (a) 
 
B
 

 
 
perpendicular to A , (b) of A perpendicular to 

 
B
 

3.4.2 Properties of the Vector Product 

(1)	 The vector product is anti-commutative because changing the order of the vectors 
changes the direction of the vector product by the right hand rule: 

    
A × B = −B × A .	 (3.3.40) 


 
(2) The vector product between a vector c A where c is a scalar and a vector 

 
B
 is 

    
c A × B = c (A × B) . (3.3.41) 

Similarly, 	    
A × c B = c (A × B) .	 (3.3.42) 

 	  
(3) The vector product between the sum of two vectors A and B with a vector C is 

	       
(A + B)×C = A ×C + B×C (3.3.43) 

Similarly, 	       
A × (B + C) = A × B + A ×C .	 (3.3.44) 

3.4.3 Vector Decomposition and the Vector Product: Cartesian Coordinates 

We first calculate that the magnitude of vector product of the unit vectors î and ĵ : 

ˆ ˆ ˆ ˆ| i × j | | || |sin( = i j π / 2) = 1,	 (3.3.45) 

ˆ ˆbecause the unit vectors have magnitude | | | |i = j = 1 and sin( π / 2) = 1 . By the right hand 
rule, the direction of î × ̂j is in the +k̂ as shown in Figure 3.30. Thus î × ̂j = k̂ . 

ĵk̂ = ̂i 

î 

ĵ 

Figure 3.30 Vector product of î × ̂j 
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We note that the same rule applies for the unit vectors in the y and z directions, 

ˆ ˆ ˆ ˆ ˆ ˆj×k = i, k × i = j . (3.3.46) 

By the anti-commutatively property (1) of the vector product, 

ĵ× ̂i = −k̂, î × k̂ = − ĵ (3.3.47) 

The vector product of the unit vector î with itself is zero because the two unit vectors are 
parallel to each other, (sin(0) = 0 ), 

ˆ ˆ ˆ ˆ| i × i | | || | sin(0) i i = 0 . (3.3.48)= 

The vector product of the unit vector ĵ with itself and the unit vector k̂ with itself are 
also zero for the same reason, 

ˆ ˆ ˆ ˆ = 0 . (3.3.49)×j j = 0, k ×k 

With these properties in mind we can now develop an algebraic expression for the vector 
product in terms of components. Let’s choose a Cartesian coordinate system with the  
vector B pointing along the positive x-axis with positive x-component Bx . Then the 

  
vectors A and B can be written as 

 ˆ ˆ ˆA = A i + A j + A k (3.3.50)x y z 
 ˆB = Bx i , (3.3.51) 

respectively. The vector product in vector components is 

  ˆ ˆ ˆ ˆA × B = ( A i + Ay j + A k)× Bx i . (3.3.52)x z 

This becomes,   
A × B = (A î × B î) + (A ĵ× B î) + (A k̂ × B î)x x y x z x 

= A B (î × ̂i) + A B ( ĵ× ̂i) + A B (k̂ × ̂i) . (3.3.53)x x y x z x 

= −A B k̂ + A B ĵy x z x 

The vector component expression for the vector product easily generalizes for arbitrary 
vectors  

A = A î + A ĵ+ A k̂ (3.3.54)x y z 
 ˆ ˆ ˆB = B i + B j + B k , (3.3.55)x y z 

to yield 
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  ˆ ˆ ˆA × B = (A B − A B ) i + (A B − A B ) j + (A B − A B ) k . (3.3.56)y z z y z x x z x y y x 

3.4.4 Vector Decomposition and the Vector Product: Cylindrical Coordinates 

Recall the cylindrical coordinate system, which we show in Figure 3.31. We have chosen 
two directions, radial and tangential in the plane, and a perpendicular direction to the 
plane. 

! 

r̂ 

ˆk̂

r 
z 

+ x 

+ y 

+ z 

Figure 3.31 Cylindrical coordinates
 

The unit vectors are at right angles to each other and so using the right hand rule, the
 
vector product of the unit vectors are given by the relations 

r̂ × θ̂ = k̂ (3.3.57) 
θ̂ × k̂ = r̂ (3.3.58) 
k̂ × r̂ = θ̂ . (3.3.59) 

Because the vector product satisfies 
 
A
×
 
 
B
= −
 

 
B
×
 
 
A
, we also have that 

Finally 

θ̂ × r̂ = − ̂k 
k̂ × θ̂ = − ̂r 
r̂ × k̂ = − ̂θ . 

r̂ × r̂ = θ̂ × θ̂ = k̂ × k̂ = 
 
0 . 

(3.3.60) 
(3.3.61) 
(3.3.62) 

(3.3.63) 

Example 3.6 Vector Products 

Given two vectors, ˆ ˆ ˆ2 3 7= + − +A i j k 
 

and ˆ ˆ ˆ5 2= + +B i j k 
 

, find 
 
A × 
 
B . 

Solution: 
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A × B = ( A B − A B ) î + ( A B − A B ) ĵ + ( A B − A B ) k̂ 

y z z y z x x z x y y x 

= ((−3)(2) − (7)(1)) ̂i + ((7)(5) − (2)(2)) ̂j+ ((2)(1) − (−3)(5)) k̂ 

= −13 ̂i + 31 ĵ+17 k̂. 

Example 3.7 Law of Sines 

For the triangle 
B 

shown in Figure 3.32(a), prove the law of sines,  
A
 / sinα = / sin β = 

 
C
/ sinγ , using the vector product. 

Figure 3.32(a) Example 3.6 Figure 3.32(b) Vector analysis 
   

Solution: Consider the area of a triangle formed by three vectors A , B , and C , where 
      
A + B + C = 0 (Figure 3.32(b)). Because A + B + C = 0 , we have that 
                

0 = A × (A + B + C) = A × B + A ×C . Thus A × B = −A ×C or . FromA × B = A ×C 
       

Figure 17.7b we see that sin β . ThereforeA × B = A B sin γ and A ×C = A C 
     

sin β , and hence / sin γ . A similar argument shows that A B sin γ = A C B / sin β = C 
 
/ sinα proving the law of sines.B / sin β = A 

Example 3.8 Unit Normal 

Find a unit vector perpendicular to ˆ ˆ ˆ= + −A i j k 
 

and ˆ ˆ ˆ2 3= − − +B i j k 
 

. 

    
Solution: The vector product A × B is perpendicular to both A and B . Therefore the      
unit vectors n̂ = ±A × B / are perpendicular to both A and B . We first calculateA × B 

  
A × B = ( A B − A B ) î + ( A B − A B ) ĵ+ ( A B − A B ) k̂ 

y z z y z x x z x y y x 

= ((1)(3) − (−1)(−1)) ̂i + ((−1)(2) − (1)(3)) ̂j + ((1)(−1) − (1)(2)) k̂ 

= 2 î − 5 ĵ− 3 k̂. 

We now calculate the magnitude 
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= (22 + 52 + 32 )1/2 = (38)1/2 A × B . 

Therefore the perpendicular unit vectors are 

    
n̂ = ±A × B / A × B = ±(2 ̂i − 5 ĵ− 3 k̂) / (38)1/2 . 

Example 3.9 Volume of Parallelepiped 

  
Show that the volume of a parallelepiped with edges formed by the vectors A , B , and 
    
C is given by A ⋅ (B×C) . 

Solution: The volume of a parallelepiped is given by area of the base times height. If the   
base is formed by the vectors B and C , then the area of the base is given by the 

      
magnitude of B ×C . The vector B ×C = n̂ where n̂ is a unit vector perpendicular B×C 

to the base (Figure 3.33). 

Figure 3.33 Example 3.9 

 
The projection of the vector A along the direction n̂ gives the height of the 

 
parallelepiped. This projection is given by taking the dot product of A with a unit vector 

 
⋅ ˆand is equal to A n = height . Therefore 

         
A ⋅ (B × C) = A ⋅ ( B × C )n̂ = ( B × C )A ⋅ n̂ = (area)(height) = (volume) . 

Example 3.10 Vector Decomposition 
 

Let A be an arbitrary vector and let n̂ be a unit vector in some fixed direction. Show    
that A = (A ⋅ n̂)n̂ + (n̂ × A) × n̂ . 

  
Solution: Let A = An̂ + A⊥ ê where A is the component A in the direction of n̂ , ê is 

 
the direction of the projection of A in a plane perpendicular to n̂ , and A⊥ 

is the 
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⋅ A ⋅ n =component of A in the direction of ê . Because e n ˆ ˆ = 0 , we have that ˆ A . Note 

that  
n̂ × A = n̂ × ( A n̂ + A⊥ 

ê) = n̂ × A⊥ 
ê = (n̂ × ê) . A⊥ 

The unit vector n̂ × ê lies in the plane perpendicular to n̂ and is also perpendicular to ê . 

Therefore (n̂ × ê) × n̂ is also a unit vector that is parallel to ê (by the right hand rule. So 


 
(n̂ × A) × n̂ = A⊥ 

ê . Thus 

   
A = An̂ + A⊥ê = (A ⋅ n̂)n̂ + (n̂ × A) × n̂ . 
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Chapter 4 One Dimensional Kinematics
 

In the first place, what do we mean by time and space? It turns out that these deep 
philosophical questions have to be analyzed very carefully in physics, and this is 
not easy to do. The theory of relativity shows that our ideas of space and time are 
not as simple as one might imagine at first sight. However, for our present 
purposes, for the accuracy that we need at first, we need not be very careful about 
defining things precisely. Perhaps you say, “That’s a terrible thing—I learned 
that in science we have to define everything precisely.” We cannot define 
anything precisely! If we attempt to, we get into that paralysis of thought that 
comes to philosophers, who sit opposite each other, one saying to the other, “You 
don’t know what you are talking about!” The second one says. “What do you 
mean by know? What do you mean by talking? What do you mean by you?”, and 
so on. In order to be able to talk constructively, we just have to agree that we are 
talking roughly about the same thing. You know as much about time as you need 
for the present, but remember that there are some subtleties that have to be 
discussed; we shall discuss them later.1 

Richard Feynman 

4.1 Introduction 

Kinematics is the mathematical description of motion. The term is derived from the 
Greek word kinema, meaning movement. In order to quantify motion, a mathematical 
coordinate system, called a reference frame, is used to describe space and time. Once a 
reference frame has been chosen, we shall introduce the physical concepts of position, 
velocity and acceleration in a mathematically precise manner. Figure 4.1 shows a 
Cartesian coordinate system in one dimension with unit vector î pointing in the direction 
of increasing x -coordinate. 

î 

0 + x 

Figure 4.1 A one-dimensional Cartesian coordinate system. 

1 Richard P. Feynman, Robert B. Leighton, Matthew Sands, The Feynman Lectures on 
Physics, Addison-Wesley, Reading, Massachusetts, (1963), p. 12-2. 
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4.2 Position, Time Interval, Displacement 

4.2.1 Position 

Consider a point-like object moving in one dimension. We denote the position 
coordinate of the object with respect to the choice of origin by x(t) . The position 
coordinate is a function of time and can be positive, zero, or negative, depending on the 
location of the object. The position of the object with respect to the origin has both 
direction and magnitude, and hence is a vector (Figure 4.2), which we shall denote as the 
position vector (or simply position) and write as 

 r(t) = x(t) î . (4.2.1) 

We denote the position coordinate at t = 0 by the symbol x0 ≡ x t( = 0) . The SI unit for 
position is the meter [m]. 

î 
r(t) + x0 

x(t) 

Figure 4.2 The position vector, with reference to a chosen origin. 

4.2.2 Time Interval 

Consider a closed interval of time [t1, t2] . We characterize this time interval by the 
difference in endpoints of the interval, 

Δt = t2 − t1 . (4.2.2) 

The SI units for time intervals are seconds [s]. 

4.2.3 Displacement 

The displacement of a body during a time interval [t1, t2] (Figure 4.3) is defined 
to be the change in the position of the body 

  Δr ≡ r(t2 ) − r(t1) = (x(t2 ) − x(t1)) ̂i ≡ Δx(t) î . (4.2.3) 

Displacement is a vector quantity. 
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î 

0 + x 

x(t2 )x(t1 ) 

r(t2 ) 

r 

r(t1) 

Figure 4.3 The displacement vector of an object over a time interval is the vector 
difference between the two position vectors 

4.3 Velocity 

When describing the motion of objects, words like “speed” and “velocity” are used in 
natural language; however when introducing a mathematical description of motion, we 
need to define these terms precisely. Our procedure will be to define average quantities 
for finite intervals of time and then examine what happens in the limit as the time interval 
becomes infinitesimally small. This will lead us to the mathematical concept that velocity 
at an instant in time is the derivative of the position with respect to time. 

4.3.1 Average Velocity 

The x -component of the average velocity, v , for a time interval Δt is definedx,ave 

to be the displacement Δx divided by the time interval Δt , 

Δx 
v ≡ . (4.3.1)x,ave Δt 

Because we are describing one-dimensional motion we shall drop the subscript x and 
denote 

v = v . (4.3.2)ave x,ave 

When we introduce two-dimensional motion we will distinguish the components of the 
velocity by subscripts. The average velocity vector is then 

v  ≡ Δx î = v î . (4.3.3)ave ave Δt 

The SI units for average velocity are meters per second ⎡m s⋅ −1 ⎤⎦ . The average velocity is ⎣ 
not necessarily equal to the distance in the time interval Δt traveled divided by the time 
interval Δt . For example, during a time interval, an object moves in the positive x -
direction and then returns to its starting position, the displacement of the object is zero, 
but the distance traveled is non-zero. 
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4.3.3 Instantaneous Velocity 

Consider a body moving in one direction. During the time interval [ ,t t + Δt] , the average 
velocity corresponds to the slope of the line connecting the points ( ,t x t( )) and 
(t + Δt, x(t + Δt)) . The slope, the rise over the run, is the change in position divided by 
the change in time, and is given by 

rise Δx x(t + Δt) − x(t)
v ≡ = = . (4.3.4)ave run Δt Δt 

t , the slope of the lines connecting the points (t, x(t)) and (t + Δt, x(t + Δt)) ,As Δ → 0 
approach slope of the tangent line to the graph of the function x(t) at the time t (Figure 
4.4). 

t t + t 

x(t) 

x(t + t) 

t 

x 

tangent line 
at time t 

x(t) 

Figure 4.4 Plot of position vs. time showing the tangent line at time t . 

The limiting value of this sequence is defined to be the x -component of the 
instantaneous velocity at the time t . 

The x -component of instantaneous velocity at time t is given by the 
slope of the tangent line to the graph of the position function at time t : 

Δx x(t + Δt) − x(t) dx 
v(t) ≡ lim vave = lim = lim ≡ . (4.3.5)

Δt→0 Δt→0 Δt Δt→0 Δt dt 

The instantaneous velocity vector is then 

 v(t) = v(t) î . (4.3.6) 

The component of the velocity, v(t) , can be positive, zero, or negative, depending on 
whether the object is travelling in the positive x -direction, instantaneously at rest, or the 
negative x -direction. 
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Example 4.1 Determining Velocity from Position 

Consider an object that is moving along the x -coordinate axis with the position function 
given by 

x(t) = x0 + 
1 

bt2 (4.3.7)
2 

where x0 is the initial position of the object at t = 0 . We can explicitly calculate the x -
component of instantaneous velocity from Equation (4.3.5) by first calculating the 
displacement in the x -direction, Δx = x t( + Δt) − x t( ) . We need to calculate the position 
at time t + Δt , 

x(t + Δt) = x0 + 
1 

b(t + Δt)2 = x0 + 
1 

b(t2 + 2tΔt + Δt2 ) . (4.3.8)
2 2 

Then the x -component of instantaneous velocity is 

⎛ 1 ⎞ ⎛ 1 ⎞ 
+ b(t2 + 2t Δt + Δt2 ) + bt2x0 x0x(t + Δt) − x(t) ⎝⎜ 2 ⎠⎟ 

−
⎝⎜ 2 ⎠⎟ 

v(t) = lim = lim . (4.3.9)
Δt→0 Δt Δt→0 Δt 

This expression reduces to 
⎛ 1 ⎞ 

v(t) = lim bt + bΔt
⎠⎟ 

. (4.3.10)
Δt→0 ⎝⎜ 2 

The first term is independent of the interval Δt and the second term vanishes because in 
the limit as Δ → 0 , the term (1/ 2)bΔt → 0 is zero. Therefore the x -component of t 
instantaneous velocity at time t is 

v(t) = bt . (4.3.11) 

In Figure 4.5 we plot the instantaneous velocity, v(t) , as a function of time t . 

t 

v(t) v(t) = bt 

Figure 4.5 Plot of instantaneous velocity instantaneous velocity as a function of time. 
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Example 4.2 Mean Value Theorem 

Consider an object that is moving along the x -coordinate axis with the position function 
given by 

x(t) = x0 + v0t + 
1 
2 

bt2 . (4.3.12) 

The graph of x(t) vs. t is shown in Figure 4.6. 

x(t) 

x0 

slope = v ave 

slope = v(t1) 

t 

x(t) = x0 + v0t + 
1 
2 

bt2 

ti t f 

x(t f ) 

x(ti ) 

t1 = (t f ti ) / 2 

Figure 4.6 Intermediate Value Theorem 

The x -component of the instantaneous velocity is 

dx(t)
v(t) = + bt . (4.3.13)= v0dt 

For the time interval [ti ,t f ] , the displacement of the object is 

) = Δx = v0 ) + 
1 2 − ti 

2 ) = v0 ) + 
1 ) . (4.3.14)x(t f ) − x(ti (t f − ti b(t f (t f − ti b(t f − ti )(t f + ti2 2 

Recall that the x -component of the average velocity is defined by the condition that 

Δx = v ) . (4.3.15)ave (t f − ti 

We can determine the average velocity by substituting Eq. (4.3.15) into Eq. (4.3.14) 
yielding 
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1 v + ) . (4.3.16)ave = v0 b(t f + ti2 

The Mean Value Theorem from calculus states that there exists an instant in time t1 , with 
< t f , such that the x -component of the instantaneously velocity, v(t1) , satisfiesti < t1 

Δx = v(t1)(t f ) . (4.3.17)− ti 

Geometrically this means that the slope of the straight line (blue line in Figure 4.6) 
connecting the points (ti , x(ti )) to (t f ,x(t f )) is equal to the slope of the tangent line (red 

line in Figure 4.6) to the graph of x(t) vs. t at the point (t1, x(t1)) (Figure 4.6), 

v(t1) = vave . (4.3.18) 
We know from Eq. (4.3.13) that 

v(t1) = v0 + bt1 . (4.3.19) 

We can solve for the time t1 by substituting Eqs. (4.3.19) and (4.3.16) into Eq. (4.3.18) 
yielding 

) / 2 (4.3.20)t1 = (t f + ti 

This intermediate value v(t1) is also equal to one-half the sum of the initial velocity and 
final velocity 

) + bt f )v(ti ) + v(t f (v0 + bti ) + (v0 1 v(t1) = = = v0 + b(t f ) = v0 . (4.3.21)+ ti + bt12 2 2 

For any time interval, the quantity (v(ti ) + v(t f )) / 2 , is the arithmetic mean of the initial 
velocity and the final velocity (but unfortunately is also sometimes referred to as the 
average velocity). The average velocity, which we defined as v ) / Δt , and the ave = (x f − xi 

arithmetic mean, (v(ti ) + v(t f )) / 2 , are only equal in the special case when the velocity is 
a linear function in the variable t as in this example, (Eq. (4.3.13)). We shall only use the 
term average velocity to mean displacement divided by the time interval. 
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4.4 Acceleration 

We shall apply the same physical and mathematical procedure for defining acceleration, 
as the rate of change of velocity with respect to time. We first consider how the 
instantaneous velocity changes over a fixed time interval of time and then take the limit 
as the time interval approaches zero. 

4.4.1 Average Acceleration 

Average acceleration is the quantity that measures a change in velocity over a particular 
time interval. Suppose during a time interval Δt a body undergoes a change in velocity 

  Δv = v(t + Δt) − v( )t . (4.3.22) 

The change in the x -component of the velocity, Δv , for the time interval [ ,t t + Δt] is 
then 

Δv = v(t + Δt) − v(t) . (4.3.23) 

The x -component of the average acceleration for the time interval Δt is defined 
to be 

 Δv (v(t + Δt) − v(t)) a = a î ≡ î = î . (4.3.24)ave ave Δt Δt 

The SI units for average acceleration are meters per second squared, [m⋅s−2 ] . 

4.4.2 Instantaneous Acceleration 

Consider the graph of the x -component of velocity, v(t) , (Figure 4.7). 

v(t 

slope = 

t

t t + t

a(t) 
v(t) 

v

t)+ 

t 
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Figure 4.7 Graph of velocity vs. time showing the tangent line at time t . 

The average acceleration for a fixed time interval Δt is the slope of the straight line 
connecting the two points (t, v(t)) and (t + Δt, v(t + Δt)) . In order to define the x -
component of the instantaneous acceleration at time t , we employ the same limiting 
argument as we did when we defined the instantaneous velocity in terms of the slope of 
the tangent line. 

The x -component of the instantaneous acceleration at time t is the slope of the 
tangent line at time t of the graph of the x -component of the velocity as a 
function of time, 

a(t) ≡ lim 
Δt→0 

Δv 
Δt 

= lim 
Δt→0 

(v(t + Δt) − v(t)) 
Δt 

≡ 
dv 
dt 

. (4.3.25) 

The instantaneous acceleration vector at time t is then 

 a(t) = a(t) ̂i . (4.3.26) 

Because the velocity is the derivative of position with respect to time, the x -component 
of the acceleration is the second derivative of the position function, 

d 2dv x 
a = = . (4.3.27)

dt dt2 

Example 4.3 Determining Acceleration from Velocity 

Let’s continue Example 4.1, in which the position function for the body is given by 
x = x0 + (1/ 2)bt2 , and the x -component of the velocity is v = bt . The x -component of 
the instantaneous acceleration is the first derivative (with respect to time) of the x -
component of the velocity: 

dv v(t + Δt) − v(t) bt + bΔt − bt a = = lim = lim = b . (4.3.28)
dt Δt→0 Δt Δt→0 Δt 

Note that in Eq. (4.3.28), the ratio Δv / Δt is independent of t , consistent with the 
constant slope as shown in Figure 4.5. 
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4.5 Constant Acceleration 

v(t) 

t 

v(t) = v0 + at 

(a) 

a(t) 

a 

v0 

t 

a(t) = a 

(b) 

Area = at 

Figure 4.8 Constant acceleration: (a) velocity, (b) acceleration 

When the x -component of the velocity is a linear function (Figure 4.8(a)), the average 
acceleration, Δv / Δt , is a constant and hence is equal to the instantaneous acceleration 
(Figure 4.8(b)). Let’s consider a body undergoing constant acceleration for a time interval 
[0, t] , where Δt = t . Denote the x -component of the velocity at time t = 0 by 

≡ v(t = 0) . Therefore the x -component of the acceleration is given byv0 

Δv v(t) − v0a(t) = = . (4.4.1)
Δt t 

Thus the x -component of the velocity is a linear function of time given by 

v(t) = v0 + at . (4.4.2) 

4.5.1 Velocity: Area Under the Acceleration vs. Time Graph 

In Figure 4.8(b), the area under the acceleration vs. time graph, for the time interval 
Δt = t − 0 = t , is 

Area(a(t), t) = at . (4.4.3) 

From Eq. (4.4.2), the area is the change in the x -component of the velocity for the 
interval [0, t] : 

Area(a(t),t) = at = v(t) − v0 = Δv . (4.4.4) 

4.5.2 Displacement: Area Under the Velocity vs. Time Graph 

In Figure 4.9 shows a graph of the x -component of the velocity vs. time for the case of 
constant acceleration (Eq. (4.4.2)). 
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t 

v(t) 
v(t) = v0 + at 

v0 
A1 = v0 t 

A2 = 
1 
2 
(v(t) v0 ) 

O 

Figure 4.9 Graph of velocity as a function of time for a constant. 

The region under the velocity vs. time curve is a trapezoid, formed from a rectangle with 
area t , and a triangle with area = (1/ 2)(v(t) − v0 ) . The total area of the A1 = v0 A2 

trapezoid is given by 
1Area(v(t),t) = A1 t + (v(t) − v0 ) . (4.4.5)+ A2 = v0 2 

Substituting for the velocity (Eq. (4.4.2)) yields 

Area(v(t),t) = v0 t + 
1 at2 . (4.4.6)
2 

Recall that from Example 4.2 (setting b = a and Δt = t ), 

1 
v + at = Δx / t , (4.4.7)ave = v0 2 

therefore Eq. (4.4.6) can be rewritten as 

1Area(v(t),t) = (v0 + at)t = v t = Δx (4.4.8)
2 ave 

The displacement is equal to the area under the graph of the x -component of the velocity 
vs. time. The position as a function of time can now be found by rewriting Equation 
(4.4.8) as 

1 
x(t) = x0 t + at2 . (4.4.9)+ v0 2 

Figure 4.10 shows a graph of this equation. Notice that at t = 0 the slope is non-zero, 
corresponding to the initial velocity component v0 . 
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x(t) )
 

x0 
O 

t 
slope = v0 

Figure 4.10 Graph of position vs. time for constant acceleration. 

Example 4.4 Accelerating Car 

A car, starting at rest at t = 0 , accelerates in a straight line for 100 m with an unknown 
constant acceleration. It reaches a speed of 20 m ⋅ s−1 and then continues at this speed for 
another 10 s . (a) Write down the equations for position and velocity of the car as a 
function of time. (b) How long was the car accelerating? (c) What was the magnitude of 
the acceleration? (d) Plot speed vs. time, acceleration vs. time, and position vs. time for 
the entire motion. (e) What was the average velocity for the entire trip? 

Solutions: (a) For the acceleration a , the position x(t) and velocity v(t) as a function of 
time t for a car starting from rest are 

x(t) = (1/ 2) at2 

(4.4.10)
vx (t) = at. 

b) Denote the time interval during which the car accelerated by t1 . We know that the 

position x(t1) = 100m and v(t1) = 20 m ⋅ s−1 . Note that we can eliminate the acceleration 
a between the Equations (4.4.10) to obtain 

x(t) = (1 / 2)v(t) t . (4.4.11) 

We can solve this equation for time as a function of the distance and the final speed 
giving 

t = 2 
x(t) 
v(t) 

. (4.4.12) 

We can now substitute our known values for the position x(t1 ) = 100m and 

v(t1) = 20 m ⋅ s−1 and solve for the time interval that the car has accelerated 
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x(t1) 100 m 
= 2 = 2 = 10s . (4.4.13)t1 −1v(t1) 20 m ⋅ s 

c) We can substitute into either of the expressions in Equation (4.4.10); the second is 
slightly easier to use, 

v(t1) 20 m ⋅ s−1 
−2a = = = 2.0m ⋅ s . (4.4.14)

10s t1 

d) The x -component of acceleration vs. time, x -component of the velocity vs. time, and 
the position vs. time are piece-wise functions given by 

-2 ;⎧2 m ⋅s 0 < t ≤ 10 s a(t) = ⎨ , 
⎩0; 10 s < t < 20 s 

-2 )t;⎧ 0 < t ≤ 10 s ⎪(2 m ⋅s 
v(t) = ⎨ ,

-1;⎪20 m ⋅s 10 s ≤ t ≤ 20 s ⎩ 
-2 )t2;⎧ 0 < t ≤ 10 s ⎪(1/ 2)(2 m ⋅s 

x(t) = ⎨ . 
⎩⎪100 m +(20 m ⋅s-2 )( t −10 s); 10 s ≤ t ≤ 20 s 

The graphs of the x -component of acceleration vs. time, x -component of the velocity vs. 
time, and the position vs. time are shown in Figure 4.11. 

(e) After accelerating, the car travels for an additional ten seconds at constant speed and 
during this interval the car travels an additional distance Δx = v(t1) × 10s=200m (note 
that this is twice the distance traveled during the 10s of acceleration), so the total 
distance traveled is 300m and the total time is 20s , for an average velocity of 

300m −1v = =15m ⋅s . (4.4.15)ave 20s 

x(t)a(t) v(t) 

-2 100 m 20 m s2 m s 

t 

-1 

t t
10 s 20 s 10 s 20 s 10 s 20 s 

Figure 4.11 Graphs of the x-components of acceleration, velocity and position as piece-
wise functions 
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Example 4.5 Catching a Bus 

At the instant a traffic light turns green, a car starts from rest with a given constant 
acceleration, 3.0 m ⋅s-2 . Just as the light turns green, a bus, traveling with a given 
constant velocity, 1.6 × 101 m ⋅ s-1 , passes the car. The car speeds up and passes the bus 
some time later. How far down the road has the car traveled, when the car passes the bus? 

Solution: 

There are two moving objects, bus and the car. Each object undergoes one stage of one-
dimensional motion. We are given the acceleration of the car, the velocity of the bus, and 
infer that the position of the car and the bus are equal when the bus just passes the car. 
Figure 4.12 shows a qualitative sketch of the position of the car and bus as a function of 
time. 

x 

x2 (t)bus 

x1(t)car 

0 t 
ta 

Figure 4.12 Position vs. time of the car and bus 

Choose a coordinate system with the origin at the traffic light and the positive x -
direction such that car and bus are travelling in the positive x -direction. Set time t = 0 as 
the instant the car and bus pass each other at the origin when the light turns green. Figure 
4.13 shows the position of the car and bus at time t . 

x2 (t) 

x1(t) 

0 + x 

Figure 4.13 Coordinate system for car and bus 

Let x1(t) denote the position function of the car, and x2(t) the position function for the 
bus. The initial position and initial velocity of the car are both zero, x1,0 = 0 and v1,0 = 0 , 
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and the acceleration of the car is non-zero a1 ≠ 0 . Therefore the position and velocity 
functions of the car are given by 

1 
x1(t) = a1t

2 ,
2 

v1(t) = a1t . 

The initial position of the bus is zero, x2,0 = 0 , the initial velocity of the bus is non-zero, 

≠ 0 , and the acceleration of the bus is zero, a2 = 0 . Therefore the velocity is constant, v2,0 

, and the position function for the bus is given by x2 t .v2 (t) = v2,0 (t) = v2,0 

Let t = ta correspond to the time that the car passes the bus. Then at that instant, the 
position functions of the bus and car are equal, x1(ta ) = x2 (ta ) . We can use this condition 
to solve for t : a 

2 2v2,0 (2)(1.6 ×101 m ⋅s-1)(1/ 2)a1ta = v2,0ta ⇒ ta = = -2 ) 
= 1.1×101s . 

(3.0m ⋅sa1 

Therefore the position of the car at ta is 

1 2 2v2,0 
2 (2)(1.6 ×101 m ⋅s 

x1(ta ) = a1ta = = -2 ) 

-1)2 

= 1.7 ×102 m .
2 (3.0 m ⋅sa1 

4.6 One Dimensional Kinematics and Integration 

When the acceleration a(t) of an object is a non-constant function of time, we would like 
to determine the time dependence of the position function x(t) and the x -component of 
the velocity v(t) . Because the acceleration is non-constant we no longer can use Eqs. 
(4.4.2) and (4.4.9). Instead we shall use integration techniques to determine these 
functions. 

4.6.1 Change of Velocity as the Indefinite Integral of Acceleration 

Consider a time interval t1 < t < t2 . Recall that by definition the derivative of the velocity 
v(t) is equal to the acceleration a(t) , 

dv(t) = a(t) . (4.5.1)
dt 
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Integration is defined as the inverse operation of differentiation or the ‘anti-derivative’. 
For our example, the function v(t) is called the indefinite integral of a(t) with respect 
to t , and is unique up to an additive constant C . We denote this by writing 

v(t) + C = ∫ a(t) dt .	 (4.5.2) 

The symbol ∫ ...dt means the ‘integral, with respect to t , of …”, and is thought of as the 
dinverse of the symbol .... . Equivalently we can write the differential dv(t) = a(t)dt ,
dt 

called the integrand, and then Eq. (4.5.2) can be written as 

v(t) + C = ∫ dv(t) , (4.5.3) 

which we interpret by saying that the integral of the differential of function is equal to the 
function plus a constant. 

Example 4.6 Non-constant acceleration 

Suppose an object at time t = 0 has initial non-zero velocity and acceleration v0 

a(t) = bt2 , where b is a constant. Then dv(t) = bt2dt = d(bt3 / 3) . The velocity is then 
v(t) + C = ∫ d(bt3 / 3) = bt3 / 3 . At t = 0 , we have that v0 + C = 0 . Therefore C = −v0 and 

the velocity as a function of time is then v(t) = v0 + (bt3 / 3) . 

4.6.2 Area as the Indefinite Integral of Acceleration 

Consider the graph of a positive-valued acceleration function a(t) vs. t for the 
interval t1 ≤ t ≤ t2 , shown in Figure 4.14a. Denote the area under the graph of a(t) over 

2the interval t1 ≤ t ≤ t2 by A t
t . 
1 

a(t) )	 Figure 4.14a: Area under the graph of 
acceleration over an interval t1 ≤ t ≤ t2 

t1 

t 

a(t1) 

a(t2 ) 

t2t c 

Area = A t1 

t2 
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t1 
t 

a(t1) 

a(t2 ) 

t2t c 

a(t c ) 

a(t)	 Figure 4.14b: Intermediate value 
Theorem. The shaded regions above and 
below the curve have equal areas. 

The Intermediate Value Theorem states that there is at least one time t such that the c 

2area A t
t is equal to
1 

A tt1
2 = a(tc )(t2 − t1) . (4.5.4) 

In Figure 4.14b, the shaded regions above and below the curve have equal areas, and 
2hence the area A t

t under the curve is equal to the area of the rectangle given by 
1 

a(t − t1) . c )(t2 

a(t) 

t1 
t 

a(t1) 

a(t2 ) 

t2t t + t 

A t1 
t A t 

t+ t 

Figure 4.15 Area function is additive 

We shall now show that the derivative of the area function is equal to the acceleration and 
thererfore we can write the area function as an indefinite integral. From Figure 4.15, the 
area function satisfies the condition that 

A t + A t+Δt t+Δt 
t = A .	 (4.5.5)t1 t1 

A t+Δt− A tLet the small increment of area be denoted by ΔA t = = A t+Δt . By thet1 t1 t1 t 

Intermediate Value Theorem 
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ΔA t
t = a(tc )Δt , (4.5.6)
1 

where t ≤ tc ≤ t + Δt . In the limit as Δt → 0 , 

ΔA tdA t t1 t1= lim = lim a(t c ) = a(t) , (4.5.7)
dt Δt→0 Δt t →tc 

with the initial condition that when t = t1 , the area A t1 = 0 is zero. Because v(t) is also an t1 

integral of a(t) , we have that 

A t t = ∫ a(t) dt = v(t) + C . (4.5.8)
1 

When t = t1 , the area A t1 = 0 is zero, therefore v(t1) + C = 0 , and so C = −v(t1) . Thereforet1 

Eq. (4.5.8) becomes 
A t

t = v(t) − v(t1) = ∫ a(t)dt . (4.5.9)
1 

When we set t = t2 , Eq. (4.5.9) becomes 

A t2 = v(t2 ) − v(t1) = ∫ a(t) dt . (4.5.10)t1 

The area under the graph of the positive-valued acceleration function for the interval 
≤ t ≤ t2 can be found by integrating a(t) .t1 

4.6.3 Change of Velocity as the Definite Integral of Acceleration 

Let a(t) be the acceleration function over the interval ti ≤ t ≤ t f . Recall that the velocity 

v(t) is an integral of a(t) because dv(t) / dt = a(t) . Divide the time interval [ti , t f ] into 

n equal time subintervals Δt = (t f − ti ) / n . For each subinterval [t j ,t j+1] , where the index 

j = 1, 2, ... ,n , t1 = ti and tn+1 = t f , let t be a time such that t j ≤ t ≤ t j+1 . Let c j c j 

j=n 

Sn = ∑a(t ) Δt . (4.5.11)c j
j=1 

Sn is the sum of the blue rectangle shown in Figure 4.16a for the case n = 4 . The 
Fundamental Theorem of Calculus states that in the limit as n →∞ , the sum is equal 
to the change in the velocity during the interval [ti , t f ] 
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j=n 

lim Sn = lim ∑a(t ) Δt = v(t f ) − v(ti ) . (4.5.12)
n→∞ n→∞ c j

j=1 

t1 t2 t3 t4 t5t c1 t c2 t c3 t c4 

a( ) 

a(t c2 ) 
a(t c3 ) 
a(t c4 ) 

a(t) 

t c1 

t 
t1 t2 t3 t4 t5t c1 t c2 t c3 t c4 

a( ) 

a(t c2 ) 
a(t c3 ) 
a(t c4 ) 

a(t) 

t c1 

t 

Figure 4.16a Graph of a(t) vs. t Figure 4.16b Graph of a(t) vs. t 

The limit of the sum in Eq. (4.5.12) is a number, which we denote by the symbol 

t f j=n 

∫ a(t) dt ≡ lim ∑a(t ) Δt = v(t f ) − v(ti ) , (4.5.13)c j
j=1

n→∞ 
ti 

and is called the definite integral of a(t) from ti to t f . The times ti and t f are called 

the limits of integration, ti the lower limit and t f the upper limit. The definite integral is 

a linear map that takes a function a(t) defined over the interval [ti , t f ] and gives a 
number. The map is linear because 

t f t f t f 

(a1(t) + a2(t)) dt = a1(t) dt + a2(t) dt , (4.5.14)∫ ∫ ∫ 
ti ti ti 

Suppose the times t , j = 1,...,n , are selected such that each t satisfies the Intermediate c j c j 

Value Theorem, 

dv(tc j 
)

Δv j ≡ v(t j+1) − v(t j ) = 
dt 

Δt = a(t c j 
)Δt , (4.5.15) 
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where a(t ) is the instantaneous acceleration at t , (Figure 4.16b). Then the sum of the c j c j 

changes in the velocity for the interval [ti , t f ] is 

j=n 

∑Δv j = (v(t2 ) − v(t1)) + (v(t3) − v(t2 )) +  + (v(tn+1) − v(tn )) = v(tn+1) − v(t1) 
j=1 (4.5.16) 

). = v(t f ) − v(ti 

where v(t f ) = v(tn+1) and v(ti ) = v(t1) . Substituting Eq. (4.5.15) into Equation (4.5.16) 
yields the exact result that the change in the x -component of the velocity is give by this 
finite sum. 

j=n j=n 

v(t f ) − v(ti ) = ∑Δv j = ∑a(tc j 
) Δt . (4.5.17) 

j=1 j=1 

We do not specifically know the intermediate values a(tc j 
) and so Eq. (4.5.17) is not 

useful as a calculating tool. The statement of the Fundamental Theorem of Calculus is 
that the limit as n →∞ of the sum in Eq. (4.5.12) is independent of the choice of the set 
of tc j 

. Therefore the exact result in Eq. (4.5.17) is the limit of the sum. 

Thus we can evaluate the definite integral if we know any indefinite integral of the 
integrand a(t)dt = dv(t) . 

Additionally, provided the acceleration function has only non-negative values, the limit is 
also equal to the area under the graph of a(t) vs. t for the time interval, [ti , t f ]: 

t f 
t f =A ti 

a(t) dt . (4.5.18)∫ 
ti 

In Figure 4.14, the red areas are an overestimate and the blue areas are an underestimate. 
As N →∞ , the sum of the red areas and the sum of the blue areas both approach zero. If 
there are intervals in which a(t) has negative values, then the summation is a sum of 
signed areas, positive area above the t -axis and negative area below the t -axis. 

We can determine both the change in velocity for the time interval [ti , t f ] and the area 

under the graph of a(t) vs. t for [ti , t f ] by integration techniques instead of limiting 
arguments. We can turn the linear map into a function of time, instead of just giving a 
number, by setting t f = t . In that case, Eq. (4.5.13) becomes 
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t′=t 

) = a(t′)dt′ . (4.5.19)v(t) − v(ti ∫ 
t′=ti 

Because the upper limit of the integral, t f = t , is now treated as a variable, we shall use 
the symbol t′ as the integration variable instead of t . 

4.6.4 Displacement as the Definite Integral of Velocity 

We can repeat the same argument for the definite integral of the x -component of the 
velocity v(t) vs. time t . Because x(t) is an integral of v(t) the definite integral of v(t) 
for the time interval [ti , t f ] is the displacement 

t′=t f 

) − x(ti ) = v(t′)dt′ . (4.5.20)x(t f ∫ 
t′=ti 

If we set t f = t , then the definite integral gives us the position as a function of time 

t′=t 

x(t) = x(ti ) + v(t′)dt′ . (4.5.21)∫ 
t′=ti 

Summarizing the results of these last two sections, for a given acceleration a(t) , we can 
use integration techniques, to determine the change in velocity and change in position for 
an interval [ti , t] , and given initial conditions (xi ,vi ) , we can determine the position x(t) 
and the x -component of the velocity v(t) as functions of time. 

Example 4.5 Non-constant Acceleration 

Let’s consider a case in which the acceleration, a(t) , is not constant in time, 

t2 . (4.5.22)a(t) = b0 + b1 t + b2 

The graph of the x -component of the acceleration vs. time is shown in Figure 4.16 
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a(t) 

t 

a(t) = b0 + b1 t + b2 t
2 

b0 slope = b1 + 

Figure 4.16 Non-constant acceleration vs. time graph. 

Denote the initial velocity at t = 0 by v0 . Then, the change in the x -component of the 
velocity as a function of time can be found by integration: 

t′=t t′=t t2 t3b1 b2= a(t′) dt′ = t′2 ) dt′ t + + . (4.5.23)v(t) − v0 ∫ ∫ (b0 + b1 t′ + b2 = b0 2 3t′=0 t′=0 

The x -component of the velocity as a function in time is then 

t2 t3b1 b2v(t) = v0 t + + . (4.5.24)+ b0 2 3 

Denote the initial position at t = 0 by x0 . The displacement as a function of time is 

t′=t 

= v(t′) dt′. (4.5.25)x(t) − x0 ∫ 
t′=0 

Use Equation (4.5.27) for the x-component of the velocity in Equation 
(4.5.24) and then integrate to determine the displacement as a function of time: 

t′=t 

x(t) − x0 = v(t′) dt′∫ 
t′=0 (4.5.26)

t′=t ⎛ t′2 t′3 ⎞ t2 t3 t4b1 b2 b0 b1 b2= t′ + + ⎟ dt′ = v0 t + + + .∫ ⎜ v0 + b0 2 3 2 6 12t′=0 ⎝ ⎠ 

Finally the position as a function of time is then 

t2 t3 t4b0 b1 b2+ v t + + + . (4.5.27)x(t) = x0 x ,0 2 6 12 
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Example 4.6 Bicycle and Car 

A car is driving through a green light at t = 0 located at x = 0 with an initial speed 
vc,0 = 12 m ⋅s-1 . At time t1 = 1s , the car starts braking until it comes to rest at time t2 . The 
acceleration of the car as a function of time is given by the piecewise function 

ac (t) = 
⎧⎪
⎨
⎪⎩
 

0; 0 < t < t1 = 1s 
,


b(t − t1); 1s < t < t2 

-3 ) .where b = −(6 m ⋅s 

(a) Find the x -component of the velocity and the position of the car as a function of time. 
(b) A bicycle rider is riding at a constant speed of vb,0 and at t = 0 is 17 m behind the car. 
The bicyclist reaches the car when the car just comes to rest. Find the speed of the bicycle. 

Solution: a) In order to apply Eq. (4.5.19), we shall treat each stage separately. For the 
time interval 0 < t < t1 , the acceleration is zero so the x -component of the velocity is 
constant. For the second time interval t1 < t < t2 , the definite integral becomes 

t′=t 

v (t) − v (t1) = b(t′ − t1) dt′ c c ∫ 
t′=t1 

Because vc (t1) = vc0 , the x -component of the velocity is then 

⎧vc0; 0 < t ≤ t1 

v (t) = 
⎪ t′=t . c ⎨ v + b(t′ − t1)dt′; t1 ≤ t < t2⎪ c0 ∫ 
⎩ t′=t1 

Integrate and substitute the two endpoints of the definite integral, yields 

⎧v ; 0 < t ≤ t1⎪ c0 

v (t) = . c ⎨ 1 v + b(t − t1)2; t1 ≤ t < t2⎪ c0⎩ 2 

In order to use Eq. (4.5.25), we need to separate the definite integral into two integrals 
corresponding to the two stages of motion, using the correct expression for the velocity 
for each integral. The position function is then 
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t′=t1⎧ 
⎪x + v dt′; 0 < t ≤ t1c0 ∫ c0
⎪ t′=0x (t) = ⎨ . c t′=t ⎛ 1 )2 ⎞⎪
⎪x c (t1) + ∫ ⎝⎜ v c0 + 

2 
b(t′ − t1 ⎠⎟

dt; t1 ≤ t < t2 

⎩ t′=t1 

Upon integration we have 

⎧xc (0) + vc0 t; 0 < t ≤ t1 
t′=t⎪⎪ xc (t) = ⎨ ⎛ 1 )3 ⎞ . 

x (t1) + v (t′ − t1) + b(t′ − t1 ; t1 ≤ t < t2⎪ c ⎝⎜ c0 ⎠⎟6 
t′=t1⎪⎩ 

We chose our coordinate system such that the initial position of the car was at the origin, 
x = 0 , therefore x ) = v . So after substituting in the endpoints of the integrationc0 c (t1 c0 t1 

interval we have that 

⎧vc0t; 0 < t ≤ t1⎪ xc (t) = ⎨ . 
v + v (t − t1) + 

1 
b(t − t1)3; t1 ≤ t < t2⎪ c0 t1 c0⎩ 6 

(b) We are looking for the instant t2 that the car has come to rest. So we use our 
expression for the x -component of the velocity the interval t1 ≤ t < t2 , where we set t = t2 

and v ) = 0 : c (t2 

1 )20 = v (t2 ) = v + − t1 . c c0 b(t22 
Solving for t2 yields 

+t2 = t1 

where we have taken the positive square root. Substitute the given values then yields 

− 
2v c0 

b 
, 

t2 = 1s + − 
2(12 m ⋅s−1) 
(−6 m ⋅s−3 ) 

= 3 s . 

The position of the car at t2 is then given by 
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1 )3x (t2 ) = v + v ) + c c0 t1 c0 (t2 − t1 b(t2 − t16 
1 / b)3/2 x (t2 ) = v + v −2v / b + b(−2v c c0 t1 c0 c0 c06 

3/2 )2 2(vc0xc (t2 ) = vc0 t1 + 
3(−b)1/2 

where we used the condition that t2 = −2v / b . Substitute the given values then − t1 c0 

yields 
-1 )3/2 4 2(vc0 	 4 2((12 m ⋅s 

xc (t2 ) = vc0 t1 + 2 
3(−b)1/2 

)3/2 

= (12 m ⋅s-1)(1s) + −3))1/2 = 28 m . 
3((6 m ⋅s 

b) 	 Because the bicycle is traveling at a constant speed with an initial position 
= −17 m , the position of the bicycle is given by xb (t) = −17 m + vbt . The bicycle and xb0 

car intersect at time t2 = 3 s , where xb (t2 ) = xc (t2 ) . Therefore −17 m + vb (3 s) = 28 m . So 

the speed of the bicycle is vb = 15 m ⋅s−1 . 
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Chapter 5 Two Dimensional Kinematics 

Where was the chap I saw in the picture somewhere? Ah yes, in the dead 
sea floating on his back, reading a book with a parasol open. Couldn’t 
sink if you tried: so thick with salt. Because the weight of the water, no, 
the weight of the body in the water is equal to the weight of the what? Or 
is it the volume equal to the weight? It’s a law something like that. Vance 
in High school cracking his fingerjoints, teaching. The college curriculum. 
Cracking curriculum. What is weight really when you say weight? 
Thirtytwo feet per second per second. Law of falling bodies: per second 
per second. They all fall to the ground. The earth. It’s the force of gravity 
of the earth is the weight. 1 

James Joyce 

5.1 Introduction to the Vector Description of Motion in Two Dimensions 

We have introduced the concepts of position, velocity and acceleration to describe 
motion in one dimension; however we live in a multidimensional universe. In order to 
explore and describe motion in more than one dimension, we shall study the motion of a 
projectile in two-dimension moving under the action of uniform gravitation. 

We extend our definitions of position, velocity, and acceleration for an object that 
moves in two dimensions (in a plane) by treating each direction independently, which we 
can do with vector quantities by resolving each of these quantities into components. For 
example, our definition of velocity as the derivative of position holds for each component !separately. In Cartesian coordinates, the position vector r(t) with respect to some choice 
of origin for the object at time t is given by 

! r(t) = x(t) î + y(t) ĵ . (5.1.1) 

The velocity vector v( )t at time t is the derivative of the position vector, 

 dx t( ) dy t( ) ˆ ˆ ˆ ˆv( )t = i + j ≡ v ( )t i + v ( )t j , (5.1.2)
dt dt x y 

where vx ( )t ≡ dx t( ) / dt and vy ( )t ≡ dy t( ) / dt denote the x - and y -components of the 
velocity respectively. 

The acceleration vector a( )t is defined in a similar fashion as the derivative of the 
velocity vector, 

1 James Joyce, Ulysses, The Corrected Text edited by Hans Walter Gabler with Wolfhard
Steppe and Claus Melchior, Random House, New York. 
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 dvx ( )t dvy ( )tˆ ˆ ˆ ˆa( )t = i + j ≡ a ( )t i + a ( )t j, (5.1.3)
dt dt x y 

where a ( ) ≡ dv ( ) / t dt and a ( ) ≡ dv ( ) / t t t dt denote the x - and y -components of thex x y y 

acceleration. 

5.2 Projectile Motion 
!Consider the motion of a body that is released at time t = 0 with an initial velocity v0 . 

Two paths are shown in Figure 5.1. 

parabolic orbit 

actual orbit 
v0 

Figure 5.1 Actual orbit accounting for air resistance and parabolic orbit of a projectile 

The dotted path represents a parabolic trajectory and the solid path represents the actual 
trajectory. The difference between the two paths is due to air resistance acting on the ! 

Fair object, = −bv2v̂ , where v̂ is a unit vector in the direction of the velocity. (For the 
!2 ⋅ m-2 orbits shown in Figure 5.1, b = 0.01 N ⋅s , = 30.0 m ⋅s , the initial launch angle v0 

with respect to the horizontal θ0 = 21! , and the actual horizontal distance traveled is 
71.7% of the projectile orbit.). There are other factors that can influence the path of 
motion; a rotating body or a special shape can alter the flow of air around the body, 
which may induce a curved motion or lift like the flight of a baseball or golf ball. We 
shall begin our analysis by neglecting all interactions except the gravitational interaction. 

y 

. 

x(t) 

y(t) 

O 
x 

y0 

r(t)
0 

v0 î 
ĵ 

Figure 5.2 A coordinate sketch for parabolic motion. 

Choose coordinates with the positive y-axis in the upward vertical direction and the 
positive x-axis in the horizontal direction in the direction that the object is moving 
horizontally. Choose the origin at the ground immediately below the point the object is 
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!released. Figure 5.2 shows our coordinate system with the position of the object r(t) at 
!time t , the initial velocity v0 , and the initial angle θ0 with respect to the horizontal, and 

the coordinate functions x(t) and y(t) . 

Initial Conditions: 

. 

O 
x 

y 

0 

v0 

î 
ĵ 

v 
x ,0 

v 
y ,0 

Figure 5.3 A vector decomposition of the initial velocity 

Decompose the initial velocity vector into its components: 

! v0 = vx ,0 î + vy ,0 ĵ . (5.1.4) 

The vector decomposition for the initial velocity is shown in Figure 5.3. Often the 
description of the flight of a projectile includes the statement, “a body is projected with 
an initial speed v0 at an angle θ0 with respect to the horizontal.” The components of the 
initial velocity can be expressed in terms of the initial speed and angle according to 

vx,0 = v0 cosθ0 , (5.1.5) 
vy ,0 = v0 sinθ0 . (5.1.6) 

Because the initial speed is the magnitude of the initial velocity, we have that 

2 2 )1/ 2 v = (v + v . (5.1.7)0 x ,0 y ,0 

The angle θ0 is related to the components of the initial velocity by 

θ0 = tan−1(vy ,0 / vx ,0 ) . (5.1.8) 

Equation (5.1.8) will give two values for the angle θ0 , so care must be taken to choose 
the correct physical value. The initial position vector generally is given by 

! r0 = x0 î + y0 ĵ . (5.1.9) 

Note that the trajectory in Figure 5.3 has x0 = 0 , but this will not always be the case. 
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Force Diagram: 

We begin by neglecting all forces other than the gravitational interaction between the 
object and the earth. This force acts downward with magnitude mg , where m is the 
mass of the object and g = 9.8 m ⋅s−2 . Figure 5.4 shows the force diagram on the object. 

y 

. 

O 
x 

î ĵ 

Fg 

Figure 5.4 Free-body force diagram on the object with the action of gravity 

The vector decomposition of the force is 

 
Fg = −mg ĵ . (5.1.10) 

Equations of Motions: 

The force diagram reminds us that the force is acting in the y -direction. Newton’s 
! 
F total Second Law states that the sum of the force, , acting on the object is equal to the product of the mass m and the acceleration vector a , 

 
F total  = ma . (5.1.11) 

  
F total = FgBecause we are modeling the motion with only one force, we have that . This is 

a vector equation; the components are equated separately: 

−mg = ma y , (5.1.12) 

0 = ma x . (5.1.13) 

Therefore the y -component of the acceleration is 

ay = −g. (5.1.14) 

We see that the acceleration is a constant and is independent of the mass of the object. 
Notice that ay < 0 . This is because we chose our positive y -direction to point upwards. 
The sign of the y -component of acceleration is determined by how we choose our 
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coordinate system. Because there are no horizontal forces acting on the object, we 
conclude that the acceleration in the horizontal direction is also zero 

ax = 0 . (5.1.15) 

Therefore the x -component of the velocity remains unchanged throughout the flight of 
the object. 

The acceleration in the vertical direction is constant for all bodies near the surface of the 
Earth, independent of the mass of the object, thus confirming Galileo’s Law of Free 
Falling Bodies. Notice that the equation of motion (Equation (5.1.14)) generalizes the 
experimental observation that objects fall with constant acceleration. Our statement about 
the acceleration of objects near the surface of Earth depends on our model force law Eq. 
(5.1.10), and if subsequent observations show the acceleration is not constant then we 
either must include additional forces (for example, air resistance), or modify the force 
law (for objects that are no longer near the surface of Earth, or consider that Earth is a 
non-symmetric non-uniform body), or take into account the rotational motion of the Earth. 

We can now integrate the equation of motions (Eqs. (5.1.14) and (5.1.15)) 
separately for the x - and y - directions to find expressions for the x - and y -components 
of velocity and position: 

t ′= t 

v (t) − v = a (t′) dt′ = 0 ⇒ v (t) = v x x ,0 ∫ x x x ,0 
t ′=0 

t ′= t t ′= t 

x(t) − x = v (t′) dt′ = v dt′ = v t ⇒ x(t) = x + v t0 ∫ x ∫ x ,0 x ,0 0 x ,0 
t ′=0 t ′=0 

t ′= t t ′= t 

v (t) − v = a (t′) dt′ = − g dt′ = −gt ⇒ v (t) = v − gty y ,0 ∫ y ∫ y y ,0 
t ′=0 t ′=0 

t′=t t′=t 

y(t) − y0 = ∫ vy (t′)dt′ = ∫ (v y ,0 − gt) dt′ = vy ,0 t − (1/ 2)gt2 ⇒ y(t) = y0 + vy ,0t − (1/ 2)gt2. 
t′=0 t′=0 

The complete set of vector equations for position and velocity for each independent 
direction of motion are given by 

 + v + v t + (1/ 2)a t2 ) ̂j , (5.1.16)r(t) = x(t) î + y(t) ĵ = (x0 x ,0 t) î + ( y0 y ,0 y 
 v(t) = v (t) î + v (t) ĵ = v î + (v + a t) ĵ , (5.1.17)x y x ,0 y ,0 y 

 ˆ ˆ ˆa( )t = a ( )t i + a ( )t j = a j . (5.1.18)x y y 

Example 5.1 Time of Flight and Maximum Height of a Projectile 
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A person throws a stone at an initial angle θ0 = 45! from the horizontal with an initial 

speed of v0 = 20 m ⋅ s-1 . The point of release of the stone is at a height d = 2 m above the 
ground. You may neglect air resistance. a) How long does it take the stone to reach the 
highest point of its trajectory? b) What was the maximum vertical displacement of the 
stone? Ignore air resistance. 

Solution: Choose the origin on the ground directly underneath the point where the stone 
is released. We choose the positive y-axis in the upward vertical direction and the 
positive x-axis in the horizontal direction in the direction that the object is moving 
horizontally. Set t = 0 the instant the stone is released. At t = 0 the initial conditions are 
then x0 = 0 and y0 = d . The initial x - and y -components of the velocity are given by 
Eqs. (5.1.5) and (5.1.6). 

At time t the stone has coordinates (x(t), y(t)) . These coordinate functions are shown in 
Figure 5.5. 

Figure 5.5: Coordinate functions for stone 

Figure 5.6 Plot of the y-component of the position as a function of time 

The slope of this graph at any time t yields the instantaneous y-component of the 
velocity vy (t) at that time t . Figure 5.5 is a plot of y(t) vs. x(t) and Figure 5.6 is a plot 
of y(t) vs. t . There are several important things to notice about Figures 5.5 and 5.6. The 
first point is that the abscissa axes are different in both figures. The second thing to notice 
is that at t = 0 , the slope of the graph in Figure 5.5 is equal to 
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vdy ⎛ dy / dt ⎞ = = y ,0 = tanθ0 , (5.1.19)
dx t=0 ⎝⎜ dx / dt ⎠⎟ v 

t=0 x ,0 

while at t = 0 the slope of the graph in Figure 5.6 is equal to 

dy = vy ,0 . (5.1.20)
dt t=0 

The slope of this graph in Figure 5.6 at any time t yields the instantaneous y-component 
of the velocity vy (t) at that time t . Let t = t1 correspond to the instant the stone is at its 
maximal vertical position, the highest point in the flight. The final thing to notice about 
Figure 5.6 is that at t = t1 the slope is zero or vy (t = t1) = 0 . Therefore 

v sinθ0 = 0 . (5.1.21)y (t1) = v0 − gt1 

Solving Eq. (5.1.21) for t1 yields, 

v0 sinθ0 (20 m ⋅s-1)sin(45! )= = = 1.44 s . (5.1.22)t1 -2 g 9.8 m ⋅s

The graph in Figure 5.7 shows a plot of vy (t) as a function of time. Notice that at t = 0 

the intercept is positive indicting that vy ,0 is positive which means that the stone was 

thrown upwards. The y -component of the velocity changes sign at t = t1 indicating that 
the stone is reversing its direction and starting to move downwards. 

15 

10 

5 

0 

-5 

-10 

-15 

1 2 3 4 

t1 
t 

v y (t) 

[m s 1] 

[s] 

Figure 5.7 y -component of the velocity as a function of time 

7



  

 
    

 
      

  
 

 

   

  

 
  

 
      

         
        

   
 
   
 
 

    
 

   

 
    

 

   

 
    

 

   

 
  

 

   

 
   

 

  
      

 

   

       

   

   
   

 

          
 

     
       

 

                   

   
    

 
   

                   
             

    

We now substitute the expression for t = ttop (Eq. (5.1.22)) into the y -component of the 
position in Eq. (5.1.16) to find the maximal height of the stone above the ground 

⎞ 
2 

v0 sinθ0 1 ⎛ v0 sinθ0y(t = t sinθ0 − gtop ) = d + v0 g 2 ⎝⎜ g ⎠⎟ , (5.1.23) 
v0

2 sin2 θ0 (20 m ⋅s-1)2 sin2(45 )= d + = 2 m + = 12.2 m -2 )2g 2(9.8 m ⋅s 

5.2.1 Orbit equation 

So far our description of the motion has emphasized the independence of the spatial 
dimensions, treating all of the kinematic quantities as functions of time. We shall now 
eliminate time from our equation and find the orbit equation of the body undergoing 
projectile motion. We begin with the x -component of the position in Eq. (5.1.16), 

x t( ) = x0 + vx,0 t (5.1.24) 

and solve Equation (5.1.24) for time t as a function of x t( ) , 

x t( ) − x
t = 0 . (5.1.25)

vx,0 

The y -component of the position in Eq. (5.1.16) is given by 

1 2y t( ) = y0 + vy ,0 t − g t . (5.1.26)
2 

We then substitute Eq. (5.1.25) into Eq. (5.1.26) yielding 

⎛ x t( ) − x0 ⎞ 1 ⎛ x t( ) − x0 ⎞
2 

y t( ) = y0 + vy ,0 ⎜ ⎟ − g ⎜ ⎟ . (5.1.27)⎜ ⎟ ⎜ ⎟v 2 v⎝ x,0 ⎠ ⎝ x,0 ⎠ 

A little algebraic simplification yields the equation for a parabola: 

1 g 2 ⎛ g x0 vy ,0 ⎞ vy ,0 1 g 2y t( ) = − x t( ) + ⎜ + ⎟ x t( ) − x − x + y . (5.1.28)2 2 0 2 0 0⎜ ⎟2 v v v v 2 vx,0 ⎝ x,0 x,0 ⎠ x,0 x,0 

The graph of y t( ) as a function of x t( ) is shown in Figure 5.8. 
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Figure 5.8 The parabolic orbit 

The velocity vector is given by 

 dx t( ) dy t( ) v( )t = î + ĵ ≡ vx ( )t î + vy ( )t ĵ . (5.1.29)
dt dt 

The direction of the velocity vector at a point (x(t), y(t)) can be determined from the 
components. Let θ be the angle that the velocity vector forms with respect to the positive 
x -axis. Then 

⎛ vy (t)⎞ ⎛ dy / dt ⎞ ⎛ dy ⎞θ = tan−1 
⎜ ⎟ = tan−1 

⎝⎜ ⎠⎟ 
= tan−1 

⎝⎜ ⎠⎟ 
. (5.1.30)

⎝ v x (t)⎠ dx / dt dx 

Differentiating Eq. (5.1.28) with respect to x yields 

⎛
 ⎞
dy g x0 
v 

= − 
g 
2 

y ,0 

x ,0 

(5.1.31)
x + +
⎜
⎝
 

⎟
⎠
 

.
2dx vv v x ,0 x ,0 

The direction of the velocity vector at a point (x(t), y(t)) is therefore 

⎛
 ⎞
⎛
 ⎞
g x0 
v 

− 
g 
2 

y ,0 

x ,0 

θ = tan−1 (5.1.32)
x + +
⎜
⎝
 

⎟
⎠
 

⎜
⎝
 

⎟
⎠
 

.
2 vv v x ,0 x ,0 

Although we can determine the angle of the velocity, we cannot determine how fast the 
body moves along the parabolic orbit from our graph of y(x) ; the magnitude of the 
velocity cannot be determined from information about the tangent line. 
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If we choose our origin at the initial position of the body at t = 0 , then x0 = 0 and y0 = 0 . 
Our orbit equation, Equation (5.1.28) can now be simplified to 

1 g
x(t)2 + 

vy ,0 y(t) = − 2 x(t) .	 (5.1.33)
2 v v x ,0 x ,0 

Example 5.2 Hitting the Bucket 

A person is holding a pail while standing on a ladder. The person releases the pail from 
rest at a height h1 above the ground. A second person, standing a horizontal distance s 
from the pail, aims and throws a ball the instant the pail is released in order to hit the pail. 
The person releases the ball at a height h2 above the ground, with an initial speed v0 , and 
at an angle θ0 with respect to the horizontal. Assume that v0 is large enough so that the 
stone will at least travel a horizontal distance s before it hits the ground. You may ignore 
air resistance. 

h2 

h1 

s 

Figure 5.9: Example 5.2 

a)	 Find an expression for the angle θ0 that the person aims the ball in order to hit the 
pail. Does the answer depend on the initial velocity? 

b)	 Find an expression for the time of collision as a function of the initial speed of the 
ball v0 , and the quantities h1 , h2 , and s . 

c)	 Find an expression for the height above the ground where the collision occurred 
as a function of the initial speed of the ball v0 , and the quantities h1 , h2 , and s . 

Solution: 

There are two objects involved in this problem. Each object is undergoing free fall, so 
there is only one stage of motion for each object. The pail is undergoing one-dimensional 
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motion. The ball is undergoing two-dimensional motion. The parameters h1 , h2 , v0 , and 
s are unspecified, so our answers will be functions of those quantities. Figure 5.9 shows 
a sketch of the motion of all the bodies in this problem. 

Choose an origin on the ground directly underneath the point where the ball is released, 
upwards for the positive y -direction and towards the pail for the positive x -direction. 
Choose position coordinates for the pail as follows. The horizontal coordinate is constant 
and given by x1 = s . The vertical coordinate represents the height above the ground and 
is denoted by y1(t) . The ball has coordinates (x2(t), y2(t)) . We show these coordinates in 
the Figure 5.10. 

h2 

h1 

x2 (t) 

y2 (t) 
y1(t) 

x1 = s 

v0 

0 

O 

Figure 5.10: Coordinate System 

The pail undergoes constant acceleration a1,y = −g in the vertical direction and the ball 
undergoes uniform motion in the horizontal direction and constant acceleration in the 
vertical direction, with a2,x = 0 and a2,y = −g . 

The initial conditions for the pail are (v1,0 ) y = 0 , x1,0 = s , y1,0 = h1 . The equations for 
position and velocity of the pail simplify to 

y1(t) = h1 − 
1 gt2 (5.1.34)
2 

vy ,1(t) = −gt . (5.1.35) 

The initial position is given by x2,0 = 0 , y2,0 = h2 . The components of the initial velocity 

are given by (v2,0 ) y = v0 sin(θ0 ) and (v2,0 )x = v0 cos(θ0 ) , where v0 is the magnitude of the 

initial velocity and θ0 is the initial angle with respect to the horizontal. The equations for 
the position and velocity of the ball simplify to 
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x2 (t) = v0 cos(θ0 )t (5.1.36) 
cos(θ0 ) (5.1.37)v2,x (t) = v0 

y2 (t) = h2 + v0 sin(θ0 )t − 
1 gt2 (5.1.38)
2 

sin(θ0 ) − gt . (5.1.39)v2,y (t) = v0 

Note that the quantities h1 , h2 , v0 , and s should be treated as known quantities although 
no numerical values were given. There are six independent equations with 8 as yet 
unspecified quantities y1(t) , t , y2 (t) , x2 (t) , v1,y (t) , v2,y (t) , v2,x (t) , and θ0 . 

So we need two more conditions, in order to find expressions for the initial angle, θ0 , the 
time of collision, ta , and the spatial location of the collision point specified by y1(ta ) or 

(t ) . At the collision time t = t , the collision occurs when the two balls are located at y2 a a 

the same position. Therefore 

y1(t a ) = (t a ) (5.1.40)y2 

= s . (5.1.41)x2 (t a ) = x1 

We shall now apply these conditions that must be satisfied in order for the ball to hit the 
pail. 

1 2 1 2− gt sin θ0 − gt (5.1.42)h1 a = h2 + v0 ( )t a a2 2 
s = v0 cos(θ0 )ta . (5.1.43) 

Eq. (5.1.42) simplifies to 
sin(θ0 )t (5.1.44)v0 a = h1 − h2 

Dividing Eq. (5.1.44) by Eq. (5.1.43) yields 

sin(θ0 )tv0 a h1 − h2= tan(θ0 ) = . (5.1.45)
cos(θ0 )tv0 a s2 

So the initial angle θ0 is independent of v0 , and is given by 

θ0 = tan−1((h1 − h2 ) / s) . (5.1.46) 

From the Figure 5.11 we can see that tan(θ0 ) = (h1 − h2 ) / s implies that the second person 
aims the ball at the initial position of the pail. 
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h2 

h1 

s 
0 

O 

h1 h2 

Figure 5.11: Geometry of collision 

In order to find the time that the ball collides with the pail, we begin by squaring both 
Eqs. (5.1.44) and (5.1.43), then utilize the trigonometric identity sin2(θ0 ) + cos2(θ0 ) = 1 . 
Our squared equations become 

2 )22 sin2(θ0 )t (5.1.47)v0 a = (h1 − h2 
2 2 2cos2(θ0 )t = s . (5.1.48)v0 a 

Adding these equations together and using the identity sin2(θ0 ) + cos2(θ0 ) = 1 and taking 
square roots yields 

)2 )1/2 t = (s2 + (h1 . (5.1.49)v0 a − h2 

We can solve Eq. (5.1.49) for the time of collision 

1 2 + (h1 )2 )1 2 . (5.1.50)t = (sa − h2v0 

We can now use the y -coordinate function of either the ball or the pail at t = ta to find 
the height that the ball collides with the pail. Because the pail had no initial y -
component of the velocity, it’s easier to use the condition for the pail, 

g(s2 + (h1 − h2 )2 )
y1(t ) = h1 − . (5.1.51)a 2v0

2 

Comments: 

(1) Eqs. (5.1.49) and (5.1.50) can be arrived at in a very direct way. Suppose we analyze ! 
the motion in a reference frame that is accelerating downward with A = −g ̂j . In that 

13



  

                

    
             

 
 
 
 

reference frame both the pail and the stone are not accelerating; the pail is at rest and the 
stone is travelling with speed v0 , at an angle θ0 . Therefore in order to hit the stationary 
pail, the stone must be thrown at the angle given by Eq. (5.1.46) and the time that it takes 
to hit the stone is just given by distance traveled divided by speed, Eq. (5.1.50). 
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Chapter 6 Central Motion 

And the seasons they go round and round 
And the painted ponies go up and down 
We're captive on the carousel of time 
We can't return we can only look 
Behind from where we came 
And go round and round and round 
In the circle game 1 

Joni Mitchell 

6.1 Introduction 

We shall now investigate a special class of motions, motion in a plane about a central 
point, a motion we shall refer to as central motion, the most outstanding case of which is 
circular motion. Special cases often dominate our study of physics, and circular motion 
about a central point is certainly no exception. There are many instances of central 
motion about a point; a bicycle rider on a circular track, a ball spun around by a string, 
and the rotation of a spinning wheel are just a few examples. Various planetary models 
described the motion of planets in circles before any understanding of gravitation. The 
motion of the moon around the earth is nearly circular. The motions of the planets around 
the sun are nearly circular. Our sun moves in nearly a circular orbit about the center of 
our galaxy, 50,000 light years from a massive black hole at the center of the galaxy. 
When Newton solved the two-body under a gravitational central force, he discovered that 
the orbits can be circular, elliptical, parabolic or hyperbolic. All of these orbits still 
display central force motion about the center of mass of the two-body system. Another 
example of central force motion is the scattering of particles by a Coulombic central force, 
for example Rutherford scattering of an alpha particle (two protons and two neutrons 
bound together into a particle identical to a helium nucleus) against an atomic nucleus 
such as a gold nucleus. 

We shall begin by describing the kinematics of circular motion, the position, velocity, 
and acceleration, as a special case of two-dimensional motion. We will see that unlike 
linear motion, where velocity and acceleration are directed along the line of motion, in 
circular motion the direction of velocity is always tangent to the circle. This means that as 
the object moves in a circle, the direction of the velocity is always changing. When we 
examine this motion, we shall see that the direction of the change of the velocity is 
towards the center of the circle. This means that there is a non-zero component of the 
acceleration directed radially inward, which is called the centripetal acceleration. If our 
object is increasing its speed or slowing down, there is also a non-zero tangential 
acceleration in the direction of motion. But when the object is moving at a constant speed 
in a circle then only the centripetal acceleration is non-zero. 

1 Joni Mitchell, The Circle Game, Siquomb Publishing Company. 
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In 1666, twenty years before Newton published his Principia, he realized that the 
moon is always “falling” towards the center of the earth; otherwise, by the First Law, it 
would continue in some linear trajectory rather than follow a circular orbit. Therefore 
there must be a centripetal force, a radial force pointing inward, producing this 
centripetal acceleration. 

In all of these instances, when an object is constrained to move in a circle, there ! 
must exist a force F acting on the object directed towards the center. Because Newton’s 
Second Law is a vector equality, the radial component of the Second Law is 

Fr = ma r . (6.1.1) 

6.2 Circular Motion: Velocity and Angular Velocity 

We begin our description of circular motion by choosing polar coordinates. In Figure 6.1we sketch the position vector r ( )t of the object moving in a circular orbit of radius r . 

ˆ ĵ 

î 

+ x 

+ y r̂(t)(t) 

(t) 

r P 
. 

Figure 6.1 A circular orbit with unit vectors. 

At time t , the particle is located at the point P with coordinates (r, θ(t)) and position 
vector given by !r(t) = r r̂(t) . (6.2.1) 

ˆAt the point P , consider two sets of unit vectors ( r̂(t) , θ(t) ) and ( ̂i , ̂j), as shown in 
Figure 6.1. The vector decomposition expression for r̂(t) and θ̂(t) in terms of î and ĵ is 
given by 

r̂(t) = cosθ(t) î + sinθ(t) ĵ , (6.2.2) 
θ̂(t) = −sinθ(t) î + cosθ(t) ĵ . (6.2.3) 

Before we calculate the velocity, we shall calculate the time derivatives of Eqs. (6.2.2) 
and (6.2.3). Let’s first begin with d r̂ (t) / dt : 
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d r̂ (t) d = (cosθ(t) î + sinθ(t) ĵ) = (−sinθ(t) dθ(t) î + cosθ(t) dθ(t) ĵ)
dt dt dt dt ; (6.2.4)
dθ(t) dθ(t) ˆ= (−sinθ(t) î + cosθ(t) ĵ) = θ(t)
dt dt 

where we used the chain rule to calculate that 

d cosθ(t) = −sinθ(t) dθ(t) , (6.2.5)
dt dt 
d sinθ(t) = cosθ(t) dθ(t) . (6.2.6)
dt dt 

The calculation for d θ̂(t) / dt is similar: 

magnitude of the velocity by v ≡ , The angular speed is the magnitude of the rate of 

dt dt 

d θ̂ (t) d = (−sinθ(t) ̂i + cosθ(t ĵ) = (− cosθ(t) dθ(t) î − sin(t) dθ(t) ĵ)
dt dt dt dt .
dθ(t) dθ(t)= (− cosθ(t) ̂i − sinθ(t) ĵ) = − r̂(t) 

(6.2.7) 

The velocity vector is then 

!v(t) = 
dr!(t) 
dt 

= r d r̂ 
dt 

= r dθ 
dt 

θ(t) = vθ θ(t) , ˆ ˆ (6.2.8) 

where the θ̂ -component of the velocity is given by 

vθ = r dθ 

dt 
, (6.2.9) 

a quantity we shall refer to as the tangential component of the velocity. Denote the 
! v 

change of angle with respect to time, which we denote by the Greek letter ω , 

dθ . (6.2.10)ω ≡ 
dt 
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6.2.1 Geometric Derivation of the Velocity for Circular Motion 

Consider a particle undergoing circular motion. At time t , the position of the particle is ! !r(t) . During the time interval Δt , the particle moves to the position r(t + Δt) with a 
!displacement Δr . 

r 

r(t)r(t + t) 

r 

Figure 6.2 Displacement vector for circular motion 

The magnitude of the displacement, Δr  , is represented by the length of the horizontal 
 vector Δr joining the heads of the displacement vectors in Figure 6.2 and is given by 

Δ! r = 2r sin(Δθ / 2) . (6.2.11) 

When the angle Δθ is small, we can approximate 

sin(Δθ / 2) ≅ Δθ / 2 . (6.2.12) 

This is called the small angle approximation, where the angle Δθ (and hence Δθ / 2 ) is 
measured in radians. This fact follows from an infinite power series expansion for the 
sine function given by 

⎛ Δθ ⎞sin ⎜ ⎟⎝ 2 ⎠ 
= 
Δθ 
2 

− 
1 ⎛ Δθ ⎞

3 

⎜ ⎟3!⎝ 2 ⎠ 
+ 
1 ⎛ Δθ ⎞

5 

⎜ ⎟5!⎝ 2 ⎠ 
− ⋅ ⋅ ⋅ . (6.2.13) 

When the angle Δθ / 2 is small, only the first term in the infinite series contributes, as 
successive terms in the expansion become much smaller. For example, when 

3 −4Δθ / 2 = π / 30 ≅ 0.1 , corresponding to 6o, (Δθ / 2) / 3! ≅ 1.9×10 ; this term in the power 
series is three orders of magnitude smaller than the first and can be safely ignored for 
small angles. 

Using the small angle approximation, the magnitude of the displacement is 
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Δ r ≅ r Δθ . (6.2.14) 

This result should not be too surprising since in the limit as Δθ approaches zero, the 
length of the chord approaches the arc length r Δθ . 

The magnitude of the velocity, v , is proportional to the rate of change of the 
magnitude of the angle with respect to time, 

Δ! r r Δθ Δθ dθ = rω . (6.2.15)v ≡ v !(t) = lim = lim = r lim = r 
Δt→0 Δt Δt→0 Δt Δt→0 Δt dt 

The direction of the velocity can be determined by considering that in the limit as Δt → 0 (note that Δθ → 0 ), the direction of the displacement Δr approaches the 
direction of the tangent to the circle at the position of the particle at time t (Figure 6.3). 

r 

r(t)r(t + t) 

r 

v(t) 

r̂(t)ˆ(t) 

tangent line 

Figure 6.3 Direction of the displacement approaches the direction of the tangent line 

  Thus, in the limit Δt → 0 , Δr ⊥ r , and so the direction of the velocity v(t) at time t is 
perpendicular to the position vector r(t) and tangent to the circular orbit in the +θ̂ -

direction for the case shown in Figure 6.3. 

6.3 Circular Motion: Tangential and Radial Acceleration 

When the motion of an object is described in polar coordinates, the acceleration has two 
components, the tangential component aθ 

, and the radial component, ar . We can write 
the acceleration vector as 

! ˆa = ar r̂(t) + aθ θ(t) . (6.3.1) 
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Keep in mind that as the object moves in a circle, the unit vectors r̂(t) and θ̂(t) change 
direction and hence are not constant in time. 

We will begin by calculating the tangential component of the acceleration for 
circular motion. Suppose that the tangential velocity vθ = r dθ / dt is changing in 
magnitude due to the presence of some tangential force; we shall now consider that 
dθ / dt is changing in time, (the magnitude of the velocity is changing in time). Recall 
that in polar coordinates the velocity vector Eq. (6.2.8) can be written as 

v!(t) = r dθ 
dt 

θ̂(t) . (6.3.2) 

We now use the product rule to determine the acceleration. 

!a(t) = 
dv!(t) 
dt 

= r d
2θ(t) θ̂(t) + r
dt 2 

dθ(t) dθ̂(t) .
dt dt 

(6.3.3) 

Recall from Eq. (6.2.3) that θ̂(t) = − sinθ(t)î + cosθ(t) ĵ . So we can rewrite Eq. (6.3.3) as 

! d 2θ(t) ˆ dθ(t) da(t) = r θ(t) + r (−sinθ(t)î + cosθ(t) ĵ) . (6.3.4)
dt 2 dt dt 

We again use the chain rule (Eqs. (6.2.5) and (6.2.6)) and find that 

! d 2θ(t) ˆ dθ(t) ⎛a(t) = r θ(t) + r ⎝⎜ − cosθ(t) dθ(t) î − sinθ(t) dθ(t) ĵ⎞⎠⎟ . (6.3.5)
dt 2 dt dt dt 

Recall that ω ≡ dθ / dt , and from Eq. (6.2.2), r̂(t) = cosθ(t) î + sinθ(t) ĵ , therefore the 
acceleration becomes 

! d 2θ(t) ⎛ dθ(t)⎞ 
2 

a(t) = r θ̂(t) − r r̂(t) . (6.3.6)⎝⎜ ⎠⎟dt 2 dt 

The tangential component of the acceleration is then 

d 2θ(t)aθ = r . (6.3.7)
dt2 

The radial component of the acceleration is given by 

6



  

 
  

  

 

        
 

 
  

 
        
       

   
 

 
 

  
 

       

   
 

 
 

 
  

 

 

 

 
   

 
 

 
      

 
           

     
 
   

  
      

   

 

   

     

  

  
 

     
 

  
 

    

 

  

      
 

 

   

        

  

   

   

⎛ dθ(t)⎞ 
2 

ar = −r = −rω 2 < 0 . (6.3.8)
⎝⎜ dt ⎠⎟ 

Because ar < 0 , that radial vector component a r (t) = −rω 2 r̂(t) is always directed 
towards the center of the circular orbit. 

Example 6.1 Circular Motion Kinematics 

A particle is moving in a circle of radius R . At t = 0 , it is located on the x -axis. The 
angle the particle makes with the positive x -axis is given by θ(t) = At3 − Bt , where A 
and B are positive constants. Determine (a) the velocity vector, and (b) the acceleration 
vector. Express your answer in polar coordinates. At what time is the centripetal 
acceleration zero? 

Solution: 

The derivatives of the angle function θ(t) = At3 − Bt are dθ / dt = 3At2 − B and 
d 2θ / dt2 = 6 At . Therefore the velocity vector is given by 

!v(t) = R dθ(t) θ̂(t) = R(3At 2 − Bt)θ̂(t) .
dt 

The acceleration is given by 

a(t) = R d
2θ(t) 

θ̂(t) − R⎛
⎝⎜ 
dθ(t)⎞

⎠⎟ 
2 

r̂(t)
dt 2 dt . 

= R(6At) θ̂(t) − R(3At 2 − B)2 
r̂(t) 

The centripetal acceleration is zero at time t = t1 when 

3At1
2 − B = 0 ⇒ t1 = 

6.4 Period and Frequency for Uniform Circular Motion 

If the object is constrained to move in a circle and the total tangential force acting on the 
total object is zero, Fθ = 0 , then (Newton’s Second Law), the tangential acceleration is zero, 

aθ = 0 . (6.4.1) 

B / 3A . 
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This means that the magnitude of the velocity (the speed) remains constant. This motion 
is known as uniform circular motion. The acceleration is then given by only the 
acceleration radial component vector 

a r (t) = −rω 2 (t) r̂(t) uniform circular motion . (6.4.2) 

ωBecause the speed v = r is constant, the amount of time that the object takes to 
complete one circular orbit of radius r is also constant. This time interval, T , is called 
the period. In one period the object travels a distance s = vT equal to the circumference, 
s = 2πr ; thus 

s = 2πr = vT . (6.4.3) 

The period T is then given by 
2πr 2πr 2πT = = = . (6.4.4)

v rω ω 

The frequency f is defined to be the reciprocal of the period, 

1 ωf = = . (6.4.5)
T 2π 

⎡ −1The SI unit of frequency is the inverse second, which is defined as the hertz, s ⎤ ≡ [Hz] .⎣ ⎦ 

The magnitude of the radial component of the acceleration can be expressed in several 
equivalent forms since both the magnitudes of the velocity and angular velocity are 
related by v = rω . Thus we have several alternative forms for the magnitude of the 
centripetal acceleration. The first is that in Equation (6.5.3). The second is in terms of the 
radius and the angular velocity, 

= rω 2a . (6.4.6)r 

The third form expresses the magnitude of the centripetal acceleration in terms of the 
speed and radius, 

2v a = . (6.4.7)r r 

Recall that the magnitude of the angular velocity is related to the frequency by 
ω = 2π f , so we have a fourth alternate expression for the magnitude of the centripetal 
acceleration in terms of the radius and frequency, 

a = 4π 2r f 2 . (6.4.8)r 
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A fifth form commonly encountered uses the fact that the frequency and period 
are related by f = 1/ T = ω / 2π . Thus we have the fourth expression for the centripetal 
acceleration in terms of radius and period, 

4π 2r a = . (6.4.9)r T 2 

Other forms, such as 4π 2r 2 f / T or 2πrω f , while valid, are uncommon. 

Often we decide which expression to use based on information that describes the 
orbit. A convenient measure might be the orbit’s radius. We may also independently 
know the period, or the frequency, or the angular velocity, or the speed. If we know one, 
we can calculate the other three but it is important to understand the meaning of each 
quantity. 

6.4.1 Geometric Interpretation for Radial Acceleration for Uniform Circular 
Motion 

An object traveling in a circular orbit is always accelerating towards the center. Any 
radial inward acceleration is called centripetal acceleration. Recall that the direction of 
the velocity is always tangent to the circle. Therefore the direction of the velocity is 
constantly changing because the object is moving in a circle, as can be seen in Figure 6.4. 
Because the velocity changes direction, the object has a nonzero acceleration. 

Figure 6.5 Change in velocity vector. 
Figure 6.4 Direction of the velocity for 

circular motion. 
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The calculation of the magnitude and direction of the acceleration is very similar to the 
calculation for the magnitude and direction of the velocity for circular motion, but the change in velocity vector, Δv , is more complicated to visualize. The change in velocity   Δv = v(t + Δt) − v( )t is depicted in Figure 6.5. The velocity vectors have been given a 

common point for the tails, so that the change in velocity, Δv , can be visualized. The 
length Δv  of the vertical vector can be calculated in exactly the same way as the 

displacement Δr  . The magnitude of the change in velocity is 

Δv  = 2vsin(Δθ / 2) . (6.5.1) 

We can use the small angle approximation sin (Δθ / 2)≅ Δθ / 2 to approximate the 
magnitude of the change of velocity, 

Δv  ≅ v Δθ . (6.5.2) 

The magnitude of the radial acceleration is given by 

Δ v v Δθ Δθ dθ a = lim = lim = v lim = v = v ω . (6.5.3)r Δt→0 Δt Δt→0 Δt Δt→0 Δt dt 

The direction of the radial acceleration is determined by the same method as the direction  of the velocity; in the limit Δθ → 0 , Δv ⊥ v , and so the direction of the acceleration 
 radial component vector a r (t) at time t is perpendicular to position vector v( )t and 

directed inward, in the −r̂ -direction. 

6.5 Angular Velocity and Angular Acceleration 
6.5.1. Angular Velocity 

We shall always choose a right-handed cylindrical coordinate system. If the positive z -
axis points up, then we choose θ to be increasing in the counterclockwise direction as 
shown in Figures 6.6. 

O 

+x 

+ y 
.r 
k̂ 

ˆ 
r̂ 

+ z 

Figure 6.6 Right handed coordinate system 

10



  

 
  

      
  

 
    

  

 
              

  
 

 
 

  

 
  
  

     
   

  
   

    

       
  

      
         

 
 

 

 
    

  

 

   
 

    

 
 

 
   

    

    

 

 

  
  

 

 
 

 
 

 

 
 

  

 

 

  
 

 

 

 
 

  
 

 
 

 
  

    

  

 
  

   


For a point object undergoing circular motion about the z -axis, the angular velocity ! 
vector ω is directed along the z -axis with z -component equal to the time derivative of 
the angle θ , 

ω
! 
= 

dθ k̂ = ω z k̂ . (6.5.4)
dt 

The SI units of angular velocity are [rad ⋅ s−1] . Note that the angular speed is just the 
magnitude of the z -component of the angular velocity, 

dθ . (6.5.5)ω ≡ ω = z dt 

If the velocity of the object is in the +θ̂ -direction, (rotating in the counterclockwise 
direction in Figure 6.7(a)), then the z -component of the angular velocity is positive, 
ω z = dθ / dt > 0 . The angular velocity vector then points in the +k̂ -direction as shown in 

Figure 6.7(a). If the velocity of the object is in the −θ̂ -direction, (rotating in the 
clockwise direction in Figure 6.7(b)), then the z -component of the angular velocity 
angular velocity is negative, ω z = dθ / dt < 0 . The angular velocity vector then points in 

the −k̂ -direction as shown in Figure 6.7(b). 

O 

+x 

+ y 
.r v 
k̂ 

ˆ 
r̂ 

z 
= 
d 

dt 
> 0+ z 

O 

+x 

+ y 
.r 

v 

k̂ 

ˆ 
r̂ 

+ z 
z 

= 
d 

dt 
< 0 

Figure 6.7(a) Angular velocity vector Figure 6.7(b) Angular velocity 
vector for motion with dθ / dt > 0 . for motion with dθ / dt < 0 . 

The velocity and angular velocity are related by 

! ! ! dθ dθ v = ω × r = k̂ × r r̂ = r θ̂ . (6.5.6)
dt dt 
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Example 6.2 Angular Velocity 

A particle is moving in a circle of radius R . At t = 0 , it is located on the x -axis. The 
angle the particle makes with the positive x -axis is given by θ(t) = At − Bt3 , where A 
and B are positive constants. Determine (a) the angular velocity vector, and (b) the 
velocity vector. Express your answer in polar coordinates. (c) At what time, t = t1 , is the 
angular velocity zero? (d) What is the direction of the angular velocity for (i) t < t1 , and 
(ii) t > t1? 

Solution: The derivative of θ(t) = At − Bt3 is 

dθ(t) 
= A − 3Bt2 .

dt 

Therefore the angular velocity vector is given by 

! dθ(t)
ω(t) = 

dt 
k̂ = (A − 3Bt 2 )k̂ . 

The velocity is given by 
!v(t) = R dθ(t) θ̂(t) = R(A − 3Bt 2 )θ̂(t) .

dt 

The angular velocity is zero at time t = t1 when 

A − 3Bt1
2 = 0 ⇒ t1 = 

dθ(t) !
For t < t1 , = A − 3Bt1

2 > 0 hence ω(t) points in the positive k̂ -direction.
dt 

dθ(t) !
For t > t1 , = A − 3Bt1

2 < 0 hence ω(t) points in the negative k̂ -direction.
dt 

6.5.2 Angular Acceleration 

In a similar fashion, for a point object undergoing circular motion about the fixed z -axis, 
the angular acceleration is defined as 

d 2θα
! 
= 

dt2 k̂ = α k̂ . (6.5.7)z 

A / 3B . 
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The SI units of angular acceleration are [rad ⋅s−2] . The magnitude of the angular 
acceleration is denoted by the Greek symbol alpha, 

d 2θ!
α ≡ α = . (6.5.8)

dt2 

There are four special cases to consider for the direction of the angular velocity. Let’s 
!

first consider the two types of motion with α pointing in the +k̂ -direction: (i) if the 
object is rotating counterclockwise and speeding up then both dθ / dt > 0 and 
d 2θ / dt2 > 0 (Figure 6.8(a), (ii) if the object is rotating clockwise and slowing down then 
dθ / dt < 0 but d 2θ / dt2 > 0 (Figure 6.8(b). There are two corresponding cases in which 
!
α pointing in the −k̂ -direction: (iii) if the object is rotating counterclockwise and 
slowing down then dθ / dt > 0 but d 2θ / dt2 < 0 (Figure 6.9(a), (iv) if the object is 
rotating clockwise and speeding up then both dθ / dt < 0 and d 2θ / dt2 < 0 (Figure 6.9(b). 

O 

+x 

+ y 
.r v 
k̂ 

ˆ 
r̂ 

+ z 
z 

= 
d 

dtz 
= 
d
2 

dt
2 > 0 > 0 

O 

+x 

+ y 
.r 

v 

k̂ 

ˆ 
r̂ 

+ z 
z 

= 
d 

dtz 
= 
d
2 

dt
2 > 0 0< 

Figure 6.8(a) Angular acceleration vector Figure 6.8(b) Angular velocity 
vector for motion with dθ / dt > 0 , for motion with dθ / dt < 0 , and 
and d 2θ / dt2 > 0 . d 2θ / dt2 > 0 . 

O 

+x 

+ y 
.r v 
k̂ 

ˆ 
r̂ 

+ z 
z 

= 
d 

dtz 
= 
d
2 

dt
2 

> 0< 0 

O 

+x 

+ y 
.r 

v 

k̂ 

ˆ 
r̂ 

+ z 
z 

= 
d 

dt 
< 0 

z 
= 
d
2 

dt
2 < 0 

Figure 6.9(a) Angular acceleration vector Figure 6.9(b) Angular velocity 
vector for motion with dθ / dt > 0 , for motion with dθ / dt < 0 , and 
and d 2θ / dt2 < 0 . d 2θ / dt2 < 0 . 
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Example 6.3 Integration and Circular Motion Kinematics 

A point-like object is constrained to travel in a circle. The z -component of the angular 
acceleration of the object for the time interval [0, t1] is given by the function 

⎧ ⎛ t ⎞ 
⎪b 

⎝⎜
1− 

⎠⎟ 
; 0 ≤ t ≤ t1α z (t) = ⎨ t1 , 

⎪0; t > t1⎩ 

where b is a positive constant with units rad ⋅s−2 . 

a) Determine an expression for the angular velocity of the object at t = t1 . 

b) Through what angle has the object rotated at time t = t1 ? 

Solution: 

a) The angular velocity at time t = t1 is given by 

t′=t1 t′=t1 ⎛ t′ ⎞ ⎛ 2 ⎞ bt1ω z (t1) −ω z (t = 0) = ∫ α z (t′) dt′ = ∫ b 1− 
⎠⎟ 

dt′ = b t1 − 
t1 

t′=0 t′=0 ⎝⎜ t1 ⎝⎜ 2t1 ⎠
⎟ = 

2 

b) In order to find the angle θ(t1) −θ(t = 0) that the object has rotated through at time 
t = t1 , you first need to find ω z (t) by integrating the z-component of the angular 
acceleration 

t′=t t′=t t2 ⎞⎛ t′ ⎞ ⎛
ω z (t) −ω z (t = 0) = ∫ α z (t′) dt′ = ∫ b 1− 

⎠⎟ 
dt′ = b t − 

⎠⎟ 
. 

⎝⎜ ⎝⎜ 2t1t′=0 t′=0 t1 

⎛ 
Because it started from rest, ω (t = 0) = 0 , hence ω (t) = b t − 

t2 ⎞

⎠⎟ 
; 0 ≤ t ≤ t1 . z z ⎝⎜ 2t1 

Then integrate ω z (t) between t = 0 and t = t1 to find that 

t′=t1 t′=t1 t′2 ⎞ 2 3 2⎛ ⎞ bt1θ(t1) −θ(t = 0) = ∫ ω (t′) dt′ = ∫ b t′ − 
⎠⎟ 

dt′ = b 
⎛ t1 − 

t1 . 
⎝⎜ ⎝⎜ 2t′=0 

z 
t′=0 2t1 6t1 ⎠

⎟ = 
3 
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6.5 Non-circular Central Planar Motion 

Let’s now consider central motion in a plane that is non-circular. In Figure 6.10, we show 
the spiral motion of a moving particle. In polar coordinates, the key point is that the time 
derivative dr / dt of the position function r is no longer zero. The second derivative 
d 2r / dt2 also may or may not be zero. In the following calculation we will drop all 
explicit references to the time dependence of the various quantities. The position vector is 
still given by Eq. (6.2.1), which we shall repeat below 

!r = r r̂ . (6.5.9) 

Because dr / dt ≠ 0 , when we differentiate Eq. (6.5.9), we need to use the product rule 

d 
!

! r dr d r̂ v = = r̂ + r . (6.5.10)
dt dt dt 

Substituting Eq. (6.2.4) into Eq. (6.5.10) 

! r dr dθv = 
d! = r̂ + r θ̂ = vr r̂ + vθ θ̂ . (6.5.11)
dt dt dt 

The velocity is no longer tangential but now has a radial component as well 

dr vr = 
dt 

. (6.5.12) 

In order to determine the acceleration, we now differentiate Eq. (6.5.11), again using the 
product rule, which is now a little more involved: 

d 
! ˆ! v d 2r dr d r̂ dr dθ d 2θ dθ d θˆ ˆa = = r̂ + + θ + r θ + r . (6.5.13)
dt dt 2 dt dt dt dt dt 2 dt dt 

Now substitute Eqs. (6.2.4) and (6.2.7) for the time derivatives of the unit vectors in Eq. 
(6.5.13), and after collecting terms yields 

! ⎛ d 2r ⎛ dθ ⎞ 
2 ⎞ ⎛ 

2 
dr dθ d 2θ ⎞ ˆa = r + θ 

⎝⎜ dt 2 − r ⎝⎜ dt ⎠⎟ ⎠⎟ 
ˆ 

⎝⎜ dt dt 
+ r 

dt 2 ⎠⎟ . (6.5.14) 
ˆ= arr̂ + aθθ 

The radial and tangential components of the acceleration are now more complicated than 
then in the case of circular motion due to the non-zero derivatives of dr / dt and d 2r / dt2 . 
The radial component is 
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d 2r ⎛ dθ ⎞ 
2 

ar = . (6.5.15)
dt 2 − r ⎝⎜ dt ⎠⎟ 

and the tangential component is 

= 2 
dr dθ d 2θ . (6.5.16)aθ dt dt 

+ r 
dt 2 

The firs term in the tangential component of the acceleration, 2(dr / dt)(dθ / dt) has a 
special name, the coriolis acceleration, 

= 2 
dr dθ acor . (6.5.17)
dt dt 

Example 6.4 Spiral Motion 

A particle moves outward along a spiral starting from the origin at t = 0 . Its trajectory is 
given by r = bθ , where b is a positive constant with units [m ⋅ rad-1] . θ increases in time 
according to θ = ct2 , where c > 0 is a positive constant (with units [rad ⋅s−2] ). 

a) Determine the acceleration as a function of time. 
b) Determine the time at which the radial acceleration is zero. 
c) What is the angle when the radial acceleration is zero? 
d) Determine the time at which the radial and tangential accelerations have equal 

magnitude. 

Solution: 

a) The position coordinate as a function of time is given by r = bθ = bct2 . The 
acceleration is given by Eq. (6.5.14). In order to calculate the acceleration, we need to 
calculate the four derivatives dr / dt = 2bct , d 2r / dt2 = 2bc , dθ / dt = 2ct , and 
d 2θ / dt2 = 2c . The acceleration is then 

! ˆ ˆa = (2bc − 4bc3t 4 ) r̂ + (8bc2t 2 + 2bc2t 2 )θ = (2bc − 4bc3t 4 ) r̂ +10bc2t 2 θ . 

b) The radial acceleration is zero when 

t1 = ⎛⎜⎝
 
1
 

2c2 

⎞
⎟⎠
 

1/4 

.
 

c) The angle when the radial acceleration is zero is 
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= ct1
2 = 2 / 2 .θ1 

d)	 The radial and tangential accelerations have equal magnitude when after some 
algebra 

(2bc − 4bc3t 4 ) = 10bc2t 2 ⇒ 0 = t 4 + (5 / 2c)t 2 − (1 / 2c2 ) . 

This equation has as only positive solution for t 2 : 

−(5 / 2c) ± ((5 / 2c)2 + 2c2 )1/2 33 − 5t2
2 =	 = .

2	 4c 

Therefore the magnitudes of the two components are equal when 

t2 = 
33 − 5 

4c 
. 
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Chapter 7 Newton’s Laws of Motion 

I have not as yet been able to discover the reason for these properties of 
gravity from phenomena, and I do not feign hypotheses. For whatever is 
not deduced from the phenomena must be called a hypothesis; and 
hypotheses, whether metaphysical or physical, or based on occult 
qualities, or mechanical, have no place in experimental philosophy. In this 
philosophy particular propositions are inferred from the phenomena, and 
afterwards rendered general by induction. 1

Isaac Newton 

7.1 Force and Quantity of Matter 

In our daily experience, we can cause a body to move by either pushing or pulling that 
body. Ordinary language use describes this action as the effect of a person’s strength or 
force. However, bodies placed on inclined planes, or when released at rest and undergo 
free fall, will move without any push or pull. Galileo referred to a force acting on these 
bodies, a description of which he published in Mechanics in 1623. In 1687, Isaac Newton 
published his three laws of motion in the Philosophiae Naturalis Principia Mathematica 
(“Mathematical Principles of Natural Philosophy”), which extended Galileo’s 
observations. The First Law expresses the idea that when no force acts on a body, it will 
remain at rest or maintain uniform motion; when a force is applied to a body, it will 
change its state of motion. 

Many scientists, especially Galileo, recognized the idea that force produces motion 
before Newton but Newton extended the concept of force to any circumstance that 
produces acceleration. When a body is initially at rest, the direction of our push or pull 
corresponds to the direction of motion of the body. If the body is moving, the direction of 
the applied force may change both the direction of motion of the body and how fast it is 
moving. Newton defined the force acting on an object as proportional to the acceleration 
of the object. 

An impressed force is an action exerted upon a body, in order to change 
its state, either of rest, or of uniform motion in a right line.2 

In order to define the magnitude of the force, he introduced a constant of 
proportionality, the inertial mass, which Newton called “quantity of matter”. 

1 Isaac Newton (1726). Philosophiae Naturalis Principia Mathematica, General
Scholium. Third edition, page 943 of I. Bernard Cohen and Anne Whitman's 1999 
translation, University of California Press. 

2 Isaac Newton. Mathematical Principles of Natural Philosophy. Translated by Andrew
Motte (1729). Revised by Florian Cajori. Berkeley: University of California Press, 1934. 
p. 2.
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The quantity of matter is the measure of the same, arising from its density 
and bulk conjointly. 

Thus air of double density, in a double space, is quadruple in quantity; in a 
triple space, sextuple in quantity. The same thing is to be understood of 
snow, and fine dust or powders, that are condensed by compression or 
liquefaction, and of all bodies that are by any causes whatever differently 
condensed. I have no regard in this place to a medium, if any such there is, 
that freely pervades the interstices between the parts of bodies. It is this 
quantity that I mean hereafter everywhere under the name of body or mass. 
And the same is known by the weight of each body, for it is proportional to 
the weight, as I have found by experiment on pendulums, very accurately 
made, which shall be shown hereafter.3 

Suppose we apply a force to a body that is an identical copy of the standard mass, (we 
shall refer to this body as a standard body). The force will induce the standard body to 

 aaccelerate with magnitude that can be measured by an accelerometer (any device that 
 
Fmeasures acceleration). The magnitude of the force acting on the standard body is 

defined to be the product of the standard mass m s with the magnitude of the acceleration 
 a . Force is a vector quantity. The direction of the force on the standard body is defined

to be the direction of the acceleration of the body. Thus 
 F ≡ m s a (7.1.1) 

In order to justify the statement that force is a vector quantity, we need to apply two  
forces F1 and F2 simultaneously to our standard body and show that the resultant force 
 
FT is the vector sum of the two forces when the forces are applied one at a time. 

Figure 7.1 Acceleration add as vectors Figure 7.2 Force adds as vectors. 

 We apply each force separately and measure the accelerations a1 and a2. , noting that 

 F = m a (7.1.2)1 s 1 

3 Ibid. p. 1. 
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  = m a2 . (7.1.3)F2 s 

When we apply the two forces simultaneously, we measure the acceleration a . The force 
by definition is now 

F


T ≡ m s a . (7.1.4) 

We then compare the accelerations. The results of these three measurements, and for that 
matter any similar experiment, confirms that the accelerations add as vectors (Figure 7.1) 

a =
 
a +

a (7.1.5)
2 .1 

Therefore the forces add as vectors as well (Figure 7.2), 

 
F
T =
 

 
F1 +
 
 
F2 .
 (7.1.6)
 

This last statement is not a definition but a consequence of the experimental result 
described by Equation (7.1.5) and our definition of force. 

Example 7.1 Vector Decomposition Solution 

Two horizontal ropes are attached to a post that is stuck in the ground. The ropes pull the   
post producing the vector forces F1 = 70 N î + 20 N ĵ and F2 = −30 N î + 40 N ĵ as 
shown in Figure 7.3. Find the direction and magnitude of the horizontal component of a 
contact force of the ground on the post. 

Figure 7.3 Example 7.1 
Figure 7.4 Vector sum of the horizontal 

forces 
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Solution: Because the ropes are pulling the post horizontally, the contact force must have 
a horizontal component that is equal to the negative of the sum of the two horizontal 
forces exerted by the rope on the post (Figure 7.4). There is an additional vertical 
component of the contact force that balances the gravitational force exerted on the post 
by the earth. We restrict our attention to the horizontal component of the contact force.   
Let F3 denote the sum of the forces due to the ropes. Then we can write the vector F3 as 


F3 = (F1x + F2x ) î + (F1y + F2 y ) ĵ = (70 N + − 30 N) î + (20 N + 40 N) ĵ 

= (40 N) î + (60 N) ĵ 

Therefore the horizontal component of the contact force satisfies the condition that 

    
Fhor = −F3 = −(F1 + F2 ) = (−40 N) î + (−60 N) ĵ . 

 
The magnitude is = (−40 N)2 + (−60 N)2 = 72 N . The horizontal component ofFhor 

the contact force makes an angle 
⎡ 60 N ⎤θ = tan−1 = 56.3° ⎢ ⎥
⎣ 40 N ⎦ 

as shown in the figure above. 

7.1.1 Mass Calibration 

So far, we have only used the standard body to measure force. Instead of performing 
experiments on the standard body, we can calibrate the masses of all other bodies in 
terms of the standard mass by the following experimental procedure. We shall refer to the 
mass measured in this way as the inertial mass and denote it by min . 

We apply a force of magnitude F to the standard body and measure the 
magnitude of the acceleration a s . Then we apply the same force to a second body of 

unknown mass min and measure the magnitude of the acceleration ain . Because the same 
force is applied to both bodies, 

ain = m a s , (1.7)F = min s 

the ratio of the inertial mass to the standard mass is equal to the inverse ratio of the 
magnitudes of the accelerations, 

min a s= . (1.8)
m s ain 

Therefore the second body has inertial mass equal to 
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a 
= m s . (1.9)min s ain 

This method is justified by the fact that we can repeat the experiment using a different 
force and still find that the ratios of the acceleration are the same. For simplicity we shall 
denote the inertial mass by m . 

7.2 Newton’s First Law 

The First Law of Motion, commonly called the “Principle of Inertia,” was first realized 
by Galileo. (Newton did not acknowledge Galileo’s contribution.) Newton was 
particularly concerned with how to phrase the First Law in Latin, but after many rewrites 
Newton choose the following expression for the First Law (in English translation): 

Law 1: Every body continues in its state of rest, or of uniform motion in a 
right line, unless it is compelled to change that state by forces impressed 
upon it. 

Projectiles continue in their motions, so far as they are not retarded by the 
resistance of air, or impelled downwards by the force of gravity. A top, 
whose parts by their cohesion are continually drawn aside from 
rectilinear motions, does not cease its rotation, otherwise than as it is 
retarded by air. The greater bodies of planets and comets, meeting with 
less resistance in freer spaces, preserve their motions both progressive 
and circular for a much longer time.4 

The first law is an experimental statement about the motions of bodies. When a 
body moves with constant velocity, there are either no forces present or the sum of all the 
forces acting on the body is zero. If the body changes its velocity, it has non-zero 
acceleration, and hence the sum of all the forces acting on the body must be non-zero as 
well. If the velocity of a body changes in time, then either the direction or magnitude 
changes, or both can change. 

After a bus or train starts, the acceleration is often so small we can barely perceive 
it. We are often startled because it seems as if the station is moving in the opposite 
direction while we seem to be at rest. Newton’s First Law states that there is no physical 
way to distinguish between whether we are moving or the station is moving, because 
there is nearly zero total force acting on the body. Once we reach a constant velocity, our 
minds dismiss the idea that the ground is moving backwards because we think it is 
impossible, but there is no actual way for us to distinguish whether the train is moving or 
the ground is moving. 

4 Ibid. p. 13. 
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7.3 Momentum, Newton’s Second Law and Third Law 

Newton began his analysis of the cause of motion by introducing the quantity of motion: 

Definition: Quantity of Motion 

The quantity of motion is the measure of the same, arising from the 
velocity and quantity of matter conjointly. 

The motion of the whole is the sum of the motion of all its parts; and 
therefore in a body double in quantity, with equal velocity, the motion 
is double, with twice the velocity, it is quadruple.5 

p 

Our modern term for quantity of motion is momentum and it is a vector quantity 

  p = mv , (7.3.1) 

 
F 

where m is the inertial mass and v is the velocity of the body. Newton’s Second Law
states that 

Law II: The change of motion is proportional to the motive force 
impressed, and is made in the direction of the right line in which that force 
is impressed. 

If any force generates a motion, a double force will generate double the 
motion, a triple force triple the motion, whether that force is impressed 
altogether and at once or gradually and successively. And this motion 
(being always directed the same way with the generating force), if the 
body moved before, is added or subtracted from the former motion, 
according as they directly conspire with or are directly contrary to each 
other; or obliquely joined, when they are oblique, so as to produce a new 
motion compounded from the determination of both.6 

Suppose that a force is applied to a body for a time interval Δt . The impressed force or 
impulse (a vector quantity I ) produces a change in the momentum of the body, 

Δt = Δ 

I
=
 (7.3.2)
.
 

From the commentary to the second law, Newton also considered forces that were 
applied continually to a body instead of impulsively. The instantaneous action of the total 

5 Ibid. p. 1.
6 Ibid. p. 13. 
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force acting on a body at a time t is defined by taking the mathematical limit as the time 
interval Δt becomes smaller and smaller, 

 Δp dp  F = lim ≡ . (7.3.3)
Δt→0 Δt dt 

When the mass remains constant in time, the Second Law can be recast in its more 
familiar form, 

 d vF = m . (7.3.4)
dt 

Because the derivative of velocity is the acceleration, the force is the product of mass and 
acceleration,  F = ma . (7.3.5) 

Because we defined force in terms of change in motion, the Second Law appears to 
be a restatement of this definition, and devoid of predictive power since force is only 
determined by measuring acceleration. What transforms the Second Law from just a 
definition is the additional input that comes from force laws that are based on 
experimental observations on the interactions between bodies. Throughout this book, we 
shall investigate these force laws and learn to use them in order to determine the forces 
and accelerations acting on a body (left-hand-side of Newton’s Second Law). When a 
physical body is constrained to move along a surface, or inside a container (for example 
gas molecules in a container), there are constraint forces that are not determined 
beforehand by any force law but are only determined by their effect on the motion of the 
body. For any given constrained motion, these constraint forces are unknown and must be 
determined by the particular motion of the body that we are studying, for example the 
contact force of the surface on the body, or the force of the wall on the gas particles. 

The right-hand-side of Newton’s Second Law is the product of mass with 
acceleration. Acceleration is a mathematical description of how the velocity of a body 
changes. Knowledge of all the forces acting on the body enables us to predict the 
acceleration. Eq. (7.3.5) is known as the equation of motion. Once we know this equation 
we may be able to determine the velocity and position of that body at all future times by 
integration techniques, or computational techniques. For constrained motion, if we know 
the acceleration of the body, we can also determine the constraint forces acting on the 
body. 

7.4 Newton’s Third Law: Action-Reaction Pairs 

Newton realized that when two bodies interact via a force, then the force on one body is 
equal in magnitude and opposite in direction to the force acting on the other body. 
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Law III: To every action there is always opposed an equal reaction: or, 
the mutual action of two bodies upon each other are always equal, and 
directed to contrary parts. 

Whatever draws or presses another is as much drawn or pressed by that 
other. If you press on a stone with your finger, the finger is also pressed 
by the stone.7 

The Third Law, commonly known as the “action-reaction” law, is the most 
surprising of the three laws. Newton’s great discovery was that when two objects interact, 
they each exert the same magnitude of force on each other but in opposite directions. We 
shall refer to the pair of forces between two interacting bodies as an interaction pair of 
force, or more briefly as an interaction pair. 

Consider two bodies engaged in a mutual interaction. Label the bodies 1 and 2   
respectively. Let be the force on body 2 due to the interaction with body 1, and F1, 2 F2,1 

be the force on body 1 due to the interaction with body 2. These forces are depicted in 
Figure 7.5. 

Figure 7.5 Interaction pair of forces 

These two vector forces are equal in magnitude and opposite in direction, 
  

= − (7.4.1)F1, 2 F2,1 . 

We shall employ these definitions, Newton’s three laws, and force laws to 
describe the motion of bodies, a subject known as classical mechanics or Newtonian 
Mechanics, and hence explain a vast range of phenomena. Newtonian mechanics has 
important limits. It does not satisfactorily explain systems of objects moving at speeds 
comparable to the speed of light ( v > 0.1 c ) where we need the theory of special 
relativity, nor does it adequately explain the motion of electrons in atoms, where we need 
quantum mechanics. We also need general relativity and cosmology to explain the large-
scale structure of the universe. 

7 Ibid p. 13. 
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Chapter 8 Applications of Newton’s Second Law 

Those who are in love with practice without knowledge are like the sailor 
who gets into a ship without rudder or compass and who never can be 
certain whether he is going. Practice must always be founded on 
sound theory…1 

Leonardo da Vinci 

8.1 Force Laws 

There are forces that don't change appreciably from one instant to another, which we 
refer to as constant in time, and forces that don't change appreciably from one point to 
another, which we refer to as constant in space. The gravitational force on an object near 
the surface of the earth is an example of a force that is constant in space. 

There are forces that depend on the configuration of a system. When a mass is 
attached to one end of a spring, the spring force acting on the object increases in strength 
whether the spring is extended or compressed. 

There are forces that spread out in space such that their influence becomes less 
with distance. Common examples are the gravitational and electrical forces. The 
gravitational force between two objects falls off as the inverse square of the distance 
separating the objects provided the objects are of a small dimension compared to the 
distance between them. More complicated arrangements of attracting and repelling 
interactions give rise to forces that fall off with other powers of r : constant, 1/ r , 1 / r 2 , 
1 / r3 , …,. 

A force may remain constant in magnitude but change direction; for example the 
gravitational force acting on a planet undergoing circular motion about a star is directed 
towards the center of the circle. This type of attractive central force is called a centripetal 
force. 

A force law describes the relationship between the force and some measurable 
property of the objects involved. We shall see that some interactions are describable by 
force laws and other interactions cannot be so simply described. 

8.1.1 Hooke’s Law 

In order to stretch or compress a spring from its equilibrium length, a force must be 
exerted on the spring. Consider an object of mass m that is lying on a horizontal surface. 
Attach one end of a spring to the object and fix the other end of the spring to a wall. Let 

denote the equilibrium length of the spring (neither stretched or compressed). Assumel0 

1 Notebooks of Leonardo da Vinci Complete, tr. Jean Paul Richter, 1888, Vol.1. 
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that the contact surface is smooth and hence frictionless in order to consider only the 
effect of the spring force. If the object is pulled to stretch the spring or pushed to 
compress the spring, then by Newton’s Third Law the force of the spring on the object is 
equal and opposite to the force that the object exerts on the spring. We shall refer to the 
force of the spring on the object as the spring force and experimentally determine a 
relationship between that force and the amount of stretch or compress of the spring. 

Choose a coordinate system with the origin located at the point of contact of the spring 
and the object when the spring-object system is in the equilibrium configuration. Choose 
the î unit vector to point in the direction the object moves when the spring is being 
stretched. Choose the coordinate function x to denote the position of the object with 
respect to the origin (Figure 8.1). 

l0 

x = 0 

î

frictionless 

wall 

m equilibrium configuration +
 

surface 
x 

l0 î

m 

x = 0 

x î

stretched: x > 0 

compressed: x < 0 

x = 0 
Figure 8.1 Spring attached to a wall and an object 

Initially stretch the spring until the object is at position x . Then release the object 
and measure the acceleration of the object the instant the object is released. The F = m amagnitude of the spring force acting on the object is . Now repeat the
experiment for a range of stretches (or compressions). Experiments show that for each 
spring, there is a range of maximum values x max > 0 for stretching and minimum values 

< 0 for compressing such that the magnitude of the measured force is proportional to xmin 

the stretched or compressed length and is given by the formula 

m 

! 
F = k x , (8.1.1) 
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where the spring constant k has units N ⋅ m−1 . The free-body force diagram is shown in 
Figure 8.2. 

î 
x 

F = F x ̂i = kx î 

x = 0 

Figure 8.2 Spring force acting on object 

The constant k is equal to the negative of the slope of the graph of the force vs. the 
compression or stretch (Figure 8.3). 

F 
slope = -k 

x 

x max 

xmin 
x 

. 
Figure 8.3 Plot of x -component of the spring force Fx vs. x 

The direction of the acceleration is always towards the equilibrium position whether the 
spring is stretched or compressed. This type of force is called a restoring force. Let Fx 

denote the x -component of the spring force. Then 

Fx = −kx . (8.1.2) 

Now perform similar experiments on other springs. For a range of stretched 
lengths, each spring exhibits the same proportionality between force and stretched length, 
although the spring constant may differ for each spring. 

It would be extremely impractical to experimentally determine whether this 
proportionality holds for all springs, and because a modest sampling of springs has 
confirmed the relation, we shall infer that all ideal springs will produce a restoring force, 
which is linearly proportional to the stretched (or compressed) length. This experimental 
relation regarding force and stretched (or compressed) lengths for a finite set of springs 
has now been inductively generalized into the above mathematical model for ideal springs, 
a force law known as a Hooke’s Law. 

This inductive step, referred to as Newtonian induction, is the critical step that 
makes physics a predictive science. Suppose a spring, attached to an object of mass m , is 
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stretched by an amount Δx . Use the force law to predict the magnitude of the force  
F = k Δxbetween the rubber band and the object, , without having to experimentally 

⎧⎪
⎨
⎪⎩
 

measure the acceleration. Now use Newton’s Second Law to predict the magnitude of the 
acceleration of the object  

F k Δx a = = . (8.1.3)
m m 

Carry out the experiment, and measure the acceleration within some error bounds. 
If the magnitude of the predicted acceleration disagrees with the measured result, then the 
model for the force law needs modification. The ability to adjust, correct or even reject 
models based on new experimental results enables a description of forces between objects 
to cover larger and larger experimental domains. 

Many real springs have been wound such that a force of magnitude F0 must be applied 
before the spring begins to stretch. The value of F0 is referred to as the pre-tension of the 
spring. Under these circumstances, Hooke’s law must be modified to account for this 
pretension, 

F − kx, x > 0 x = −F0 . (8.1.4)
Fx = +F1 − kx, x < 0 

Note the value of the pre-tension F0 and F1 may differ for compressing or stretching a 
spring. 

8.2 Fundamental Laws of Nature 

Force laws are mathematical models of physical processes. They arise from observation 
and experimentation, and they have limited ranges of applicability. Does the linear force 
law for the spring hold for all springs? Each spring will most likely have a different range 
of linear behavior. So the model for stretching springs still lacks a universal character. As 
such, there should be some hesitation to generalize this observation to all springs unless 
some property of the spring, universal to all springs, is responsible for the force law. 

Perhaps springs are made up of very small components, which when pulled apart 
tend to contract back together. This would suggest that there is some type of force that 
contracts spring molecules when they are pulled apart. What holds molecules together? 
Can we find some fundamental property of the interaction between atoms that will suffice 
to explain the macroscopic force law? This search for fundamental forces is a central 
task of physics. 

In the case of springs, this could lead into an investigation of the composition and 
structural properties of the atoms that compose the steel in the spring. We would 
investigate the geometric properties of the lattice of atoms and determine whether there is 
some fundamental property of the atoms that create this lattice. Then we ask how stable is 
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this lattice under deformations. This may lead to an investigation into the electron 
configurations associated with each atom and how they overlap to form bonds between 
atoms. These particles carry charges, which obey Coulomb’s Law, but also the Laws of 
Quantum Mechanics. So in order to arrive at a satisfactory explanation of the elastic 
restoring properties of the spring, we need models that describe the fundamental physics 
that underline Hooke’s Law. 

8.2.1 Universal Law of Gravitation 

At points significantly far away from the surface of Earth, the gravitational force is no 
longer constant with respect to the distance to the center of Earth. Newton’s Universal 
Law of Gravitation describes the gravitational force between two objects with masses, 

and m2 . This force points along the line connecting the objects, is attractive, and its m1 

magnitude is proportional to the inverse square of the distance, r1,2 , between the two 
point-like objects (Figure 8.4a). The force on object 2 due to the gravitational interaction 
between the two objects is given by 

 
G m1 m2= −G ˆ (8.2.1)F1,2 2 r1,2 , r1,2 


 
1,2 2 1 

 is a unit vector directed from object 1 to object 2 (Figure 8.4b). Theˆ = 
 /r1,2 r1,2 

constant of proportionality in SI units is G = 6.67 × 10−11N ⋅ m2 ⋅ kg−2 . 

r
 
r

r1,2
 

r
where −
 is a vector directed from object 1 to object 2, and=
 ,r1,2 = r1,2 

Figure 8.4 (a) Gravitational force between two point-like objects. Figure 8.4 (b) 
Coordinate system for the two-body problem. 

8.2.2 Principle of Equivalence: 

The Principle of Equivalence states that the mass that appears in the Universal Law of 
Gravity is identical to the inertial mass that is determined with respect to the standard 
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kilogram. From this point on, the equivalence of inertial and gravitational mass will be 
assumed and the mass will be denoted by the symbol m . 

8.2.3 Gravitational Force near the Surface of the Earth 

Near the surface of Earth, the gravitational interaction between an object and Earth is 
mutually attractive and has a magnitude of 

 
FG = m g (8.2.2)earth,object 

where g is a positive constant. 

The International Committee on Weights and Measures has adopted as a standard 
value for the acceleration of an object freely falling in a vacuum g = 9.80665 m ⋅ s−2 . The 
actual value of g varies as a function of elevation and latitude. If φ is the latitude and h 
the elevation in meters then the acceleration of gravity in SI units is 

g = (9.80616− 0.025928cos(2φ) + 0.000069cos2(2φ) − 3.086 ×10−4 h) m ⋅s−2 . (8.2.3) 

This is known as Helmert’s equation. The strength of the gravitational force on the 
standard kilogram at 42 latitude is 9.80345 N ⋅ kg−1 , and the acceleration due to gravity 
at sea level is therefore g = 9.80345 m ⋅ s−2 for all objects. At the equator, 
g = 9.78 m ⋅ s−2 and at the poles g = 9.83 m ⋅ s−2 . This difference is primarily due to the 
earth’s rotation, which introduces an apparent (fictitious) repulsive force that affects the 
determination of g as given in Equation (8.2.2) and also flattens the spherical shape of 
Earth (the distance from the center of Earth is larger at the equator than it is at the poles 
by about 26.5 km ). Both the magnitude and the direction of the gravitational force also 
show variations that depend on local features to an extent that's useful in prospecting for 
oil, investigating the water table, navigating submerged submarines, and as well as many 
other practical uses. Such variations in g can be measured with a sensitive spring 
balance. Local variations have been much studied over the past two decades in attempts 
to discover a proposed “fifth force” which would fall off faster than the gravitational 
force that falls off as the inverse square of the distance between the objects. 

8.2.4 Electric Charge and Coulomb’s Law 

Matter has properties other than mass. Matter can also carry one of two types of observed 
electric charge, positive and negative. Like charges repel, and opposite charges attract 
each other. The unit of charge in the SI system of units is called the coulomb [C] . 

The smallest unit of “free” charge known in nature is the charge of an electron or 
proton, which has a magnitude of 

e = 1.602 × 10−19 C . (8.2.4) 
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It has been shown experimentally that charge carried by ordinary objects is quantized in 
integral multiples of the magnitude of this free charge. The electron carries one unit of 
negative charge ( qe = −e ) and the proton carries one unit of positive charge ( qp = +e ). In 
an isolated system, the charge stays constant; in a closed system, an amount of 
unbalanced charge can neither be created nor destroyed. Charge can only be transferred 
from one object to another. 

Consider two point-like objects with charges q1 and q2 , separated by a distance 
in vacuum. By experimental observation, the two objects repel each other if they are r1, 2 

both positively or negatively charged (Figure 8.4a). They attract each other if they are 
oppositely charged (Figure 8.5b). The force exerted on object 2 due to the interaction 
between objects 1 and 2 is given by Coulomb's Law, 

F
 

E q1 q2= k ˆ (8.2.5)1, 2 e 2 r1, 2 r1, 2 

where ˆ = 
 / is a unit vector directed from object 1 to object 2, and in SI units, r1,2 r1,2 r1,2 

2 ⋅ C−2ke = 8.9875 × 109 N ⋅ m , as illustrated in the Figure 8.5a. This law was derived 
empirically by Charles Augustin de Coulomb in the late 18th century. 

Figure 8.5 (a) and 8.5 (b) Coulomb interaction between two charges 

Example 8.1 Coulomb’s Law and the Universal Law of Gravitation 

Show that both Coulomb’s Law and the Universal Law of Gravitation satisfy Newton’s 
Third Law. 

Solution: To see this, interchange 1 and 2 in the Universal Law of Gravitation to find the 
force on object 1 due to the interaction between the objects. The only quantity to change 
sign is the unit vector 
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.many examples in which the constraint forces cannot be determined. 

inclined plane 

(a) (b) ' 

bead 

rotating rod 

ˆ = − ̂  (8.2.6)r2,1 r1, 2 . 
Then 

F
 

G m2 m1 m1 m2 = −F
 

G= −G ˆ = G ˆ (8.2.7)2,1 2 r2,1 2 r1, 2 1, 2 . r2,1 r1, 2 

Coulomb’s Law also satisfies Newton’s Third Law since the only quantity to change sign 
is the unit vector, just as in the case of the Universal Law of Gravitation. 

8.3 Constraint Forces 

Knowledge of all the external and internal forces acting on each of the objects in a system 
and applying Newton’s Second Law to each of the objects determine a set of equations of 
motion. These equations of motion are not necessarily independent due to the fact that the 
motion of the objects may be limited by equations of constraint. In addition there are 
forces of constraint that are determined by their effect on the motion of the objects and 
are not known beforehand or describable by some force law. For example: an object 
sliding down an inclined plane is constrained to move along the surface of the inclined 
plane (Figure 8.6a) and the surface exerts a contact force on the object; an object that 
slides down the surface of a sphere until it falls off experiences a contact force until it 
loses contact with the surface (Figure 8.6b); gas particles in a sealed vessel are 
constrained to remain inside the vessel and therefore the wall must exert force on the gas 
molecules to keep them inside the vessel (8.6c); and a bead constrained to slide outward 
along a rotating rod is acting on by time dependent forces of the rod on the bead (Figure 
8.6d). We shall develop methods to determine these constraint forces although there are 

(c) (d) '
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Figure 8.6 Constrained motions: (a) particle sliding down inclined plane, (b) particles 
sliding down surface of sphere, (c) gas molecules in a sealed vessel, and (d) bead sliding 
on a rotating rod 

8.3.1 Contact Forces 

Pushing, lifting and pulling are contact forces that we experience in the everyday world. 
Rest your hand on a table; the atoms that form the molecules that make up the table and 
your hand are in contact with each other. If you press harder, the atoms are also pressed 
closer together. The electrons in the atoms begin to repel each other and your hand is 
pushed in the opposite direction by the table. 

According to Newton’s Third Law, the force of your hand on the table is equal in 
magnitude and opposite in direction to the force of the table on your hand. Clearly, if you 
push harder the force increases. Try it! If you push your hand straight down on the table, 
the table pushes back in a direction perpendicular (normal) to the surface. Slide your 
hand gently forward along the surface of the table. You barely feel the table pushing 
upward, but you do feel the friction acting as a resistive force to the motion of your hand. 
This force acts tangential to the surface and opposite to the motion of your hand. Push 
downward and forward. Try to estimate the magnitude of the force acting on your hand. 

! ! 
The force of the table acting on your hand, FC ≡ C , is called the contact force. ! ! 

This force has both a normal component to the surface, C⊥ ≡ N , called the normal force, 
! ! 

and a tangential component to the surface, C ≡ f , called the friction force (Figure 8.6)." 

C N 

C f 

C 

Figure 8.6 Normal and tangential components of the contact force 

The contact force, written in terms of its component forces, is therefore 
! 
C
=
 
! 
C
⊥ 

+
 
! 
C
" ≡
 

! 
N
+
 
!
f .
 (8.3.1)
 

 
Any force can be decomposed into component vectors so the normal component, N , and ! 
the tangential component, f , are not independent forces but the vector components of the 
contact force, perpendicular and parallel to the surface of contact. The contact force is a 
distributed force acting over all the points of contact between your hand and the surface.  
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For most applications we shall treat the contact force as acting at single point but 
precaution must be taken when the distributed nature of the contact force plays a key role 
in constraining the motion of a rigid body. 

In Figure 8.7, the forces acting on your hand are shown. These forces include the  ! 
contact force, C , of the table acting on your hand, the force of your forearm, Fforearm , 
acting on your hand (which is drawn at an angle indicating that you are pushing down on ! 
your hand as well as forward), and the gravitational interaction, Fg , between the earth 
and your hand. 

C 

FgFforearm 

Figure 8.7 Forces on hand when moving towards the left 

One point to keep in mind is that the magnitudes of the two components of the contact 
force depend on how hard you push or pull your hand and in what direction, a 
characteristic of constraint forces, in which the components are not specified by a force 
law but dependent on the particular motion of the hand. 

Example 8.2 Normal Component of the Contact Force and Weight 

Hold a block in your hand such that your hand is at rest (Figure 8.8). You can feel the 
“weight” of the block against your palm. But what exactly do we mean by “weight”? 

Fg = mg

.

N

Figure 8.8 Block resting in hand Figure 8.9 Forces on block 
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There are two forces acting on the block as shown in Figure 8.9. One force is the ! !gravitational force between the earth and the block, and is denoted by Fg = mg . The 
other force acting on the block is the contact force between your hand and the block. 
Because our hand is at rest, this contact force on the block points perpendicular to the ! 
surface, and hence has only a normal component, N . Let N denote the magnitude of the 
normal force. Because the object is at rest in your hand, the vertical acceleration is zero. 
Therefore Newton’s Second Law states that 

! 
N
+
 
! 
F
g =
 

!
0
.
 (8.3.2)
 

Choose the positive direction to be upwards and then in terms of vertical components we 
have that 

N − mg = 0 . (8.3.3) 

which can be solved for the magnitude of the normal force 

N = mg . (8.3.4) 

When we talk about the “weight” of the block, we often are referring to the effect 
the block has on a scale or on the feeling we have when we hold the block. These effects 
are actually effects of the normal force. We say that a block “feels lighter” if there is an 
additional force holding the block up. For example, you can rest the block in your hand, 
but use your other hand to apply a force upwards on the block to make it feel lighter in 
your supporting hand. 

The word “weight,” is often used to describe the gravitational force that Earth 
exerts on an object. We shall always refer to this force as the gravitational force instead 
of “weight.” When you jump in the air, you feel “weightless” because there is no normal 
force acting on you, even though Earth is still exerting a gravitational force on you; 
clearly, when you jump, you do not turn gravity off! 

This example may also give rise to a misconception that the normal force is 
always equal to the mass of the object times the magnitude of the gravitational 
acceleration at the surface of the earth. The normal force and the gravitational force are 
two completely different forces. In this particular example, the normal force is equal in 
magnitude to the gravitational force and directed in the opposite direction because the 
object is at rest. The normal force and the gravitational force do not form a Third Law 
interaction pair of forces. In this example, our system is just the block and the normal 
force and gravitational force are external forces acting on the block. 

Let’s redefine our system as the block, your hand, and Earth. Then the normal 
force and gravitational force are now internal forces in the system and we can now 
identify the various interaction pairs of forces. We explicitly introduce our interaction ! 
pair notation to enable us to identify these interaction pairs: for example, let FE

g 
,B denote 

the gravitational force on the block due to the interaction with Earth. The gravitational 
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! 
force on Earth due to the interaction with the block is denoted by FB

g 
,E , and these two 

! ! 
forces form an interaction pair. By Newton’s Third Law, FE

g 
,B = −FB

g 
,E . Note that these 

two forces are acting on different objects, the block and Earth. The contact force on the ! 
block due to the interaction between the hand and the block is then denoted by NH ,B . ! 

NB H, 

!
 !
 
The force of the block on the hand, which we denote by NB,H , satisfies = −NH ,B . 
Because we are including your hand as part of the system, there are two additional forces ! 
acting on the hand. There is the gravitational force on your hand FE

g 
,H , satisfying 

! ! ! 
g g gFE ,H = −FH ,E , where FH ,E is the gravitational force on Earth due to your hand. Finally 

! 
there is the force of your forearm holding your hand up, which we denote FF ,H . Because 
we are not including the forearm in our system, this force is an external force to the 
system. The forces acting on your hand are shown in diagram on your hand is shown in 
Figure 8.10, and the just the interaction pairing of forces acting on Earth is shown in 
Figure 8.11 (we are not representing all other external forces acting on the Earth). 

F
F ,H

N
B,HF

E ,H
g

F
H

g 
,E F

B

g 
,E 

Figure 8.10 Free-body force diagram on Figure 8.11 Gravitational forces on
hand earth due to object and hand 

8.3.2 Kinetic and Static Friction 

When a block is pulled along a horizontal surface or sliding down an inclined plane there 
is a lateral force resisting the motion. If the block is at rest on the inclined plane, there is 
still a lateral force resisting the motion. This resistive force is known as dry friction, and  
there are two distinguishing types when surfaces are in contact with each other. The first 
type is when the two objects are moving relative to each other; the friction in that case is 
called kinetic friction or sliding friction. When the two surfaces are non-moving but 
there is still a lateral force as in the example of the block at rest on an inclined plane, the 
force is called, static friction. 

8-13 



  

          
    

   
        

 
 
     
 

        
         

         
               

           
           
    

     
 

 
 

  
 

     
   

   
     

 
         

        

     
    

       
    

           
 

 
        

      
         

 

 

 

   

  

 

 

 

Leonardo da Vinci was the first to record the results of measurements on kinetic 
friction over a twenty-year period between 1493–4 and about 1515. Based on his  
measurements, the force of kinetic friction, f k , between two surfaces, he identified two 
key properties of kinetic friction. The magnitude of kinetic friction is proportional to the 
normal force between the two surfaces, 

N , (8.3.5)fk = µk 

where µk is called the coefficient of kinetic friction. The second result is rather 
surprising in that the magnitude of the force is independent of the contact surface. 
Consider two blocks of the same mass, but different surface areas. The force necessary to 
move the blocks at a constant speed is the same. The block in Figure 8.12a has twice the 
contact area as the block shown in Figure 8.12b, but when the same external force is 
applied to either block, the blocks move at constant speed. These results of da Vinci were 
rediscovered by Guillaume Amontons and published in 1699. The third property that 
kinetic friction is independent of the speed of moving objects (for ordinary sliding 
speeds) was discovered by Charles Augustin Coulomb. 

FF 

f kf k 

(a) (b) 

Figure 8.12 (a) and (b): kinetic friction is independent of the contact area 

! 
The kinetic friction on surface 2 moving relative to surface 1 is denoted by, k . Thef1,2 

direction of the force is always opposed to the relative direction of motion of surface 2 
relative to the surface 1. When one surface is at rest relative to our choice of reference ! 
frame we will denote the friction force on the moving object by f k . 

The second type of dry friction, static friction occurs when two surfaces are static 
relative to each other. Because the static friction force between two surfaces forms a third ! 
law interaction pair, will use the notation s to denote the static friction force on surface f1,2 

2 due to the interaction between surfaces 1 and 2. Push your hand forward along a 
surface; as you increase your pushing force, the frictional force feels stronger and 
stronger. Try this! Your hand will at first stick until you push hard enough, then your 
hand slides forward. The magnitude of the static frictional force, f s , depends on how 
hard you push. 

If you rest your hand on a table without pushing horizontally, the static friction is 
zero. As you increase your push, the static friction increases until you push hard enough 
that your hand slips and starts to slide along the surface. Thus the magnitude of static 
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friction can vary from zero to some maximum value, ( f ) , when the pushed object s max 

begins to slip, 
0 ≤ f ≤ ( f ) . (8.3.6)s s max 

Is there a mathematical model for the magnitude of the maximum value of static 
friction between two surfaces? Through experimentation, we find that this magnitude is, 
like kinetic friction, proportional to the magnitude of the normal force 

( f ) = µ N . (8.3.7)s max s 

Here the constant of proportionality is µs , the coefficient of static friction. This constant 

is slightly greater than the constant µk associated with kinetic friction, µs > µk . This 
small difference accounts for the slipping and catching of chalk on a blackboard, 
fingernails on glass, or a violin bow on a string. 

The direction of static friction on an object is always opposed to the direction of 
the applied force (as long as the two surfaces are not accelerating). In Figure 8.13a, an !  
external force, F , is applied the left and the static friction, f s , is shown pointing to the ! 
right opposing the external force. In Figure 8.13b, the external force, F , is directed to the ! 
right and the static friction, f s , is now pointing to the left. 

f s f s 
FF 

(a) (b) 

Figure 8.13 (a) and (b): External forces and the direction of static friction. 

Although the force law for the maximum magnitude of static friction resembles 
the force law for sliding friction, there are important differences: 

1. The direction and magnitude of static friction on an object always depends on the 
direction and magnitude of the applied forces acting on the object, where the magnitude 
of kinetic friction for a sliding object is fixed. 

2. The magnitude of static friction has a maximum possible value. If the magnitude of the 
applied force along the direction of the contact surface exceeds the magnitude of the 
maximum value of static friction, then the object will start to slip (and be subject to 
kinetic friction.) We call this the just slipping condition. 
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8.4 Free-body Force Diagram 

8.4.1 System 

When we try to describe forces acting on a collection of objects we must first take care to 
specifically define the collection of objects that we are interested in, which define our 
system. Often the system is a single isolated object but it can consist of multiple objects. 

Because force is a vector, the force acting on the system is a vector sum of the individual 
 
F1 2 

 
F 

forces acting on the system  
F
 + ⋅⋅⋅ (8.4.1)
=
 +
 

A free-body force diagram is a representation of the sum of all the forces that act 
on a single system. We denote the system by a large circular dot, a “point”. (Later on in 
the course we shall see that the “point” represents the center of mass of the system.) We 
represent each force that acts on the system by an arrow (indicating the direction of that 
force). We draw the arrow at the “point” representing the system. For example, the forces 
that regularly appear in free-body diagram are contact forces, tension, gravitation, 
friction, pressure forces, spring forces, electric and magnetic forces, which we shall 
introduce below. Sometimes we will draw the arrow representing the actual point in the 
system where the force is acting. When we do that, we will not represent the system by a 
“point” in the free-body diagram. 

Suppose we choose a Cartesian coordinate system, then we can resolve the force 
into its component vectors  

F = F î + F ĵ+ F k̂ (8.4.2)x y z 

Each one of the component vectors is itself a vector sum of the individual 
component vectors from each contributing force. We can use the free-body force diagram 
to make these vector decompositions of the individual forces. For example, the x -
component of the force is 

Fx = F1,x + F2,x + ⋅⋅⋅ . (8.4.3) 

8.4.5 Modeling 

One of the most central and yet most difficult tasks in analyzing a physical interaction is 
developing a physical model. A physical model for the interaction consists of a 
description of the forces acting on all the objects. The difficulty arises in deciding which 
forces to include. For example in describing almost all planetary motions, the Universal 
Law of Gravitation was the only force law that was needed. There were anomalies, for 
example the small shift in Mercury’s orbit. These anomalies are interesting because they 
may lead to new physics. Einstein corrected Newton’s Law of Gravitation by introducing 
General Relativity and one of the first successful predictions of the new theory was the 
perihelion precession of Mercury’s orbit. On the other hand, the anomalies may simply 
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be due to the complications introduced by forces that are well understood but 
complicated to model. When objects are in motion there is always some type of friction 
present. Air friction is often neglected because the mathematical models for air resistance 
are fairly complicated even though the force of air resistance substantially changes the 
motion. Static or kinetic friction between surfaces is sometimes ignored but not always. 
The mathematical description of the friction between surfaces has a simple expression so 
it can be included without making the description mathematically intractable. A good 
way to start thinking about the problem is to make a simple model, excluding 
complications that are small order effects. Then we can check the predictions of the 
model. Once we are satisfied that we are on the right track, we can include more 
complicated effects. 

8.5 Tension in a Rope 

8.5.1 Definition of Tension in a Rope 

Let’s return to our example of the very light rope (object 2 with m2 ! 0 ) that is attached 
! 

to a block (object 1) at the point B , and pulled by an applied force at point A , FA,2 

(Figure 8.18a). 

B 

1 . 2 
A FA,2 . 

Figure 8.18a Massless rope pulling a block 

Choose a coordinate system with the ĵ -unit vector pointing upward in the normal 
direction to the surface, and the î -unit vector pointing in the positive x -direction, 
(Figure 8.18b). The force diagrams for the system consisting of the rope and block is ! 
shown in Figure 8.19, and for the rope and block separately in Figure 8.20, where F2,1 is 

! 
the force on the block (object 1) due to the rope (object 2), and F1,2 is the force on the 
rope due to the block. 

N ĵ î 
B . .1

2 . A FA,2 .f 
m2g 0 +x 

m1g 

Figure 8.18b Forces acting on system consisting of block and rope 
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The forces on the rope and the block must each sum to zero. Because the rope is not 
accelerating, Newton’s Second Law applied to the rope requires that FA,2 − F1,2 = m2a 
(where we are using magnitudes for all the forces). 

ĵ îN 

.2
A FA,2 ..1 F2,1 F1,2 B . . 

f
 
m2g 0
m1g 

Figure 8.19 Separate force diagrams for rope and block 

Because we are assuming the mass of the rope is negligible therefore 

= 0; (massless rope) (8.5.1)FA,2 − F1,2 

. 
If we consider the case that the rope is very light, then the forces acting at the ends of the 
rope are nearly horizontal. Then if the rope-block system is moving at constant speed or 
at rest, Newton’s Second Law is now 

= 0; (constant speed or at rest) . (8.5.2)FA,2 − F1,2 

Newton’s Second Law applied to the block in the + î -direction requires that F2,1 − f = 0 . 

Newton’s Third Law, applied to the block-rope interaction pair requires that F1,2 = F2,1 . 
Therefore 

FA,2 = F1,2 = F2,1 = f . (8.5.3) 

Thus the applied pulling force is transmitted through the rope to the block since it has the 
same magnitude as the force of the rope on the block. In addition, the applied pulling 
force is also equal to the friction force on the block. 

How do we define “tension” at some point in a rope? Suppose make an imaginary slice of 
the rope at a point P , a distance xP from point B , where the rope is attached to the 
block. The imaginary slice divides the rope into two sections, labeled L (left) and R 
(right), as shown in Figure 8.20. 

AB P 
L R. . . 

imaginary slicexP 

Figure 8.20 Imaginary slice through the rope 
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There is now a Third Law pair of forces acting between the left and right sections of the ! 
rope. Denote the force acting on the left section by FR,L (xP ) , and the force acting on the 

! 
right section by ) . Newton’s Third Law requires that the forces in this interactionFL,R (xP 

pair are equal in magnitude and opposite in direction. 
! ! 
FR,L (xP ) = −FL,R (xP ) (8.5.4) 

! 
The force diagram for the left and right sections are shown in Figure 8.21 where isF1,L 

the force on the left section of the rope due to the block-rope interaction. (We had ! 
previously denoted that force by ). Now denote the force on the right section of the F1,2 ! 
rope side due to the pulling force at the point A by FA,R , (which we had previously 

! 
denoted by ).FA,2 

L R. . . APB . P 

xP 

FR,L 
(xP 
) FL,R 

(xP 
)F1,L FA,R 

Figure 8.21 Force diagram for the left and right sections of rope 

The tension T (xP ) at a point P in rope lying a distance x from one the left end of the 
rope, is the magnitude of the action -reaction pair of forces acting at the point P , 

! ! 
. (8.5.5)T (xP ) = =FR,L (xP ) FL,R (xP ) 

For a rope of negligible mass, under tension, as in the above case, (even if the rope is 
accelerating) the sum of the horizontal forces applied to the left section and the right 
section of the rope are zero, and therefore the tension is uniform and is equal to the 
applied pulling force, 

T (8.5.6)= FA,R . 

Example 8.3 Tension in a Massive Rope 

. A . B 

1 2 

FA,R 

Figure 8.22a Massive rope pulling a block 

8-19 



  

 
         

                  
            

  
    

        

 
          

    
 

  
      

 
 

              
       

   
      

       
 

 
 

  
 

          
               

    
            

 

 
 

    
 

    

 
 

 

 

   

 

 

  

 
  

 
 

 
 

      
 

  

 

    
  

 

 

Consider a block of mass m1 that is lying on a horizontal surface. The coefficient of 
kinetic friction between the block and the surface is µk . A uniform rope of mass m2 and 
length d is attached to the block. The rope is pulled from the side opposite the block 

! 
with an applied force of magnitude = FA,2 . Because the rope is now massive, the FA,2 

pulling force makes an angle φ with respect to the horizontal in order to balance the 
gravitational force on the rope, (Figure 8.22a). Determine the tension in the rope as a 
function of distance x from the block. 

Solution: In the following analysis, we shall assume that the angle φ is very small and 
depict the pulling and tension forces as essentially acting in the horizontal direction even 
though there must be some small vertical component to balance the gravitational forces. 

The key point to realize is that the rope is now massive and we must take in to account 
the inertia of the rope when applying Newton’s Second Law. Consider an imaginary slice 
through the rope at a distance x from the block (Figure 8.22b), dividing the rope into two 
sections. The right section has length d − x and mass = (m2 / d)(d − x) . The left mR 

section has length x and mass mL = (m2 / d)(x) . 

L R. .AB 

imaginary slice 

d xx 

O 
+ x 

Figure 8.22b Imaginary slice through the rope 

The free body force diagrams for the two sections of the rope are shown in Figure 8.22c, 
where T (x) is the tension in the rope at a distance x from the block, and 

F1,L = 
! 
F1,L ≡ 

! 
F1,2 is the magnitude of the force on the left-section of the rope due to the 

rope-block interaction. 

L R. . . AB . 
x 

T (x) 
îĵ 

FA, T (x)F1,L .. 
mR 
gmL 

g 

R 

Figure 8.22c Force diagram for the left and right sections of rope 

Apply Newton’s Second Law to the right section of the rope yielding 
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m
− T (x) = mR = 2 (d − x)aR , (8.5.7)FA,R aR d 

where aR is the x -component of the acceleration of the right section of the rope. Apply 
Newton’s Second Law to the left slice of the rope yielding 

= (m2 / d)x aL , (8.5.8)T (x) − F1,L = mLaL 

where aL is the x -component of the acceleration of the left piece of the rope. 

N 
ĵ îFL,1 1.

fk 
m1g 

Figure 8.23 Force diagram on sliding block 

The force diagram on the block is shown in Figure 8.23. Newton’s Second Law on the 
block in the + î -direction is FL,1 − fk = m1a1 and in the + ĵ -direction is N − m1g = 0 . The 

kinetic friction force acting on the block is fk = µk N = µkm1g . Newton’s Second Law on 

the block in the + î -direction becomes 

− µkm1g = m1a1 , (8.5.9)FL,1 

Newton’s Third Law for the block-rope interaction is given by FL,1 = F1,L . Eq. (8.5.8) 
then becomes 

T (x) − (µkm1g + m1a1) = (m2 / d)xaL . (8.5.10) 

Because the rope and block move together, the accelerations are equal which we denote 
by the symbol a ≡ a1 = aL . Then Eq. (8.5.10) becomes 

T (x) = µkm1g + (m1 + (m2 / d)x)a . (8.5.11) 

This result is not unexpected because the tension is accelerating both the block and the 
left section and is opposed by the frictional force. 

Alternatively, the force diagram on the system consisting of the rope and block is shown 
in Figure 8.24. 
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. AB 

2 
1 

m1g 

N 

fk 
. .. 

m2 g 

FA, R 

Figure 8.24 Force diagram on block-rope system 

Newton’s Second Law becomes 
FA,R − µk m1g = (m2 + m1)a (8.5.12) 

Solve Eq. (8.5.12) for FA,R and substitute into Eq. (8.5.7), and solve for the tension 
yielding Eq. (8.5.11). 

Example 8.4 Tension in a Suspended Rope 

A uniform rope of mass M and length L is suspended from a ceiling (Figure 8.25). The 
magnitude of the acceleration due to gravity is g . (a) Find the tension in the rope at the 
upper end where the rope is fixed to the ceiling. (b) Find the tension in the rope as a 
function of the distance from the ceiling. (c) Find an equation for the rate of change of the 
tension with respect to distance from the ceiling in terms of M , L , and g . 

g 

L 

rope of 
mass M 

ĵ 

+ y 
Figure 8.25 Rope suspended from ceiling Figure 8.26 Coordinate system for 

suspended rope 

Solution: (a) Begin by choosing a coordinate system with the origin at the ceiling and the 
positive y -direction pointing downward (Figure 8.26). In order to find the tension at the 
upper end of the rope, choose as a system the entire rope. The forces acting on the rope 
are the force at y = 0 holding the rope up, T ( y = 0) , and the gravitational force on the 
entire rope. The free-body force diagram is shown in Figure 8.27. 
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T ( y = 0) 

ĵ 
Mg 

Figure 8.27 Force diagram on rope 

Because the acceleration is zero, Newton’s Second Law on the rope is Mg − T ( y = 0) = 0 . 
Therefore the tension at the upper end is T ( y = 0) = Mg . 

(b) Recall that the tension at a point is the magnitude of the action-reaction pair of forces 
acting at that point. Make an imaginary slice in the rope a distance y from the ceiling 
separating the rope into an upper segment 1, and lower segment 2 (Figure 8.28a). Choose 
the upper segment as a system with mass m1 = ( M / L) y . The forces acting on the upper 
segment are the gravitational force, the force T ( y = 0) holding the rope up, and the 
tension T ( y) at the point y , that is pulling the upper segment down. The free-body force 
diagram is shown in Figure 8.28b. 

T ( y = 0) 
(a) (b) 

y y 1 ĵ1 

m1gĵ 
T ( y) 

L y 2 

Figure 8.28 (a) Imaginary slice separates rope into two pieces. (b) Free-body force 
diagram on upper piece of rope 

Apply Newton’s Second Law to the upper segment: m1g + T ( y) − T ( y = 0) = 0 . Therefore 
the tension at a distance y from the ceiling is T ( y) = T ( y = 0) − m1g . Because 

= ( M / L) y is the mass of the segment piece and Mg is the tension at the upper end,m1 

Newton’s Second Law becomes 
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T ( y) = Mg(1− y / L) (8.5.13) 

As a check, we note that when y = L , the tension T ( y = L) = 0 , which is what we expect 
because there is no force acting at the lower end of the rope. 

(c) Differentiate Eq. (8.5.13) with respect to y yielding 

dT = −( M / L)g . (8.5.14)
dy 

The rate that the tension is changing at a constant rate with respect to distance from the 
top of the rope. 

8.5.2 Continuous Systems and Newton’s Second Law as a Differential Equations 

We can determine the tension at a distance y from the ceiling in Example 8.4, by an 
alternative method, a technique that will generalize to many types of “continuous 
systems”. Choose a coordinate system with the origin at the ceiling and the positive y -
direction pointing downward as in Figure 8.25. Consider as the system a small element of 
the rope between the points y and y + Δy . This small element has length Δy , The small 
element has mass Δm = ( M / L)Δy and is shown in Figure 8.29. 

ĵ 

y 
y 
y + y 

y = L 

m 

Figure 8.29 Small mass element of the rope 

The forces acting on the small element are the tension, T ( y) at y directed upward, the 
tension T ( y + Δy) at y + Δy directed downward, and the gravitational force Δmg 
directed downward. The tension T ( y + Δy) is equal to the tension T ( y) plus a small 
difference ΔT , 

T ( y + Δy) = T ( y) + ΔT . (8.5.15) 
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The small difference in general can be positive, zero, or negative. The free body force 
diagram is shown in Figure 8.30. 

mg

T ( y

T (

y + y

y
y

ĵ

+ T

Figure 8.30 Free body force diagram on small mass element 

Now apply Newton’s Second Law to the small element 

Δmg + T ( y) − (T ( y) + ΔT ) = 0 (8.5.16) 

The difference in the tension is then ΔT = −Δmg . We now substitute our result for the 
mass of the element Δm = ( M / L)Δy , and find that that 

ΔT = −( M / L)Δyg . (8.5.17) 

Divide through by Δy , yielding ΔT / Δy = −( M / L)g . Now take the limit in which the 
length of the small element goes to zero, Δy → 0 , 

ΔTlim = −( M / L)g . (8.5.18)
Δy→0 Δy 

Recall that the left hand side of Eq. (8.5.18) is the definition of the derivative of the 
tension with respect to y , and so we arrive at Eq. (8.5.14), 

dT = −( M / L)g .
dy 

We can solve the differential equation, Eq. (8.5.14), by a technique called separation of 
variables. We rewrite the equation as dT = −( M / L)gdy and integrate both sides. Our 
integral will be a definite integral in which we integrate a ‘dummy’ integration variable 
y′ from y′ = 0 to y′ = y and the corresponding T ′ from T ′ = T ( y = 0) to T ′ = T ( y) : 

T ′=T ( y ) 
y′= y

∫ dT ′ = −( M / L)g∫y′=0 
dy′ . (8.5.19) 

T '=T ( y=0) 
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After integration and substitution of the limits, we have that 

T ( y) − T ( y = 0) = −( M / L)gy . (8.5.20) 

Us the fact that tension at the top of the rope is T ( y = 0) = Mg and find that 

T ( y) = Mg(1− y / L) 

in agreement with our earlier result, Eq. (8.5.13). 

8.6 Drag Forces in Fluids 

When a solid object moves through a fluid it will experience a resistive force, called the 
drag force, opposing its motion. The fluid may be a liquid or a gas. This force is a very 
complicated force that depends on both the properties of the object and the properties of 
the fluid. The force depends on the speed, size, and shape of the object. It also depends 
on the density, viscosity and compressibility of the fluid. 

For objects moving in air, the air drag is 
still quite complicated but for rapidly Table 8.1 Drag Coefficients 
moving objects the resistive force is 
roughly proportional to the square of the 
speed v , the cross-sectional area A of 
the object in a plane perpendicular to the 
motion, the density ρ of the air, and 
independent of the viscosity of the air. 
Traditional the magnitude of the air drag 
for rapidly moving objects is written as 

Fdrag = 
2
1 CD Aρv2 . (8.6.1) 

The coefficient CD is called the drag 
coefficient, a dimensionless number that 
is a property of the object. Table 8.1 
lists the drag coefficient for some simple 
shapes, (each of these objects has a 
Reynolds number of order 104 ). 

Sphere

Half-sphere

Cone

Cube

Angled cube

Long cylinder

Short cylinder

Streamlined
body

Streamlined
half-body

Shape Drag coefficient

0.47

0.42

0.50

1.05

0.80

0.82

1.15

0.04

0.09

The above model for air drag does not extend to all fluids. An object dropped in 
oil, molasses, honey, or water will fall at different rates due to the different viscosities of 
the fluid. For very low speeds, the drag force depends linearly on the speed and is also 
proportional to the viscosity η of the fluid. For the special case of a sphere of radius R , 
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the drag force law can be exactly deduced from the principles of fluid mechanics and is 
given by ! !Fdrag = −6πηRv (sphere) . (8.6.2) 

This force law is known as Stokes’ Law. The coefficient of viscosity η has SI units of 
−1 ⋅s[N ⋅m−2 ⋅s] = [Pa ⋅s] = [kg ⋅m −1] ; a cgs unit called the poise is often encountered . 

Some typical coefficients of viscosity are listed in Table 8.2. 

Table 8.2: Coefficients of viscosity 

fluid Temperature, 
0 C 

Coefficient of viscosity η ; [kg ⋅m−1 ⋅s−1] 

Acetone 25 3.06 ×10−4 

Air 15 1.81×10−5 

Benzene 25 6.04 ×10−4 

Blood 37 (3− 4) ×10−3 

Castor oil 25 0.985 
Corn Syrup 25 1.3806 
Ethanol 25 1.074 ×10−3 

Glycerol 20 1.2 
Methanol 25 5.44 ×10−4 

Motor oil (SAE 10W) 20 6.5×10−2 

Olive Oil 25 8.1×10−2 

Water 10 1.308 ×10−3 

Water 20 1.002 ×10−3 

Water 60 0.467 ×10−3 

Water 100 0.28 ×10−3 

This law can be applied to the motion of slow moving objects in a fluid, for example: 
very small water droplets falling in a gravitational field, grains of sand settling in water, 
or the sedimentation rate of molecules in a fluid. In the later case, If we model a molecule 
as a sphere of radius R , the mass of the molecule is proportional to R3 and the drag force 
is proportion to R , therefore different sized molecules will have different rates of 
acceleration. This is the basis for the design of measuring devices that separate 
molecules of different molecular weights. 

In many physical situations the force on an object will be modeled as depending on the 
object’s velocity. We have already seen static and kinetic friction between surfaces 
modeled as being independent of the surfaces’ relative velocity. Common experience 
(swimming, throwing a Frisbee) tells us that the frictional force between an object and a 
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fluid can be a complicated function of velocity. Indeed, these complicated relations are 
an important part of such topics as aircraft design. 

Example 8.5 Drag Force at Low Speeds 

h 
g 

marble: 
mass m and 
radius R 

olive oil 

Figure 8.31 Example 8.5 

A spherical marble of radius R and mass m is released from rest and falls under the 
influence of gravity through a jar of olive oil of viscosity η . The marble is released from 
rest just below the surface of the olive oil, a height h from the bottom of the jar. The 
gravitational acceleration is g (Figure 8.31). Neglect any force due to the buoyancy of 

!v 
the olive oil. (i) Determine the velocity of the marble as a function of time, (ii) what is the 

!v∞maximum possible velocity =
 (t = ∞) (terminal velocity), that the marble can obtain, 
(iii) determine an expression for the viscosity of olive oil η in terms of g , m , R , and 

! v∞ 
= , (iv) determine an expression for the position of the marble from just below the 

surface of the olive oil as a function of time. 

Solution: Choose positive y -direction downwards with the origin at the initial position of 
the marble as shown in Figure 8.32(a). 

v∞ 

y(t) 

ĵ 
h 

+ y 

O 

v(t) 

(a) 

ĵ 

O 

. 
+ y 

mg 

Fdrag 

(b) 

Figure 8.32 (a) Coordinate system for marble; (b) free body force diagram on marble 

There are two forces acting on the marble: the gravitational force, and the drag force 
which is given by Eq. (8.6.2). The free body diagram is shown in the Figure 8.32(b). 
Newton’s Second Law is then 

dv mg − 6πηRv = m , (8.6.3)
dt 
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where v is the y -component of the velocity of the marble. Let γ = 6πηR / m ; the SI 
units γ are [s−1] . Then Eq. (8.6.3) becomes 

dv g −γ v = , (8.6.4)
dt 

Suppose the object has an initial y -component of velocity v(t = 0) = 0 . We shall solve 
Eq. (8.6.3) using the method of separation of variables. The differential equation may be 
rewritten as 

dv = −γ dt . (8.6.5)
(v − g / γ ) 

The integral version of Eq. (8.6.5) is then 

v′=v(t ) t′=tdv′ = −γ dt′∫ ∫v′ − g / γ . (8.6.6)v′=0 t′=0 

Integrating both sides of Eq. (8.6.6) yields 

⎛ v(t) − g / γ ⎞ 
⎠⎟ 
= −γ tln 

⎝⎜ −g / γ . (8.6.7) 

Recall that eln x = x , therefore upon exponentiation of Eq. (8.6.7) yields 

v(t) − g / γ −γ t= e . (8.6.8)
−g / γ 

Thus the y -component of the velocity as a function of time is given by 
g −γ t ) = 

mg −(6πηR/m)t )v(t) = (1− e (1− e (8.6.9).γ 6πηR 

A plot of v(t) vs. t is shown in Figure 8.31 with parameters R = 5.00 ×10−3m , 
−1 ⋅s−1 −1η = 8.10 ×10−2 kg ⋅ m , m = 4.08 ×10−3 kg , and g / γ = 1.87 m ⋅s . 
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v(t)

t

[m s 1]

5

1 2 [s][s]

Figure 8.33 Plot of y -component of the velocity v(t) vs. t for marble falling through 
oil with g / γ = 1.87 m ⋅s−1 . 

−(6πηR/m)tFor large values of t , the term e approaches zero, and the marble reaches a 
terminal velocity 

mg v∞ 
= v(t = ∞) = (8.6.10)

6πηR . 

The coefficient of viscosity can then be determined from the terminal velocity by the 
condition that 

mg η = (8.6.11).6π Rvter 

Let ρ m denote the density of the marble. The mass of the spherical marble is 

m = (4 / 3)ρ mR3 . The terminal velocity is then 

R22ρ m g
v∞ 

= (8.6.12).9η 

The terminal velocity depends on the square of the radius of the marble, indicating that 
larger marbles will reach faster terminal speeds. 

The position of the marble as a function of time is given by the integral expression 

t′=t 

y(t) − y(t = 0) = ∫ v(t′)dt′ (8.6.13), 
t′=0 

which after substitution of Eq. (8.6.9) and integration using the initial condition that 
y(t = 0) = 0 , becomes 

g g −γ t −1y(t) = 
γ 

t + (e ) . (8.6.14)
γ 2 
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Example 8.6 Drag Forces at High Speeds 

!An object of mass m at time t = 0 is moving rapidly with velocity v0 through a fluid of 
density ρ . Let A denote the cross-sectional area of the object in a plane perpendicular 
to the motion. The object experiences a retarding drag force whose magnitude is given by 
Eq. (8.6.1). Determine an expression for the velocity of the object as a function of time. 

Solution: Choose a coordinate system such that the object is moving in the positive x -
!direction, v = vî . Set β = (1/ 2)CD Aρ . Newton’s Second Law can then be written as 

2 dv−β v = . (8.6.15)
dt 

An integral version of Eq. (8.6.15) is then 

v′=v(t ) t′=tdv′ ∫ v′2 = −β ∫ dt′ . (8.6.16) 
t′=0v′=v0 

Integration yields 
⎛ 1 1 ⎞− −

⎠⎟ 
= −βt . (8.6.17)

⎝⎜ v(t) v0 

After some algebraic rearrangement the x -component of the velocity as a function of 
time is given by 

v0 1 v(t) = = v0 , (8.6.18)
1+ v0βt 1+ t / τ 

where τ = 1/ v0β . A plot of v(t) vs. t is shown in Figure 8.34 with initial conditions 

v0 
−1= 20 m ⋅s and β = 0.5 s−1 . 

v(t)

m s 1]

t
[s]

20

5

1 2Figure 8.34 Plot of v(t) vs. t for damping force Fdrag = CD Aρv
2 
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8.7 Worked Examples 

Example 8.7 Staircase 

An object of mass m at time t = 0 has speed v0 . It slides a distance s along a horizontal 
floor and then off the top of a staircase (Figure 8.35). The coefficient of kinetic friction 
between the object and the floor is µk . The object strikes at the far end of the third stair. 
Each stair has a rise of h and a run of d . Neglect air resistance and use g for the 
gravitational constant. (a) What is the distance s that the object slides along the floor? 

Figure 8.35 Object falling down a staircase 

Solution: There are two distinct stages to the object’s motion, the initial horizontal 
motion and then free fall. The given final position of the object, at the far end of the third 
stair, will determine the horizontal component of the velocity at the instant the object left 
the top of the stairs. This in turn can be used to determine the time the object decelerated 
along the floor, and hence the distance traveled on the floor. The given quantities are m , 
v0 , µk , g , h and d . 

For the horizontal motion, choose coordinates with the origin at the initial position of the 
block. Choose the positive î -direction to be horizontal, directed to the left in Figure 8.35, 
and the positive ĵ -direction to be vertical (up). The forces on the object are gravity 
  ˆ N = N ˆ f ˆmg = −mg j , the normal force j and the kinetic frictional force fk = − k i . The 

 components of the vectors in Newton’s Second Law, F = ma , are 

− fk = max (8.6.19)
N − mg = may . 
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The object does not move in the y -direction; ay = 0 and thus from the second expression 
in (8.6.19), N = m g . The magnitude of the frictional force is then f = µ N = µ mg , and k k k 

the first expression in (8.6.19) gives the x -component of acceleration as ax = −µk g . 
Becasue the acceleration is constant the x -component of the velocity is given by 

v ( )t = v + a t , (8.6.20)x 0 x 

where v0 is the x -component of the velocity of the object when it just started sliding. 
The displacement is given by 

x(t) − x0 t + 
1 

a t2. (8.6.21)= v0 x2 

Denote the time the block just leaves the landing by t1 , where x(t1) = s , and the speed 
just when it reaches the landing v (t1) = vx ,1 . The initial speed is v0 and x0 = 0 . Using the x 

initial and final conditions, and the value of the acceleration, Eq. (8.6.21) becomes 

1 2− g t1 . (8.6.22)s = v0 t1 µk2 

Solve Eq. (8.6.20) for the time the block reaches the edge of the landing, 

v − v x ,1 − v0 v0 x ,1 = = . (8.6.23)t1 g g−µk µk 

Substituting Eq. (8.6.23) into Eq. (8.6.22) yields 

2
⎛
 − v ⎞
 ⎛
 − v ⎞
1
v0 x ,1 

gµk 

v0 x ,1 

gµk 

−
 (8.6.24)
s = v0 µk g
2⎜⎝
 ⎟⎠
 ⎜⎝
 ⎟⎠
 

and after some algebra, we can rewrite Eq. (8.6.24) as 

2 − v 2v0 x ,1 s = . (8.6.25)
g2µk 

From the top of the stair to the far end of the third stair, the object is in free fall. Choose 
the positive î -direction to be horizontal, directed to the left in Figure 8.35, and the 
positive ĵ -direction to be vertical (up) and now choose the origin at the top of the stairs, 
where the object first goes into free fall. The components of acceleration are ax = 0 , 
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a = −g , the initial x -component of velocity is v , the initial y -component of velocity y x ,1 

is vy ,0 = 0 , the initial x -position is x0 = 0 and the initial y -position is y0 = 0 . Reset 

t = 0 when the object just leaves the landing. Let t2 denote the instant the object hits the 
stair, where y(t2 ) = −3h and x(t2 ) = 3d . The equations describing the object’s position 
and speed at time t = t2 are 

) = 3d = v (8.6.26)x(t2 x ,1 t2 

1 2y(t2 ) = −3h = − gt2 . (8.6.27)
2 

Solve Eq. (8.6.26) for t2 to yield 

t2 = 
v 
3d . (8.6.28) 

x ,1 

Substitute Eq. (8.6.28) into Eq. (8.6.27) and eliminate the variable t2 , 

1 9d 2 

3h = g 2 . (8.6.29)
2 vx ,1 

Eq. (8.6.29) can now be solved for the square of the horizontal component of the velocity, 

3gd 2 

vx ,1 
2 = . (8.6.30)

2h 

Now substitute Eq. (8.6.30) into Eq. (8.6.25) to determine the distance the object traveled 
on the landing, 

v0
2 − (3gd 2 / 2h)

s = . (8.6.31)
2µk g 

Example 8.8 Cart Moving on a Track 

C 

B
 

Figure 8.36 A falling block will accelerate a cart on a track via the pulling force of the 
string. The force sensor measures the tension in the string. 
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Consider a cart that is free to slide along a horizontal track (Figure 8.36). A force is 
applied to the cart via a string that is attached to a force sensor mounted on the cart, 
wrapped around a pulley and attached to a block on the other end. When the block is 
released the cart will begin to accelerate. The force sensor and cart together have a mass 

, and the suspended block has mass mB . Neglect the small mass of the string and mC 

pulley, and assume the string is inextensible. The coefficient of kinetic friction between 
the cart and the track is µk . Determine (i) the acceleration of the cart, and (ii) the tension 
in the string. 

Solution: In general, we would like to draw free-body diagrams on all the individual 
objects (cart, sensor, pulley, rope, and block) but we can also choose a system consisting 
of two (or more) objects knowing that the forces of interaction between any two objects 
will cancel in pairs by Newton’s Third Law. In this example, we shall choose the 
sensor/cart as one free-body, and the block as the other free-body. The free-body force 
diagram for the sensor/cart is shown in Figure 8.37. 

C 
.fk 

N 

mC 
g 

TR,C 

î 
ĵ 

Figure 8.37 Force diagram on sensor/cart with a vector decomposition of the contact 
force into horizontal and vertical components 

!There are three forces acting on the sensor/cart: the gravitational force mC g , the pulling 
! 

force TR,C of the rope on the force sensor, and the contact force between the track and the 
cart. In Figure 8.34, we decompose the contact force into its two components, the kinetic ! ! 
frictional force fk = − fk î and the normal force, N = N ĵ . 

The cart is only accelerating in the horizontal direction with a = a î , so the C C,x 

component of the force in the vertical direction must be zero, aC,y = 0 . We can now apply 
Newton’s Second Law in the horizontal and vertical directions and find that 

î : T − f = m a (8.6.32)R,C k C C,x 

ĵ : N − mC g = 0 . (8.6.33) 

From Eq. (8.6.33), we conclude that the normal component is 

N g . (8.6.34)= mC 
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We use Equation (8.6.34) for the normal force to find that the magnitude of the kinetic 
frictional force is 

N = µk g . (8.6.35)fk = µk mC 

Then Equation (8.6.32) becomes 
g = mC . (8.6.36)TR,C − µk mC aC,x 

The force diagram for the block is shown in Figure 8.38. The two forces acting on! !the block are the pulling force TR,B of the string and the gravitational force mBg . We now 
apply Newton’s Second Law to the block and find that 

ĵB : mBg − TR,B = mBaB,y . (8.6.37) 

B. 
TR,B 

mBg 

ĵB 

Figure 8.38 Forces acting on the block 

In Equation (8.6.37), the symbol aB, y represents the component of the acceleration with 

sign determined by our choice of downward direction for the unit vector ĵB . Note that we 
made a different choice of direction for the unit vector in the vertical direction in the free-
body diagram for the block shown in Figure 8.37. Each free-body diagram has an 
independent set of unit vectors that define a sign convention for vector decomposition of 
the forces acting on the free-body and the acceleration of the free-body. In our example, 
with the unit vector pointing downwards in Figure 8.38, if we solve for the component of 
the acceleration and it is positive, then we know that the direction of the acceleration is 
downwards. 

There is a second subtle way that signs are introduced with respect to the forces 
acting on a free-body. In our example, the force between the string and the block acting 
on the block points upwards, so in the vector decomposition of the forces acting on the 
block that appears on the left-hand side of Equation (8.6.37), this force has a minus sign ! 
and the quantity TR,B = −TR,B ̂jB where TR,B is assumed positive. 

Our assumption that the mass of the rope and the mass of the pulley are negligible 
enables us to assert that the tension in the rope is uniform and equal in magnitude to the 
forces at each end of the rope, 
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TR,B = TR,C ≡ T . (8.6.38) 

We also assumed that the string is inextensible (does not stretch). This implies that the 
rope, block, and sensor/cart all have the same magnitude of acceleration, 

≡ a . (8.6.39)aC,x = aB, y 

Using Equations (8.6.38) and (8.6.39), we can now rewrite the equation of motion for the 
sensor/cart, Equation (8.6.36), as 

g = mCa , (8.6.40)T − µk mC 

and the equation of motion (8.6.37) for the block as 

mB g − T = mBa . (8.6.41) 

We have only two unknowns T and a , so we can now solve the two equations (8.6.40) 
and (8.6.41) simultaneously for the acceleration of the sensor/cart and the tension in the 
rope. We first solve Equation (8.6.40) for the tension 

T g + mCa (8.6.42)= µk mC 

and then substitute Equation (8.6.42) into Equation (8.6.41) and find that 

g + mCa) = mBa . (8.6.43)mB g − (µk mC 

We can now solve Equation (8.6.43) for the acceleration, 

g − µk gmB mCa = . (8.6.44)
mC + mB 

Substitution of Equation (8.6.44) into Equation (8.6.42) gives the tension in the string, 

T = µ m g + m a k C C 

mB g − µk gmC (8.6.45)= µk mC g + mC mC + mB 

mCmB+ 1) g.= (µk mC + mB 

In this example, we applied Newton’s Second Law to two objects, one a 
composite object consisting of the sensor and the cart, and the other the block. We 
analyzed the forces acting on each object and also any constraints imposed on the 
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acceleration of each object. We used the force laws for kinetic friction and gravitation on 
each free-body system. The three equations of motion enable us to determine the forces 
that depend on the parameters in the example: the tension in the rope, the acceleration of 
the objects, and normal force between the cart and the table. 

Example 8.9 Pulleys and Ropes Constraint Conditions 

Consider the arrangement of pulleys and blocks shown in Figure 8.39. The pulleys are 
assumed massless and frictionless and the connecting strings are massless and 
inextensible. Denote the respective masses of the blocks as m1 , m2 and m3 . The upper 
pulley in the figure is free to rotate but its center of mass does not move. Both pulleys 
have the same radius R . (a) How are the accelerations of the objects related? (b) Draw 
force diagrams on each moving object. (c) Solve for the accelerations of the objects and 
the tensions in the ropes. 

2 
3 

P1 

Figure 8.39 Constrained pulley system 

Solution: (a) Choose an origin at the center of the upper pulley. Introduce coordinate 
functions for the three moving blocks, y1 , y2 and y3 . Introduce a coordinate function 
yP for the moving pulley (the pulley on the lower right in Figure 8.40). Choose 
downward for positive direction; the coordinate system is shown in the figure below then. 

string A 

y1 yP y3 y2 

1 

2 
3 

P. ĵ 

string B 

Figure 8.40 Coordinated system for pulley system 

The length of string A is given by 
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l = y + y + π R (8.6.46)A 1 P 

where π R is the arc length of the rope that is in contact with the pulley. This length is 
constant, and so the second derivative with respect to time is zero, 

2 2 2d l d y d y A 1 P0 = 2 = 2 + = ay ,1 + ay P . (8.6.47)
dt dt dt 2 , 

Thus block 1 and the moving pulley’s components of acceleration are equal in magnitude 
but opposite in sign, 

ay P = −ay ,1 . (8.6.48), 

The length of string B is given by 

lB = ( y3 − yP ) + ( y2 − yP ) + π R = y3 + y2 − 2yP + π R (8.6.49) 

where π R is the arc length of the rope that is in contact with the pulley. This length is 
also constant so the second derivative with respect to time is zero, 

2 2 2 2d l d y d y d y B 2 3 P0 = = + − 2 = ay ,2 + a − 2ay P . (8.6.50)2 2 2 2 y ,3 ,dt dt dt dt 

We can substitute Equation (8.6.48) for the pulley acceleration into Equation (8.6.50) 
yielding the constraint relation between the components of the acceleration of the three 
blocks, 

0 = ay ,2 + ay ,3 + 2ay ,1 . (8.6.51) 

b) Free-body Force diagrams: the forces acting on block 1 are: the gravitational force 
! ! 

m1g and the pulling force TA,1 of string A acting on the block 1. Denote the magnitude 

of this force by TA . Because the string is assumed to be massless and the pulley is 
assumed to be massless and frictionless, the tension TA in the string is uniform and equal 
in magnitude to the pulling force of the string on the block. The free-body diagram on 
block 1 is shown in Figure 8.41(a). 

.1 . .2 3 P . 
(a) (b) (c) (d) 

ĵ 
TA,1 

m1g 

TB,2 

m2g 

TB,3 

m3g TB,P TB,P 

TA,P 

Figure 8.41 Free-body force diagram on (a) block 1; (b) block 2; (c) block 3; (d) pulley 
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Newton’s Second Law applied to block 1 is then 

ĵ : m1g − TA = m1 ay ,1 . (8.6.52) 

!The forces on the block 2 are the gravitational force m2g and string B holding the block, 
! 
TB,2 , with magnitude TB . The free-body diagram for the forces acting on block 2 is 
shown in Figure 8.41(b). Newton’s second Law applied to block 2 is 

ĵ : m2 g − TB = m2 ay ,2 . (8.6.53) 

!The forces on the block 3 are the gravitational force m3g and string holding the block, 
! 
TB,3 , with magnitude equal to TB because pulley P has been assumed to be both 
frictionless and massless. The free-body diagram for the forces acting on block 3 is 
shown in Figure 8.41(c). Newton’s second Law applied to block 3 is 

ĵ : m3g − TB = m3 ay ,3 . (8.6.54) 

  
The forces on the moving pulley P are the gravitational force mP g = 0 (the pulley is 

! 
assumed massless); string B pulls down on the pulley on each side with a force, TB,P , ! 
which has magnitude TB . String A holds the pulley up with a force TA,P with the 

magnitude TA equal to the tension in string A . The free-body diagram for the forces 
acting on the moving pulley is shown in Figure 8.41(d). Newton’s second Law applied to 
the pulley is 

ĵ : 2TB −TA = mP ay P = 0 . (8.6.55), 

Because the pulley is assumed to be massless, we can use this last equation to determine 
the condition that the tension in the two strings must satisfy, 

2TB = TA (8.6.56) 

We are now in position to determine the accelerations of the blocks and the tension in the 
two strings. We record the relevant equations as a summary. 

0 = ay ,2 + ay ,3 + 2ay ,1 (8.6.57) 
m g −T = m a (8.6.58)1 A 1 y ,1 

m g −T = m a (8.6.59)2 B 2 y ,2 

m g −T = m a (8.6.60)3 B 3 y ,3 

2TB = TA . (8.6.61) 
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There are five equations with five unknowns, so we can solve this system. We shall first 
use Equation (8.6.61) to eliminate the tension TA in Equation (8.6.58), yielding 

m g − T = m a . (8.6.62)1 2 B 1 y ,1 

We now solve Equations (8.6.59), (8.6.60) and (8.6.62) for the accelerations, 

TBay ,2 = g − (8.6.63)
m2 
TBay ,3 = g − (8.6.64)
m3 

2TBay ,1 = g − . (8.6.65)
m1 

We now substitute these results for the accelerations into the constraint equation, 
Equation (8.6.57), 

T T 4T ⎛ 1 1 4 ⎞B B B0 = g − + g − + 2g − = 4g −TB ⎜ + + ⎟ . (8.6.66)
m m m m m m2 3 1 ⎝ 2 3 1 ⎠ 

We can now solve this last equation for the tension in string B , 

4g 4g m m m 3TB = = 1 2 . (8.6.67)
⎛ 1 1 4 ⎞ m m + m m + 4m m 1 3 1 2 2 3+ +⎜ ⎟ m m m⎝ 2 3 1 ⎠ 

From Equation (8.6.61), the tension in string A is 

8g m m m1 2 3TA = 2TB = . (8.6.68)
m m + m m + 4m m 1 3 1 2 2 3 

We find the acceleration of block 1 from Equation (8.6.65), using Equation (8.6.67) for 
the tension in string B, 

2T 8g m m m m + m m − 4m m B 2 3 1 3 1 2 2 3ay ,1 = g − = g − = g . (8.6.69)
m m m + m m + 4m m m m + m m + 4m m 1 1 3 1 2 2 3 1 3 1 2 2 3 

We find the acceleration of block 2 from Equation (8.6.63), using Equation (8.6.67) for 
the tension in string B, 
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T 4g m m −3m m + m m + 4m m B 1 3 1 3 1 2 2 3ay ,2 = g − = g − = g . (8.6.70)
m m m 1 + 4m m2 m m 1 3 + m m2 + 4m m33 + m m 2 1 2 3 1 2 

Similarly, we find the acceleration of block 3 from Equation (8.6.64), using Equation 
(8.6.67) for the tension in string B, 

T 4 g m m m m − 3m m + 4m m 1 3 1 2 2 3B 1 2ay ,3 = g − = g − = g . (8.6.71)
m m m + m m + 4m m m m + m m + 4m m 3 1 3 1 2 2 3 1 3 1 2 2 3 

As a check on our algebra we note that 

2a + a + a = 1, y 2, y 3, y 

m m + m m − 4m m −3m m + m m + 4m m m m − 3m m + 4m m 1 3 1 2 2 3 1 3 1 2 2 3 1 3 1 2 2 32g + g + g
m m + m m + 4m m m m + m m + 4m m m m + m m + 4m m 1 3 1 2 2 3 1 3 1 2 2 3 1 3 1 2 2 3 

= 0. 

Example 8.10 Accelerating Wedge 

wedge block of mass m 

A 

Figure 8.42 Block on accelerating wedge 
! 

A 45o wedge is pushed along a table with constant acceleration A according to an 
observer at rest with respect to the table. A block of mass m slides without friction down 
the wedge (Figure 8.42). Find its acceleration with respect to an observer at rest with 
respect to the table. Write down a plan for finding the magnitude of the acceleration of 
the block. Make sure you clearly state which concepts you plan to use to calculate any 
relevant physical quantities. Also clearly state any assumptions you make. Be sure you 
include any free-body force diagrams or sketches that you plan to use. 

Solution: Choose a coordinate system for the block and wedge as shown in Figure 8.43.  
Then A = A î where A is the x-component of the acceleration of the wedge.x ,w x ,w 
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wedge block of mass m 

xb 
ĵ 

î 

Ax w yb 

l
 

Figure 8.43 Coordinate system for block on accelerating wedge 

We shall apply Newton’s Second Law to the block sliding down the wedge. Because the 
wedge is accelerating, there is a constraint relation between the x - and y - components 
of the acceleration of the block. In order to find that constraint we choose a coordinate 
system for the wedge and block sliding down the wedge shown in the figure below. We 
shall find the constraint relationship between the components of the accelerations of the 
block and wedge by a geometric argument. From the figure above, we see that 

ybtanφ = . (8.6.72)
l − (xb − xw ) 

Therefore 
− x )) tanφ . (8.6.73)yb = (l − (xb w 

If we differentiate Eq. (8.6.73) twice with respect to time noting that 

2d l = 0 (8.6.74)
dt 2 

we have that 
d 2 ⎛ d 2 d 2y x x ⎞ b b w= −⎜ − ⎟ tanφ . (8.6.75)
dt2 ⎝ dt2 dt2 ⎠ 

Therefore 
− A ) tanφ (8.6.76)ab, y = −(ab,x x ,w 

where 
d 2 x

Ax ,w = 
dt2 

w . (8.6.77) 

We now draw a free-body force diagram for the block (Figure 8.44). Newton’s Second 
Law in the î - direction becomes 

N sinφ = mab,x . (8.6.78) 
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and the ĵ -direction becomes 
N cosφ − mg = mab,y (8.6.79) 

N ĵ 
î. 

mg 

Figure 8.44 Free-body force diagram on block 

We can solve for the normal force from Eq. (8.6.78): 

mab,xN = (8.6.80)
sinφ 

We now substitute Eq. (8.6.76) and Eq. (8.6.80) into Eq. (8.6.79) yielding 

mab,x cosφ − mg = m(−(a − A ) tanφ) . (8.6.81)b,x w,xsinφ 

We now clean this up yielding 

mab,x (cotan φ + tanφ) = m(g + Aw,x tanφ) (8.6.82) 

Thus the x-component of the acceleration is then 

g + A tanφ 
ab,x = w,x (8.6.83)

cotan φ + tanφ 

From Eq. (8.6.76), the y -component of the acceleration is then 

⎛ g + Aw,x tanφ ⎞ 
− A ) tanφ = − − A ⎟ tanφ . (8.6.84)ab, y = −(ab,x w,x ⎜ w,x⎝ cotan φ + tanφ ⎠ 

This simplifies to 
Aw,x − g tanφ 

ab, y = (8.6.85)
cotan φ + tanφ 
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  When φ = 45 , cotan 45 = tan 45 = 1, and so Eq. (8.6.83) becomes 

g + A 
= w,x (8.6.86)ab,x 2 

and Eq. (8.6.85) becomes 
A − g

= . (8.6.87)ab, y 2 

The magnitude of the acceleration is then 

⎛ 

⎝⎜

2 2
⎞
 ⎛
 ⎞
g + Aw,x Aw,x − g

a = ab,x 
22 + ab,y (8.6.88)
+
=
 ⎟⎠
 ⎜⎝
 ⎟⎠
2
 2
 

⎛ 

⎝
⎜

⎠
⎟

2 + A2g w,x 
⎞
 

a = .

2
 

Example 8.11: Capstan 

A device called a capstan is used aboard ships in order to control a rope that is under 
great tension. The rope is wrapped around a fixed drum of radius R , usually for several 
turns (Figure 8.45 shows about three fourths turn as seen from overhead). The load on the 
rope pulls it with a force TA , and the sailor holds the other end of the rope with a much 
smaller force TB . The coefficient of static friction between the rope and the drum is µs . 

The sailor is holding the rope so that it is just about to slip. Show that TB = TAe− µsθBA , 
where θBA is the angle subtended by the rope on the drum. 

Figure 8.45 Capstan 

Figure 8.46 Small slice of rope 
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Solution: We begin by considering a small slice of rope of arc length R Δθ , shown in the 
Figure 8.46. We choose unit vectors for the force diagram on this section of the rope and 
indicate them on Figure 8.47. The right edge of the slice is at angle θ and the left edge of 
the slice is at θ + Δθ . The angle edge end of the slice makes with the horizontal is Δθ / 2 . 
There are four forces acting on this section of the rope. The forces are the normal force 
between the capstan and the rope pointing outward, a static frictional force and the 
tensions at either end of the slice. The rope is held at the just slipping point, so if the load 
exerts a greater force the rope will slip to the right. Therefore the direction of the static 
frictional force between the capstan and the rope, acting on the rope, points to the left. 
The tension on the right side of the slice is denoted by T (θ) ≡ T , while the tension on the 
left side of the slice is denoted by T (θ + Δθ) ≡ T + ΔT . Does the tension in this slice 
from the right side to the left, increase, remain the same, or decrease? The tension 
decreases because the load on the left side is less than the load on the right side. Note that 
ΔT < 0 . 

Figure 8.47 Free-body force diagram on small slice of rope 

The vector decomposition of the forces is given by 

î : T cos(Δθ / 2) − fs − (T + ΔT )cos(Δθ / 2) (8.6.89) 

ĵ : −T sin(Δθ / 2) + N − (T + ΔT )sin(Δθ / 2) . (8.6.90) 

For small angles Δθ , cos(Δθ / 2) ≅ 1 and sin(Δθ / 2) ≅ Δθ / 2 . Using the small angle 
approximations, the vector decomposition of the forces in the x -direction (the + î -
direction) becomes 

T cos(Δθ / 2) − f − (T + ΔT )cos(Δθ / 2)  T − f − (T + ΔT )s s (8.6.91) 
= − f − ΔT . s 

By the static equilibrium condition the sum of the x -components of the forces is zero, 

− f s − ΔT = 0 . (8.6.92) 
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The vector decomposition of the forces in the y -direction (the + ĵ -direction) is 
approximately 

−T sin(Δθ / 2) + N − (T + ΔT )sin(Δθ / 2)  −T Δθ / 2 + N − (T + ΔT )Δθ / 2 
(8.6.93) 

= −T Δθ + N − ΔT Δθ / 2 . 

In the last equation above we can ignore the terms proportional to ΔT Δθ because these 
are the product of two small quantities and hence are much smaller than the terms 
proportional to either ΔT or Δθ . The vector decomposition in the y -direction becomes 

−T Δθ + N . (8.6.94) 

Static equilibrium implies that this sum of the y -components of the forces is zero, 

−T Δθ + N = 0 . (8.6.95) 

We can solve this equation for the magnitude of the normal force 

N = T Δθ . (8.6.96) 

The just slipping condition is that the magnitude of the static friction attains its maximum 
value 

f = ( f ) = µ N . (8.6.97)s s max s 

We can now combine the Equations (8.6.92) and (8.6.97) to yield 

ΔT = −µsN . (8.6.98) 

Now substitute the magnitude of the normal force, Equation (8.6.96), into Equation 
(8.6.98), yielding 

−µsTΔθ −ΔT = 0 . (8.6.99) 

Finally, solve this equation for the ratio of the change in tension to the change in angle, 

ΔT = −µ T . (8.6.100)
Δθ s 

The derivative of tension with respect to the angle θ is defined to be the limit 

dT ΔT≡ lim , (8.6.101)
dθ Δθ→0 Δθ 

and Equation (8.6.100) becomes 
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dT = −µ T . (8.6.102)
dθ s 

This is an example of a first order linear differential equation that shows that the rate of 
change of tension with respect to the angle θ is proportional to the negative of the 
tension at that angle θ . This equation can be solved by integration using the technique of 
separation of variables. We first rewrite Equation (8.6.102) as 

dT = −µs dθ . (8.6.103)
T 

Integrate both sides, noting that when θ = 0 , the tension is equal to force of the load TA , 
and when angle θ = θ , B the sailor applies to the rope,A B the tension is equal to the force T 

T =TB θ =θBAdT 
= − µ dθ . (8.6.104)∫ ∫ sTT =TA θ =0 

The result of the integration is 
⎛ TB 

⎞ 
ln = −µ (8.6.105)
⎝⎜ T s θBA . 

A ⎠
⎟ 

Note that the exponential of the natural logarithm 

⎛ ⎛ ⎞⎞TB TBexp ln ⎜ ⎟ = , (8.6.106)⎜⎜ ⎟⎟T T⎝ ⎝ A ⎠⎠ A 

so exponentiating both sides of Equation (8.6.105) yields 

− µTB = e s θBA ; (8.6.107)
TA 

the tension decreases exponentially, 

TB = TA e
− µsθBA , (8.6.108) 

Because the tension decreases exponentially, the sailor need only apply a small force to 
prevent the rope from slipping. 

Example 8.12 Free Fall with Air Drag 

Consider an object of mass m that is in free fall but experiencing air resistance. The 
magnitude of the drag force is given by Eq. (8.6.1), where ρ is the density of air, A is 
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the cross-sectional area of the object in a plane perpendicular to the motion, and CD is 
the drag coefficient. Assume that the object is released from rest and very quickly attains 
speeds in which Eq. (8.6.1) applies. Determine (i) the terminal velocity, and (ii) the 
velocity of the object as a function of time. 

Solution: Choose positive y -direction downwards with the origin at the initial position 
of the object as shown in Figure 8.48(a). 

y(t) 

ĵ 
h 

+ y 

O 

v(t) 

(a) 

ĵ 

O 

. 
+ y 

mg 

Fdrag 

(b) 

Figure 8.48 (a) Coordinate system for marble; (b) free body force diagram on marble 

There are two forces acting on the object: the gravitational force, and the drag force 
which is given by Eq. (8.6.1). The free body diagram is shown in the Figure 8.48(b). 
Newton’s Second Law is then 

2 dv mg − (1/ 2)CD Aρv = m , (8.6.109)
dt 

Set β = (1/ 2)CD Aρ . Newton’s Second Law can then be written as 

2 dv mg − β v = m . (8.6.110)
dt 

Initially when the object is just released with v = 0 , the air drag is zero and the 
acceleration dv / dt is maximum. As the object increases its velocity, the air drag 
becomes larger and dv / dt decreases until the object reaches terminal velocity and 
dv / dt = 0 . Set dv / dt = 0 in Eq. (8.6.15) and solve for the terminal velocity yielding. 

v∞ 
= 

mg 
β 

= 
2mg 

CD Aρ 
. (8.6.111)
 

Values for the magnitude of the terminal velocity is shown in Table 8.3 for a variety of 
objects with the same drag coefficient CD = 0.5 . 
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Table 8.3 Terminal Velocities for Different Sized Objects with CD = 0.5 

Object Mass m (kg) Area A (m2 ) Terminal Velocity v∞ (m ⋅s−1 ) 
Rain drop 4 ×10−6 3×10−6 6.5 
Hailstone 4 ×10−3 3×10−4 20 
Osprey 20 2.5×10−1 50 
Human Being 7.5 ×101 6 ×10−1 60 

In order to integrate Eq. (8.6.15), we shall apply the technique of separation of variables 
and integration by partial fractions. First rewrite Eq. (8.6.15) as 

−β dv dv ⎛ 1 1 ⎞
dt = = = − + 

⎠⎟ 
dv . (8.6.112)

m ⎛ 2 − 
mg ⎞ (v2 − v∞ 

2 ) ⎝⎜ 2v∞ 
(v + v∞ 

) 2v∞ 
(v − v∞ 

)v
⎝⎜ β ⎠⎟ 

An integral expression of Eq. (8.6.112) is then 

v′=v(t ) v′=v(t ) t′=tdv′ dv′ β− + = − dt′ . (8.6.113)∫ ∫ ∫ 
v′=0 2v∞ 

(v′ + v∞ 
) v′=0 2v∞ 

(v′ − v∞ 
) m t′=0 

Integration yields 
v′=v(t ) v′=v(t ) t′=tdv′ dv′ β− + = − dt′∫ ∫ ∫2v∞ 

(v′ + v∞ 
) 2v∞ 

(v′ − v∞ 
) m v′=0 v′=0 t′=0 . (8.6.114)

1 ⎛ ⎛ v(t) + v∞
⎞ ⎛ v∞ − v(t)⎞ ⎞ β 

⎜ − ln 
⎠⎟ 
+ ln t

2v∞ ⎝ ⎝⎜ v∞ ⎝⎜ v∞ ⎠⎟ ⎟⎠ 
= − 

m 

After some algebraic manipulations, Eq. (8.6.114) can be rewritten as 

⎛ v∞ − v(t)⎞ 2v∞βln 
⎠⎟ 
= − t (8.6.115)

⎝⎜ v(t) + v∞ 
m 

Exponentiate Eq. (8.6.115) yields 
⎛ v∞ − v(t)⎞ − 

2v∞β 
t 
. (8.6.116)

⎝⎜ v(t) + v∞ ⎠
⎟ = e m 

After some algebraic rearrangement the y -component of the velocity as a function of 
time is given by 
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2v∞β⎛ − t ⎞ 
1− e ⎛ v∞β ⎞ 

v(t) = v∞
⎜ 

m 
⎟ = v∞ 

tan h t 
⎠⎟ 

. (8.6.117)2v⎜ − ∞β 
t ⎟ ⎝⎜ m 

m⎝ 1+ e ⎠ 

v∞β β mg βg (1/ 2)CD Aρg
where = .= = 

m m β m m 
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Chapter 9 Equation Chapter 9 Section 1Circular Motion
 
Dynamics
 

I shall now recall to mind that the motion of the heavenly bodies is 
circular, since the motion appropriate to a sphere is rotation in a circle.1

Nicholas Copernicus 

9.1 Introduction Newton’s Second Law and Circular Motion 

We have already shown that when an object moves in a circular orbit of radius r withangular velocity ω , it is most convenient to choose polar coordinates to describe the 
position, velocity and acceleration vectors. In particular, the acceleration vector is given 
by 

 ⎛ dθ ⎞ 
2 

d 2θ a(t) = −r r̂(t) + r θ̂(t) . (9.1.1)
⎝⎜ dt ⎠⎟ dt2 

 Then Newton’s Second Law, F = ma , can be decomposed into radial ( r̂ -) and tangential 
( θ̂ -) components 

⎛ dθ ⎞ 
2 

F r = −mr (circular motion) , (9.1.2)
⎝⎜ dt ⎠⎟

d 2θFθ 
= mr (circular motion) . (9.1.3)

dt2 

For the special case of uniform circular motion, d 2θ / dt2 = 0 , and so the sum of the 
tangential components of the force acting on the object must therefore be zero, 

Fθ 
= 0 (uniform circular motion) . (9.1.4) 

9.2 Universal Law of Gravitation and the Circular Orbit of the Moon 

An important example of (approximate) circular motion is the orbit of the Moon around 
the Earth. We can approximately calculate the time T the Moon takes to complete one 
circle around the earth (a calculation of great importance to early lunar calendar systems, 
which became the basis for our current model.) Denote the distance from the moon to the 
center of the earth by Re, m . 

1 Dedicatory Letter to Pope Paul III. 
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Because the Moon moves nearly in a circular orbit with angular speed ω = 2π / T 
it is accelerating towards the Earth. The radial component of the acceleration (centripetal 
acceleration) is 

4π 2 R 
ar = − e, m . (9.2.1)

T 2 

According to Newton’s Second Law, there must be a centripetal force acting on the 
Moon directed towards the center of the Earth that accounts for this inward acceleration. 

9.2.1 Universal Law of Gravitation 

Newton’s Universal Law of Gravitation describes the gravitational force between two 
bodies 1 and 2 with masses m1 and m2 respectively. This force is a radial force (always 
pointing along the radial line connecting the masses) and the magnitude is proportional to 
the inverse square of the distance that separates the bodies. Then the force on object 2 
due to the gravitational interaction between the bodies is given by, 

 m1 m2= −G ˆ (9.2.2)F1, 2 2 r1, 2 , r1, 2 

where is the distance between the two bodies and r̂ is the unit vector located at the r1,2 1,2 

position of object 2 and pointing from object 1 towards object 2. The Universal 
−11 2 −2Gravitation Constant is G = 6.67×10 N m ⋅ kg⋅ . Figure 9.1 shows the direction of the 

forces on bodies 1 and 2 along with the unit vector r̂1,2 . 

Figure 9.1 Gravitational force of interaction between two bodies 

Newton realized that there were still some subtleties involved. First, why should 
the mass of the Earth act as if it were all placed at the center? Newton showed that for a 
perfect sphere with uniform mass distribution, all the mass may be assumed to be located 
at the center. (This calculation is difficult and can be found in Appendix 9A to this 
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chapter.) We assume for the present calculation that the Earth and the Moon are perfect 
spheres with uniform mass distribution. 

Second, does this gravitational force between the Earth and the Moon form an 
action-reaction Third Law pair? When Newton first explained the Moon’s motion in 
1666, he had still not formulated the Third Law, which accounted for the long delay in 
the publication of the Principia. The link between the concept of force and the concept of 
an action-reaction pair of forces was the last piece needed to solve the puzzle of the effect 
of gravity on planetary orbits. Once Newton realized that the gravitational force between 
any two bodies forms an action-reaction pair, and satisfies both the Universal Law of 
Gravitation and his newly formulated Third Law, he was able to solve the oldest and 
most important physics problem of his time, the motion of the planets. 

The test for the Universal Law of Gravitation was performed through 
experimental observation of the motion of planets, which turned out to be resoundingly 
successful. For almost 200 years, Newton’s Universal Law was in excellent agreement 
with observation. A sign of more complicated physics ahead, the first discrepancy only 
occurred when a slight deviation of the motion of Mercury was experimentally confirmed 
in 1882. The prediction of this deviation was the first success of Einstein’s Theory of 
General Relativity (formulated in 1915). 

We can apply this Universal Law of Gravitation to calculate the period of the 
Moon’s orbit around the Earth. The mass of the Moon is m1 = 7.36×1022 kg and the mass 
of the Earth is m2 = 5.98×1024 kg . The distance from the Earth to the Moon is 

R e, m = 3.82 × 108 m . We show the force diagram in Figure 9.2. 

Figure 9.2 Gravitational force of moon 

Newton’s Second Law of motion for the radial direction becomes 

4π 2 Rm1 m2−G e, m . (9.2.3)2 = −m1R T 2 
e, m 

We can solve this equation for the period of the orbit, 
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2 3 
e,m 

2 

4 R
T 

G m 

π 
= . (9.2.4)
 

Substitute the given values for the radius of the orbit, the mass of the earth, and the 
universal gravitational constant. The period of the orbit is 

T = 
4π 2 (3.82 ×108 m)3 

(6.67 ×10−11 N ⋅ m2 ⋅ kg−2 )(5.98 ×1024 kg) 
= 2.35 ×106 s . (9.2.5) 

This period is given in days by 

T = (2.35×106 s) 1 day 
8.64 ×104 

⎛ 
⎝⎜ s 

⎞ 
⎠⎟ 
= 27.2 days. (9.2.6) 

This period is called the sidereal month because it is the time that it takes for the Moon to 
return to a given position with respect to the stars. 

The actual time T1 between full moons, called the synodic month (the average 
period of the Moon’s revolution with respect to the earth and is 29.53 days, it may range 
between 29.27 days and 29.83 days), is longer than the sidereal month because the Earth 
is traveling around the Sun. So for the next full moon, the Moon must travel a little 
farther than one full circle around the Earth in order to be on the other side of the Earth 
from the Sun (Figure 9.3). 

Figure 9.3: Orbital motion between full moons 

Therefore the time T1 between consecutive full moons is approximately T1  T + ΔT 
where ΔT  T / 12 = 2.3 days . So T1  29.5 days . 

9.2.2 Kepler’s Third Law and Circular Motion 

The first thing that we notice from the above solution is that the period does not depend 
on the mass of the Moon. We also notice that the square of the period is proportional to 
the cube of the distance between the Earth and the Moon, 
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4π 2R3 2 e,m T = . (9.2.7)
Gm2 

This is an example of Kepler’s Third Law, of which Newton was aware. This 
confirmation was convincing evidence to Newton that his Universal Law of Gravitation 
was the correct mathematical description of the gravitational force law, even though he 
still could not explain what “caused” gravity. 

9.3 Worked Examples Circular Motion 

Example 9.1 Geosynchronous Orbit 

A geostationary satellite goes around the earth once every 23 hours 56 minutes and 4 
seconds, (a sidereal day, shorter than the noon-to-noon solar day of 24 hours) so that its 
position appears stationary with respect to a ground station. The mass of the earth is 
m e = 5.98 × 1024 kg . The mean radius of the earth is R e = 6.37 × 106 m . The universal 

constant of gravitation is G = 6.67 × 10−11 N ⋅ m2 ⋅ kg−2 . What is the radius of the orbit of a 
geostationary satellite? Approximately how many earth radii is this distance? 

Solution: The satellite’s motion can be modeled as uniform circular motion. The 
gravitational force between the earth and the satellite keeps the satellite moving in a 
circle (In Figure 9.4, the orbit is close to a scale drawing of the orbit). The acceleration of 
the satellite is directed towards the center of the circle, that is, along the radially inward 
direction. 

Figure 9.4 Geostationary satellite orbit (close to a scale drawing of orbit). 

Choose the origin at the center of the earth, and the unit vector r̂ along the radial 
direction. This choice of coordinates makes sense in this problem since the direction of 
acceleration is along the radial direction. 
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 Let r be the position vector of the satellite. The magnitude of r (we denote it as rs ) is 
the distance of the satellite from the center of the earth, and hence the radius of its 
circular orbit. Let ω be the angular velocity of the satellite, and the period is T = 2π / ω . 
The acceleration is directed inward, with magnitude rsω

2 ; in vector form, 

 a = −rsω 2r̂ . (9.3.1) 

Apply Newton’s Second Law to the satellite for the radial component. The only force in 
this direction is the gravitational force due to the Earth, 

 
F = −m ω 2r r̂ . (9.3.2)grav s s 

The inward radial force on the satellite is the gravitational attraction of the earth, 

m mes−G r̂ = −m ω 2r r̂ . (9.3.3)2 s srs 
Equating the r̂ components, 

m mesG = m ω 2r . (9.3.4)2 s srs 

Solving for the radius of orbit of the satellite r s , 

1/ 3 
⎛ Gme ⎞ rs = ⎜ ⎟ . (9.3.5)
⎝ ω 2 ⎠ 

The period T of the satellite’s orbit in seconds is 86164 s and so the angular speed is 

2π 2π −5 −1ω = × s . (9.3.6)= = 7.2921 10 
T 86164 s 

Using the values of ω , G and me in Equation (9.3.5), we determine rs , 

7rs = 4.22×10 m = 6.62 Re . (9.3.7) 

Example 9.2 Double Star System 

Consider a double star system under the influence of gravitational force between the 
stars. Star 1 has mass m1 and star 2 has mass m2 . Assume that each star undergoes 
uniform circular motion such that the stars are always a fixed distance s apart (rotating 
counterclockwise in Figure 9.5). What is the period of the orbit? 
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Figure 9.5 Two stars undergoing circular orbits about each other 

Solution: Because the distance between the two stars doesn’t change as they orbit about 
each other, there is a central point where the lines connecting the two objects intersect as 
the objects move, as can be seen in the figure above. (We will see later on in the course 
that central point is the center of mass of the system.) Choose radial coordinates for each 
star with origin at that central point. Let r̂1 be a unit vector at Star 1 pointing radially 

away from the center of mass. The position of object 1 is then r r̂ , where r1 is the 1 = r1 1 

distance from the central point. Let r̂2 be a unit vector at Star 2 pointing radially away 
from the center of mass. The position of object 2 is then r̂ , where is the r2 = r2 2 r2 

distance from the central point. Because the distance between the two stars is fixed we 
have that 

s = r1 + r2 . 

The coordinate system is shown in Figure 9.6 
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Figure 9.6 Coordinate system for double star orbits 

The gravitational force on object 1 is then 

 Gm1m2= − r̂1 .F2,1 2s 

The gravitational force on object 2 is then 

 Gm1m2= − r̂F1,2 2 2 . s 

The force diagrams on the two stars are shown in Figure 9.7. 

Figure 9.7 Force diagrams on objects 1 and 2 

Let ω denote the magnitude of the angular velocity of each star about the central point. Then Newton’s Second Law, F = m a , for Star 1 in the radial direction r̂ is1 1 1 1 

m1 m2 ω 2−G 2 .= −m1 r1s 
We can solve this for r1 , 

m r = G 2 .1 2 2ω s 
 Newton’s Second Law, F = m a , for Star 2 in the radial direction ˆ is2 2 2 r2 
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m1 m2 ω 2−G r2 .2 = −m2s 
We can solve this for r2 , 

m1r2 = G 2 2 .
ω s 

Because s , the distance between the stars, is constant 

)m2 m1 (m2 + m1s = r1 = G + G = G+ r2 2 2 2 .ω 2s ω 2s ω 2s 

Thus the magnitude of the angular velocity is 

)⎞
1 2 

⎛ (m2 + m1ω = G 3 ,
⎝⎜ s ⎠⎟ 

and the period is then 

2π ⎛ 4π 2s3 ⎞
1 2 

T = = . (9.3.8)
ω ⎝⎜ G(m2 + m1)⎠⎟ 

Note that both masses appear in the above expression for the period unlike the expression 
for Kepler’s Law for circular orbits. Eq. (9.2.7). The reason is that in the argument 
leading up to Eq. (9.2.7), we assumed that m1 << m2 , this was equivalent to assuming that 
the central point was located at the center of the Earth. If we used Eq. (9.3.8) instead we 
would find that the orbital period for the circular motion of the Earth and moon about 
each other is 

T = 
4π 2 (3.82 ×108 m)3 

(6.67 ×10−11 N ⋅m2 ⋅kg−2 )(5.98 ×1024 kg +7.36 ×1022 kg) 
= 2.33×106 s , 

which is 1.43 × 104 s = 0.17 d shorter than our previous calculation. 

Example 9.3 Rotating Objects 

Two objects 1 and 2 of mass and are whirling around a shaft with a constant m1 m2 

angular velocity ω . The first object is a distance d from the central axis, and the second 
object is a distance 2d from the axis (Figure 9.8). You may ignore the mass of the strings 
and neglect the effect of gravity. (a) What is the tension in the string between the inner 
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object and the outer object? (b) What is the tension in the string between the shaft and the 
inner object? 

Figure 9.8 Objects attached to a rotating shaft 

Solution: We begin by drawing separate force diagrams, Figure 9.9a for object 1 and 
Figure 9.9b for object 2. 

(a) (b)
 

Figure 9.9 (a) and 9.9 (b) Free-body force diagrams for objects 1 and 2
 

 Newton’s Second Law, F = m a , for the inner object in the radial direction is1 1 1 

r d ω 2 .ˆ : T2 − T1 = −m1 

 Newton’s Second Law, F = m a , for the outer object in the radial direction is2 2 2 

r̂ : − T2 = −m2 2d ω 2 . 

The tension in the string between the inner object and the outer object is therefore 

2d ω 2 .T2 = m2 
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Using this result for T2 in the force equation for the inner object yields 

2d ω 2 − T1 d ω 2 ,m2 = −m1 

which can be solved for the tension in the string between the shaft and the inner object 

= d ω 2 (m1 + 2m2 ) .T1 

Example 9.4 Tension in a Rope 

A uniform rope of mass mand length L is attached to shaft that is rotating at constant 
angular velocity ω . Find the tension in the rope as a function of distance from the shaft. 
You may ignore the effect of gravitation. 

Solution: Divide the rope into small pieces of length Δr , each of mass Δm = (m / L)Δr . 
Consider the piece located a distance r from the shaft (Figure 9.10). 

Figure 9.10 Small slice of rotating rope 

The radial component of the force on that piece is the difference between the tensions 
evaluated at the sides of the piece, Fr = T (r + Δr) − T (r) , (Figure 9.11). 

Figure 9.11 Free-body force diagram on small slice of rope 

= −rω 2The piece is accelerating inward with a radial component ar . Thus Newton’s 
Second Law becomes 

F = −Δmω 2r r (9.3.9)
T (r + Δr) − T (r) = −(m / L)Δr rω 2 . 

Denote the difference in the tension by ΔT = T (r + Δr) − T (r) . After dividing through by 
Δr , Eq. (9.3.9) becomes 
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ΔT 
= −(m / L) rω 2 . (9.3.10)

Δr 

In the limit as Δr → 0 , Eq. (9.3.10) becomes a differential equation, 

dT 
= −(m / L)ω 2r . (9.3.11)

dr 

From this, we see immediately that the tension decreases with increasing radius. We 
shall solve this equation by integration 

r ′= r 

T (r) − T (L) = ∫ 
dT dr′ = −(mω 2 / L)∫

r
r′ dr′ 

dr′ L 
r ′= L 

= −(mω 2 / 2L)(r 2 − L2 ) (9.3.12) 
= (mω 2 / 2L)(L2 − r 2 ). 

We use the fact that the tension, in the ideal case, will vanish at the end of the rope, 
r = L . Thus, 

T (r) = (mω 2 / 2L)(L2 − r 2 ). (9.3.13) 

This last expression shows the expected functional form, in that the tension is largest 
closest to the shaft, and vanishes at the end of the rope. 

Example 9.5 Object Sliding in a Circular Orbit on the Inside of a Cone 

Consider an object of mass m that slides without friction on the inside of a cone moving 
in a circular orbit with constant speed v0 . The cone makes an angle θ with respect to a 
vertical axis. The axis of the cone is vertical and gravity is directed downwards. The apex 
half-angle of the cone is θ as shown in Figure 9.12. Find the radius of the circular path 
and the time it takes to complete one circular orbit in terms of the given quantities and g . 

Figure 9.12 Object in a circular orbit on inside of a cone 
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Solution: Choose cylindrical coordinates as shown in the above figure. Choose unit 
vectors r̂ pointing in the radial outward direction and k̂ pointing upwards. The force 
diagram on the object is shown in Figure 9.13. 

Figure 9.13 Free-body force diagram on object 

The two forces acting on the object are the normal force of the wall on the object and the 
gravitational force. Then Newton’s Second Law in the r̂ -direction becomes 

−mv2 

−N cosθ = 
r 

and in the k̂ -direction becomes 
N sinθ − m g = 0 . 

These equations can be re-expressed as 

2vN cosθ = m 
r 

N sinθ = mg . 
We can divide these two equations, 

N sinθ m g 
= 

N cosθ mv2 / r 
yielding 

r g 
tanθ = 2 . 

v 
This can be solved for the radius, 

r = 
v2 

tanθ . 
g 

The centripetal force in this problem is the vector component of the contact force that is 
pointing radially inwards, 

Fcent = N cosθ = mg cotθ , 
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where N sinθ = mg has been used to eliminate N in terms of m , g and θ . The radius 
is independent of the mass because the component of the normal force in the vertical 
direction must balance the gravitational force, and so the normal force is proportional to 
the mass. 

Example 9.6 Coin on a Rotating Turntable 

A coin of mass m (which you may treat as a point object) lies on a turntable, exactly at 
the rim, a distance R from the center. The turntable turns at constant angular speed ω 
and the coin rides without slipping. Suppose the coefficient of static friction between the 
turntable and the coin is given by µ . Let g be the gravitational constant. What is the 
maximum angular speed ωmax such that the coin does not slip? 

Figure 9.14 Coin on Rotating Turntable 

Solution: The coin undergoes circular motion at constant speed so it is accelerating 
inward. The force inward is static friction and at the just slipping point it has reached its 
maximum value. We can use Newton’s Second Law to find the maximum angular speed 
ωmax . We choose a polar coordinate system and the free-body force diagram is shown in 
the figure below. 

Figure 9.15 Free-body force diagram on coin 

The contact force is given by    
C = N + f s = N k̂ − f s r̂ . (9.3.14) 

The gravitational force is given by  
F grav = −mg k̂ . (9.3.15) 

Newton’s Second Law in the radial direction is given by 
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− f s = −m Rω 2 . (9.3.16) 

Newton’s Second Law, Fz = ma z , in the z-direction, noting that the disc is static hence 
a z = 0 , is given by 

0N − mg = . (9.3.17) 
Thus the normal force is 

N = mg . (9.3.18) 

As ω increases, the static friction increases in magnitude until at ω = ωmax and static 
friction reaches its maximum value (noting Eq. (9.3.18)). 

( f ) = µN = µmg . (9.3.19)s max 

At this value the disc slips. Thus substituting this value for the maximum static friction 
into Eq. (9.3.16) yields 

2µmg = mRωmax . (9.3.20) 

We can now solve Eq. (9.3.20) for maximum angular speed ωmax such that the coin does 
not slip 

g 
R 

µω
 .
 (9.3.21)
=
 max 
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Appendix 9A The Gravitational Field of a Spherical Shell of
 
Matter
 

When analyzing gravitational interactions between uniform spherical bodies we assumed 
we could treat each sphere as a point-like mass located at the center of the sphere and 
then use the Universal Law of Gravitation to determine the force between the two point-
like objects. We shall now justify that assumption. For simplicity we only need to 
consider the interaction between a spherical object and a point-like mass. We would like 
to determine the gravitational force on the point-like object of mass due to the m1 

gravitational interaction with a solid uniform sphere of mass m2 and radius R . In order 
to determine the force law we shall first consider the interaction between the point-like 
object and a uniform spherical shell of mass ms and radius R . We will show that: 

1)	 The gravitational force acting on a point-like object of mass m1 located a distance 
r > R from the center of a uniform spherical shell of mass ms and radius R is the 
same force that would arise if all the mass of the shell were placed at the center of 
the shell. 

2)	 The gravitational force on an object of mass m1 placed inside a spherical shell of 
matter is zero. 

The force law summarizes these results: 


 
F s,1(r) = 

⎧
⎪
⎨ 
⎪⎩


−G
 
msm1 r̂, r > R 

r 
2 ,
 

0, r < R 

where r̂ is the unit vector located at the position of the object and pointing radially away 
from the center of the shell. 

For a uniform spherical distribution of matter, we can divide the sphere into thin shells. 
Then the force between the point-like object and each shell is the same as if all the mass 
of the shell were placed at the center of the shell. Then we add up all the contributions of 
the shells (integration), the spherical distribution can be treated as point-like object 
located at the center of the sphere justifying our assumption. 

Thus it suffices to analyze the case of the spherical shell. We shall first divide the shell 
into small area elements and calculate the gravitational force on the point-like object due 
to one element of the shell and then add the forces due to all these elements via 
integration. 
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We begin by choosing a coordinate system. Choose our z -axis to be directed from the 
center of the sphere to the position of the object, at position r = z k̂ , so that z ≥ 0 . 

(Figure 9A.1 shows the object lying outside the shell with z > R ). 

Figure 9A.1 Object lying outside shell with z > R . 

Choose spherical coordinates as shown in Figure 9A.2. 

Figure 9A.2 Spherical coordinates 

For a point on the surface of a sphere of radius r = R , the Cartesian coordinates are 
related to the spherical coordinates by 

x = Rsinθ cosφ,
 
y = Rsinθ sinφ, (9.A.1)
 
z = Rcosθ ,
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where 0 ≤θ ≤π and 0 ≤φ ≤ 2π . 

Note that the angle θ in Figure 9A.2 and Equations (9.A.1) is not the same as that in 
plane polar coordinates or cylindrical coordinates. The angle θ is known as the co-
latitude, the complement of the latitude. We now choose a small area element shown in 
Figure 9A.3. 

Figure 9A.3 Infinitesimal area element 

The infinitesimal area element on the surface of the shell is given by 

da = R2 sinθdθdφ . 

Then the mass dm contained in that element is 

dm = σ da = σ R2 sinθ θ φ .d d 

where σ is the surface mass density given by 

σ = ms / 4π R2 . 

 
The gravitational force on the object of mass m1 that lies outside the shell due to Fdm, m1 

the infinitesimal piece of the shell (with mass dm ) is shown in Figure 9A.4. 
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Figure 9A.4 Force on a point-like object due to piece of shell 

The contribution from the piece with mass dm to the gravitational force on the object of 
mass m1 that lies outside the shell has a component pointing in the negative k̂ -direction 
and a component pointing radially away from the z -axis. By symmetry there is another 
mass element with the same differential mass dm′ = dm on the other side of the shell 
with same co-latitude θ but with φ replaced by φ ±π ; this replacement changes the sign 
of x and y in Equations (9.A.1) but leaves z unchanged. This other mass element 
produces a gravitational force that exactly cancels the radial component of the force 
pointing away from the z -axis. Therefore the sum of the forces of these differential mass 
elements on the object has only a component in the negative k̂ -direction (Figure 9A.5) 

Figure 9A.5 Symmetric cancellation of components of force 
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Therefore we need only the z -component vector of the force due to the piece of the shell 
on the point-like object. 

Figure 9A.6 Geometry for calculating the force due to piece of shell. 

From the geometry of the set-up (Figure 9A.6) we see that 

 m1dm
(dF ) ≡ dF k̂ = −G cosαk̂ . s,1 z z 2r s1 

Thus 
m1dm Gm sm1 cosα sinθdθdφdF z = −G cosα = − . (9.A.2)

2 4π 2r r s1 s1 

The integral of the force over the surface is then 

θ =π φ = 2π θ =π φ =2πGm m dmcosα s 1 cosα sinθdθdφF = −Gm = − . (9.A.3)z 1 ∫ ∫ ∫ ∫r 2 4π r 2 
θ =0 φ =0 s1 θ =0 φ =0 s1 

The φ -integral is straightforward yielding 

Gm θ=π cosα sinθdθs m1F = − . (9.A.4)z ∫ 22 rθ=0 s1 

From Figure 9A.6 we can use the law of cosines in two different ways 
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2 = R2 + zrs1 
2 − 2 R z cosθ 

(9.A.5)
R2 2 + r 2 − 2r= z z cosα. s1 s,1 

Differentiating the first expression in (9.A.5), with R and z constant yields, 

2r dr = 2 R z sinθ dθ . (9.A.6)s,1 s,1 

Hence 
r 

sinθ dθ = s,1 dr (9.A.7)s,1 .R z 

and from the second expression in (9.A.5) we have that 

cosα = 
1 ⎡⎣(z2 − R2 ) + r 2 ⎤⎦ . (9.A.8)

2 zr s,1 
s1 

We now have everything we need in terms of r s,1 . 

For the case when z > R , rs,1 varies from z − R to z + R . Substituting Equations (9.A.7) 
and (9.A.8) into Eq. (9.A.3) and using the limits for the definite integral yields 

Gm θ =π cosα sinθFz = − 
2 

sm1 ∫ 2 dθ 
rθ =0 s,1 

Gm m1 1 z+R 1 1 r dr 
= − s ⎡(z2 − R2 ) + r 2 ⎤ s,1 s,1 (9.A.9)22 2 z ∫z− R r ⎣ s,1 ⎦ r R z s,1 s,1 

Gm m1 1 ⎡ 
2 − R2 z+ R drs,1 z+ R ⎤ 

s= − ⎢(z ) ∫ + ∫ dr s,1 ⎥.22 2 R z2 
⎢ z− R r s,1 

z− R ⎥⎣ ⎦ 

No tables should be needed for these; the result is 

Gm ⎡ (z ) ⎤
z+R

2 − R2 
sm1 1F = − ⎢− + r ⎥ 

z s,1 2 2 R z2 ⎢ r ⎥⎣ s,1 ⎦z−R 

Gm 1 = − sm1 ⎡⎣−(z − R) + (z + R) + 2 R⎤⎦ (9.A.10)
2 2 R z2 

Gm sm1= − 2 . 
z 
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For the case when z < R , rs,1 varies from R − z to R + z . Then the integral is 

2 − R2 
R+z 

Gm m1 1 ⎡ (z ) ⎤
sF = − ⎢− + r ⎥ 

z s,1 2 2 R z2 ⎢ rs,1 ⎥⎣ ⎦R−z 

Gm sm1 1 = − ⎡⎣−(z − R) − (z + R) + 2 z⎤⎦ (9.A.11)
2 2 R z2 

= 0. 

So we have demonstrated the proposition that for a point-like object located on the z -
axis a distance z from the center of a spherical shell, the gravitational force on the point 
like object is given by 


0 

s,1 zF
⎧
⎪
⎨
 

m m1s k̂,
 −G
 z > R(r) = 2 .
 
⎪⎩
 , z < R 

This proves the result that the gravitational force inside the shell is zero and the 
gravitational force outside the shell is equivalent to putting all the mass at the center of 
the shell. 
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Chapter 10 Momentum, System of Particles, and Conservation
 
of Momentum 

Law II: The change of motion is proportional to the motive force 
impressed, and is made in the direction of the right line in which that force 
is impressed. 

If any force generates a motion, a double force will generate double the 
motion, a triple force triple the motion, whether that force is impressed 
altogether and at once or gradually and successively. And this motion 
(being always directed the same way with the generating force), if the body 
moved before, is added or subtracted from the former motion, according as 
they directly conspire with or are directly contrary to each other; or 
obliquely joined, when they are oblique, so as to produce a new motion 
compounded from the determination of both. 1 

Isaac Newton Principia 
10.1 Introduction 

When we apply a force to an object, through pushing, pulling, hitting or otherwise, we 
are applying that force over a discrete interval of time, Δt . During this time interval, the 
applied force may be constant, or it may vary in magnitude or direction. Forces may also 
be applied continuously without interruption, such as the gravitational interaction 
between the earth and the moon. In this chapter we will investigate the relationship 
between forces and the time during which they are applied, and in the process learn about 
the quantity of momentum, the principle of conservation of momentum, and its use in 
solving a new set of problems involving systems of particles. 

10.2 Momentum (Quantity of Motion) and Average Impulse 
!Consider a point-like object (particle) of mass m that is moving with velocity v with respect to some fixed reference frame. The quantity of motion or the momentum, p , of 

the object is defined to be the product of the mass and velocity 

! ! p = mv . (10.2.1) 

Momentum is a reference frame dependent vector quantity, with direction and magnitude. 
The direction of momentum is the same as the direction of the velocity. The magnitude of 
the momentum is the product of the mass and the instantaneous speed. 

−1]Units: In the SI system of units, momentum has units of [kg m s⋅ ⋅ . There is no special 
name for this combination of units. 

1 Isaac Newton. Mathematical Principles of Natural Philosophy. Translated by Andrew Motte (1729). 
Revised by Florian Cajori. Berkeley: University of California Press, 1934. p. 13. 
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! 
During a time interval Δt , a non-uniform force F is applied to the particle. Because we 
are assuming that the mass of the point-like object does not change, Newton’s Second 
Law is then 

d d(m = m 
!v !v!a 

!
F


) . (10.2.2)= m = 
dt dt 

Because we are assuming that the mass of the point-like object does not change, the 
Second Law can be written as 

! 
F = 

d! p 
dt 

. (10.2.3) 

The impulse of a force acting on a particle during a time interval [t,t + Δt] is defined as 
the definite integral of the force from t to t + Δt , 

t′=t+Δt! 
I
=
 ∫
 

!
F
(t′) dt′ . (10.2.4) 

t′=t 

The SI units of impulse are [N ⋅m] = [kg⋅m⋅s−1] which are the same units as the units of 
momentum. 

Apply Newton’s Second Law in Eq. (10.2.4) yielding 

t′=t+Δt t′=t+Δt ! p′=p(t+Δt )! ! dp 
! !

! ! ! !I = F(t′) dt′ = dt′ = dp′ = p(t + Δt) − p(t) = Δp . (10.2.5)∫ ∫ ∫dt′ ! !t′=t t′=t p′=p(t ) 

Eq. (10.2.5) represents the integral version of Newton’s Second Law: the impulse applied 
by a force during the time interval [t,t + Δt] is equal to the change in momentum of the 
particle during that time interval. 

The average value of that force during the time interval Δt is given by the integral 
expression 

t′=t+Δt! 1 ! 
F ave = 

Δt ∫ F(t′)dt′ . (10.2.6) 
t′=t 

The product of the average force acting on an object and the time interval over which it is 
applied is called the average impulse, 

! ! 
I = F Δt . (10.2.7)ave ave 
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Multiply each side of Eq. (10.2.6) by Δt resulting in the statement that the average 
impulse applied to a particle during the time interval [t,t + Δt] is equal to the change in 
momentum of the particle during that time interval, 

! !I ave = Δp. (10.2.8) 

Example 10.1 Impulse for a Non-Constant Force 

Suppose you push an object for a time Δt = 1.0 s in the +x -direction. For the first half of 
the interval, you push with a force that increases linearly with time according to 

! 
−1F(t) = bt ̂i, 0 ≤ t ≤ 0.5s  with  b = 2.0 ×101 N ⋅s . (10.2.9) 

Then for the second half of the interval, you push with a linearly decreasing force, 

! 
F(t) = (d − bt)î, 0.5s ≤ t ≤ 1.0s  with d = 2.0 ×101 N (10.2.10) 

The force vs. time graph is shown in Figure 10.3. What is the impulse applied to the 
object? 

Figure 10.3 Graph of force vs. time 

Solution: We can find the impulse by calculating the area under the force vs. time curve. 
Since the force vs. time graph consists of two triangles, the area under the curve is easy to 
calculate and is given by 

 ⎡ 1 1 ⎤I = ⎢ (bΔt / 2)(Δt / 2) + (bΔt / 2)(Δt / 2) ⎥ î
2 2⎣ ⎦ (10.2.11)

1 b(Δt)2 î = 
1 = (2.0 ×101 N ⋅s−1)(1.0s)2 î = (5.0N ⋅s)î.

4 4 
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10.3 External and Internal Forces and the Change in Momentum of a 
System 

So far we have restricted ourselves to considering how the momentum of an object 
changes under the action of a force. For example, if we analyze in detail the forces acting 
on the cart rolling down the inclined plane (Figure 10.4), we determine that there are  
three forces acting on the cart: the force Fspring, cart the spring applies to the cart; the 

 
gravitational interaction Fearth, cart between the cart and the earth; and the contact force 
 
Fplane, cart between the inclined plane and the cart. If we define the cart as our system, then 
everything else acts as the surroundings. We illustrate this division of system and 
surroundings in Figure 10.4. 

 
F 

 
F 

 
F 

Figure 10.4 A diagram of a cart as a system and its surroundings 

The forces acting on the cart are external forces. We refer to the vector sum of these 
external forces that are applied to the system (the cart) as the external force, 

spring, cart earth, cart plane, cart . 
 
F
ext (10.3.1)
+
 +
=
 

p 

Then Newton’s Second Law applied to the cart, in terms of impulse, is 

Δ 

F
 


I


t f∫t0 

ext dt ≡ (10.3.2)
=
 .
 sys sys 

Let’s extend our system to two interacting objects, for example the cart and the spring. 
The forces between the spring and cart are now internal forces. Both objects, the cart and 
the spring, experience these internal forces, which by Newton’s Third Law are equal in 
magnitude and applied in opposite directions. So when we sum up the internal forces for 
the whole system, they cancel. Thus the sum of all the internal forces is always zero, 

  
Fint = 0. (10.3.3) 

External forces are still acting on our system; the gravitational force, the contact force 
between the inclined plane and the cart, and also a new external force, the force between 
the spring and the force sensor. The force acting on the system is the sum of the internal 
and the external forces. However, as we have shown, the internal forces cancel, so we 
have that 
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F
=
 
 
F
ext + 

 
F
int =
 

 
F
ext . (10.3.4) 

10.4 System of Particles 

Suppose we have a system of N particles labeled by the index i = 1, 2, 3,  , N . The 
i th force on the particle is 

j= N 
ext +i ∑i i, j 

j=1, j≠i 

 
i th i th In this expression Fj ,i is the force on the particle due to the interaction between the 

j th 
  


F 

i th on the particle, 
j=N  

Fi 
int = ∑ Fj ,i . (10.4.2) 

j=1, j≠i 


F 


Fi i 


F 

j ij ≠and particles. We sum over all particles with since a particle cannot exert a 
F 0force on itself (equivalently, we could define ), yielding the internal force acting = i i, 

The force acting on the system is the sum over all i particles of the force acting on each 


F 

particle, 

(10.4.1)
=
 .
 

j= N 

∑

F
 

i=N i=N i=N 
F
 


F
∑
 ∑
 ∑
ext ext . (10.4.3)+
=
 =
 =
 j ,i 

 
F 

i=1 i=1 i=1 j=1, j≠i 

Note that the double sum vanishes, 
i= N j = N  
∑ ∑ Fj ,i = 0 , (10.4.4) 
i=1 j=1, j ≠ i 

because all internal forces cancel in pairs, 

i, j 

 
F
 


0
 (10.4.5)
+
 =
 .
j ,i 

The force on the i th particle is equal to the rate of change in momentum of the i th 
particle, 

 d  pi= . (10.4.6)Fi dt 

When can now substitute Equation (10.4.6) into Equation (10.4.3) and determine that that 
the external force is equal to the sum over all particles of the momentum change of each 
particle, 

 i=

Fext 
N d p i= ∑ . (10.4.7) 

i=1 dt 
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The momentum of the system is given by the sum 

i= N  psys = ∑pi ; (10.4.8) 
i=1 

momenta add as vectors. We conclude that the external force causes the momentum of 
the system to change, and we thus restate and generalize Newton’s Second Law for a 
system of objects as 

 d p  
Fext sys = . (10.4.9)

dt 

In terms of impulse, this becomes the statement 

Δp 

F
 


I
∫t

t f ext dt ≡ (10.4.10)
=
 .
 sys 
0 

10.5 Center of Mass 

Consider two point-like particles with masses m1 and m2 . Choose a coordinate system 
 with a choice of origin such that body 1 has position r1 and body 2 has position r2 

(Figure 10.5). 

Figure 10.5 Center of mass coordinate system. 

 
The center of mass vector, Rcm , of the two-body system is defined as 

  m r + m r1 1 2 2Rcm = . (10.5.1)
m + m1 2 

We shall now extend the concept of the center of mass to more general systems. Suppose 
we have a system of N particles labeled by the index i = 1, 2, 3, , N . Choose a 

i th coordinate system and denote the position of the particle as ri . The mass of the system 
is given by the sum 
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i=N 

m sys = ∑mi (10.5.2) 
i=1 

and the position of the center of mass of the system of particles is given by 

 1 i= N R cm = . (10.5.3)∑mi rim sys i=1 

(For a continuous rigid body, each point-like particle has mass dm and is located at the position r′ . The center of mass is then defined as an integral over the body, 

dmr ′ 
 ∫ 
Rcm = body . (10.5.4)

∫ dm 
body 

Example 10.2 Center of Mass of the Earth-Moon System 

The mean distance from the center of the earth to the center of the moon is 
rem = 3.84×108 m . The mass of the earth is me = 5.98 × 1024 kg and the mass of the moon 

is mm = 7.34×1022 kg . The mean radius of the earth is re = 6.37 × 106 m . The mean radius 
of the moon is rm = 1.74×106 m . Where is the location of the center of mass of the earth-
moon system? Is it inside the earth’s radius or outside? 

Solution: The center of mass of the earth-moon system is defined to be 

 i=N1  1  R = = (m r + m r ) . (10.5.5)cm ∑ miri e e m mm i=1 m + m sys e m 

Choose an origin at the center of the earth and a unit vector î pointing towards the moon, 
  

then re = 0 . The center of mass of the earth-moon system is then 

 1   m r m r m em m em ˆRcm = (mere + mmrm ) = = i (10.5.6)
me + mm me + mm me + mm 

22 8 (7.34×10 kg)(3.84×10 m) ˆ 6 ˆRcm = i = 4.66×10 m i (10.5.7)24 22(5.98×10 kg + 7.34×10 kg) 

The earth’s mean radius is r = 6.37 × 106 m so the center of mass of the earth-moon e 

system lies within the earth. 
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Example 10.3 Center of Mass of a Rod 

A thin rod has length L and mass M . 

0 2(x) = x= M / L 
L2 MM 

LL 

a) uniform rod b) non-uniform rod 

Figure 10.6 a) Uniform rod and b) non-uniform rod 

(a) Suppose the rod is uniform (Figure 10.6a). Find the position of the center of mass 
with respect to the left end of the rod. (b) Now suppose the rod is not uniform (Figure 
10.6b) with a linear mass density that varies with the distance x from the left end 
according to 

λ0 2λ(x) = 
L2 x (10.5.8) 

where λ0 is a constant and has SI units [kg ⋅ m-1] . Find λ0 and the position of the center 
of mass with respect to the left end of the rod. 

Solution: (a) Choose a coordinate system with the rod aligned along the x -axis and the 
origin located at the left end of the rod. The center of mass of the rod can be found using 
the definition given in Eq. (10.5.4). In that expression dm is an infinitesimal mass 
element and r is the vector from the origin to the mass element dm (Figure 10.6c). 

= M / L 

dm = dx 

x 
+x 

x = 0 x = L 

Figure 10.6c Infinitesimal mass element for rod 


Choose an infinitesimal mass element dm located a distance x′ from the origin. In this 

problem x′ will be the integration variable. Let the length of the mass element be dx′ . 
Then 

dm = λ dx′ (10.5.9) 

The vector r = x′ ̂i . The center of mass is found by integration 
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 1  1 x 1 2 x′=L 1 2 Lˆ ˆ ˆ 
cm ∫ ′ ′ ̂  ′R = r dm = ∫ x dx i = x i = (L − 0) i = i . (10.5.10)

x′=0 2L 2M body L x′ =0 2L 

(b) For a non-uniform rod (Figure 10.6d), 
2(x ) = 

L2
0 x 

x 
+x 

x = 0 x = Ldm = (x )dx 

Figure 10.6d Non-uniform rod 

the mass element is found using Eq. (10.5.8) 

λ0 2dm = λ( ) x′ dx′ = λ = x′ dx′ . (10.5.11)
L2 

The vector r = x′ ̂i . The mass is found by integrating the mass element over the length of 
the rod 

x=L x=L x′=L λ λλ0 2 λ0 3 0 3 0M = dm = ∫ λ( )x′ dx′ = x′ dx′ = x′ = 2 (L − 0) = L . (10.5.12)∫ 2 ∫ 2 x′=0 3L 3body x′ =0 L x′ =0 3L 

Therefore 
3Mλ0 = (10.5.13)
L 

The center of mass is again found by integration 

 1  3 3 
cm = ∫ r dm = ∫ 

x 

λ(x′)x dx′ î = ∫ 
x

x′3 dx′ îR ′ 
M body λ0 L x′=0 L3 

x′=0 (10.5.14)
 3 x′= 3 3L 

î =R = x′4 

4L3 (L4 − 0) ̂i = L î. cm 4L3 x′=0 4 
. 
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10.6 Translational Motion of the Center of Mass 

The velocity of the center of mass is found by differentiation, 

sys 

m 

p
V


1 i=N 

∑mi 
v .
 (10.6.1)
=
 =
 icm m i=1sys sys 

The momentum is then expressed in terms of the velocity of the center of mass by 

  
p = m V . (10.6.2)sys sys cm 

We have already determined that the external force is equal to the change of the 
momentum of the system (Equation (10.4.9)). If we now substitute Equation (10.6.2) into 
Equation (10.4.9), and continue with our assumption of constant masses mi , we have that 

d sys 

p 
 
V
 

A
 

F


dext (10.6.3)
= m cm = m=
 ,

dt dtsys sys cm 

  
where A , the derivative with respect to time of V , is the acceleration of the center of cm cm

mass. From Equation (10.6.3) we can conclude that in considering the linear motion of 
the center of mass, the sum of the external forces may be regarded as acting at the center 
of mass. 

Example 10.4 Forces on a Baseball Bat 

Suppose you push a baseball bat lying on a nearly frictionless table at the center of mass, ! 
position 2, with a force F (Figure 10.7). Will the acceleration of the center of mass be 
greater than, equal to, or less than if you push the bat with the same force at either end, 
positions 1 and 3 

1 2 3 
cm 

F F F 

Figure 10.7 Forces acting on a baseball bat 

Solution: The acceleration of the center of mass will be equal in the three cases. From 
our previous discussion, (Equation (10.6.3)), the acceleration of the center of mass is 
independent of where the force is applied. However, the bat undergoes a very different 
motion if we apply the force at one end or at the center of mass. When we apply the force 
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at the center of mass all the particles in the baseball bat will undergo linear motion 
(Figure 10.7a). 

cm 

F cm translates, 
no rotation about cm 

Figure 10.7a Force applied at center of mass 

When we push the bat at one end, the particles that make up the baseball bat will no 
longer undergo a linear motion even though the center of mass undergoes linear motion. 
In fact, each particle will rotate about the center of mass of the bat while the center of 
mass of the bat accelerates in the direction of the applied force (Figure 10.7b). 

cm 

Fcm translates and rotates 

Figure 10.7b Force applied at end of bat 

10.7 Constancy of Momentum and Isolated Systems 

Suppose we now completely isolate our system from the surroundings. When the external 
force acting on the system is zero,   

Fext = 0 . (10.7.1) 

the system is called an isolated system. For an isolated system, the change in the 
momentum of the system is zero, 

 
Δ psys = 0 (isolated system) , (10.7.2) 

therefore the momentum of the isolated system is constant. The initial momentum of our 
system is the sum of the initial momentum of the individual particles, 

p = m1sys,i 
v1,i + m2 

v2,i + ⋅⋅⋅ . (10.7.3)
 

The final momentum is the sum of the final momentum of the individual particles, 

p v v= m1sys, f 1, f + m2 2, f + ⋅⋅⋅ . (10.7.4)
 

Note that the right-hand-sides of Equations. (10.7.3) and (10.7.4) are vector sums. 
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When the external force on a system is zero, then the initial momentum of the 
system equals the final momentum of the system, 

  p = p (10.7.5)sys,i sys, f . 

10.8 Momentum Changes and Non-isolated Systems 

Suppose the external force acting on the system is not zero, 

  
Fext ≠ 0. (10.8.1) 

and hence the system is not isolated. By Newton’s Third Law, the sum of the force on the 
surroundings is equal in magnitude but opposite in direction to the external force acting 
on the system,  

F
sur = −
 
 
F
ext .
 (10.8.2)
 

It’s important to note that in Equation (10.8.2), all internal forces in the surroundings sum 
to zero. Thus the sum of the external force acting on the system and the force acting on 
the surroundings is zero,  

F
sur + 
 
F
ext =
 


0
 (10.8.3)
 

acting on a system 

. 

 
Fext We have already found (Equation (10.4.9)) that the external force 

p 

is equal to the rate of change of the momentum of the system. Similarly, the force on the 
surrounding is equal to the rate of change of the momentum of the surroundings. 
Therefore the momentum of both the system and surroundings is always conserved. 

For a system and all of the surroundings that undergo any change of state, the 
change in the momentum of the system and its surroundings is zero, 

Δ p 

0
+ Δ
 (10.8.4)
=
 .
 sys sur 

Equation (10.8.4) is referred to as the Principle of Conservation of Momentum. 

10.9 Worked Examples 

10.9.1 Problem Solving Strategies 

When solving problems involving changing momentum in a system, we shall employ our 
general problem solving strategy involving four basic steps: 

1. Understand – get a conceptual grasp of the problem. 
2. Devise a Plan - set up a procedure to obtain the desired solution. 
3. Carry our your plan – solve the problem! 
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4. Look Back – check your solution and method of solution. 

We shall develop a set of guiding ideas for the first two steps. 

1. Understand – get a conceptual grasp of the problem 

The first question you should ask is whether or not momentum is constant in some 
system that is changing its state after undergoing an interaction. First you must identify 
the objects that compose the system and how they are changing their state due to the 
interaction. As a guide, try to determine which objects change their momentum in the 
course of interaction. You must keep track of the momentum of these objects before and 
after any interaction. Second, momentum is a vector quantity so the question of whether 
momentum is constant or not must be answered in each relevant direction. In order to 
determine this, there are two important considerations. You should identify any external 
forces acting on the system. Remember that a non-zero external force will cause the 

p 

momentum of the system to change, (Equation (10.4.9) above), 

 d p  
Fext sys = . (10.9.1)

dt 

Equation (10.9.1) is a vector equation; if the external force in some direction is zero, then 
the change of momentum in that direction is zero. In some cases, external forces may act 
but the time interval during which the interaction takes place is so small that the impulse 
is small in magnitude compared to the momentum and might be negligible. Recall that 
the average external impulse changes the momentum of the system 

= Δ 

I
 
 
F
ext Δtint (10.9.2)
=
 . sys 

  
If the interaction time is small enough, the momentum of the system is constant, Δp → 0 . 
If the momentum is not constant then you must apply either Equation (10.9.1) or 
Equation (10.9.2). If the momentum of the system is constant, then you can apply 
Equation (10.7.5), 

  p = p . (10.9.3)sys, i sys, f 

If there is no net external force in some direction, for example the x -direction, the 
component of momentum is constant in that direction, and you must apply 

p = p (10.9.4)sys, x ,i sys, x , f 

2. Devise a Plan - set up a procedure to obtain the desired solution 

Draw diagrams of all the elements of your system for the two states immediately before 
and after the system changes its state. Choose symbols to identify each mass and velocity 
in the system. Identify a set of positive directions and unit vectors for each state. Choose 
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your symbols to correspond to the state and motion (this facilitates an easy interpretation, 
for example (v represents the x -component of the velocity of object 1 in the initial x ,i )1 

state and (v represents the x -component of the velocity of object 1 in the final state). x , f )1 

Decide whether you are using components or magnitudes for your velocity symbols. 
Since momentum is a vector quantity, identify the initial and final vector components of 
the momentum. We shall refer to these diagrams as momentum flow diagrams. Based on 
your model you can now write expressions for the initial and final momentum of your 
system. As an example in which two objects are moving only in the x -direction, the 
initial x -component of the momentum is 

p = m1(v + m2(v +. (10.9.5)sys, x ,i x ,i )1 x ,i )2 

The final x -component of the momentum is 

psys, x , f = m1(vx , f )1 + m2(vx , f )2 + . (10.9.6) 

If the x -component of the momentum is constant then 

p = p (10.9.7)sys, x ,i sys, x , f . 

We can now substitute Equations (10.9.5) and (10.9.6) into Equation (10.9.7), yielding 

(v (v + (v (v + . (10.9.8)m1 x ,i )1 + m2 x ,i )2 = m1 x , f )1 + m2 x , f )2 

Equation (10.9.8) can now be used for any further analysis required by a particular 
problem. For example, you may have enough information to calculate the final velocities 
of the objects after the interaction. If so then carry out your plan and check your solution, 
especially dimensions or units and any relevant vector directions. 

Example 10.5 Exploding Projectile 

An instrument-carrying projectile of mass accidentally explodes at the top of its m1 

trajectory. The horizontal distance between launch point and the explosion is . The xi 

projectile breaks into two pieces that fly apart horizontally. The larger piece, m3 , has 
three times the mass of the smaller piece, m2 . To the surprise of the scientist in charge, 
the smaller piece returns to earth at the launching station. Neglect air resistance and 
effects due to the earth’s curvature. How far away, x3, f , from the original launching point 
does the larger piece land? 
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parabolic orbitm1 

x = 0 xi 

v1 

î 

x = 0 

x = 0 

xi 

m2 m3 

v2 v3 

xi x3, f 

Figure 10.8 Exploding projectile trajectories 

Solution: We can solve this problem two different ways. The easiest approach is utilizes 
the fact that the external force is the gravitational force and therefore the center of mass 
of the system follows a parabolic trajectory. From the information given in the problem 
m = m / 4 and m = 3m / 4 . Thus when the two objects return to the ground the center 2 1 3 1 

of mass of the system has traveled a distance Rcm = 2xi . We now use the definition of 
center of mass to find where the object with the greater mass hits the ground. Choose an 
origin at the starting point. The center of mass of the system is given by 

  m r + m r2 2 3 3 R = .cm m + m2 3 

! 
So when the objects hit the ground R cm = 2xi î , the object with the smaller mass returns 

  !to the origin, r2 = 0 , and the position vector of the other object is r3 = x3, f î . So using 
the definition of the center of mass, 

(3m1 / 4)x3, f î (3m1 / 4)x3, f î 3î = = = î .2xi x3, fm1 / 4 + 3m1 / 4 m1 4 
Therefore 

8 =x3, f xi .3 
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Note that the neither the vertical height above ground nor the gravitational acceleration g 
entered into our solution. 

Alternatively, we can use conservation of momentum and kinematics to find the distance 
traveled. Because the smaller piece returns to the starting point after the collision, the 
velocity of the smaller piece immediately after the explosion is equal to the negative of 
the velocity of original object immediately before the explosion. Because the collision is 
instantaneous, the horizontal component of the momentum is constant during the 
collision. We can use this to determine the speed of the larger piece after the collision. 
The larger piece takes the same amount of time to return to the ground as the projectile 
originally takes to reach the top of the flight. We can therefore determine how far the 
larger piece traveled horizontally. 

We begin by identifying various states in the problem. 

Initial state, time t0 = 0 : the projectile is launched. 

State 1 time t1 : the projectile is at the top of its flight trajectory immediately before the 
! explosion. The mass is m1 and the velocity of the projectile is v1 = v1î . 

State 2 time t2 : immediately after the explosion, the projectile has broken into two 
pieces, one of mass m2 moving backwards (in the negative x -direction) with velocity 
! ! = −v1 . The other piece of mass m3 is moving in the positive x -direction with velocityv2 
! v3 = v3î , (Figure 10.8). 

State 3: the two pieces strike the ground at time t f , one at the original launch site = 2t1 

and the other at a distance from the launch site, as indicated in Figure 10.8. The x3, f 

pieces take the same amount of time to reach the ground Δt = t1 because both pieces are 
falling from the same height as the original piece reached at time t1 , and each has no 
component of velocity in the vertical direction immediately after the explosion. The 
momentum flow diagram with state 1 as the initial state and state 2 as the final state are 
shown in the upper two diagrams in Figure 10.8. 

The initial momentum at time t1 immediately before the explosion is 

! sys (t1 
! p ) = m1 v1 . (10.9.9) 

The momentum at time t2 immediately after the explosion is 
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!psys (t2 ) = m2 
!v2 + m3 

!v3 = −
 
1
 

4
 
m1 
!v1 +
 

3
 

4
 
m1 
!v3 (10.9.10)
 

During the duration of the instantaneous explosion, impulse due to the external 
gravitational force may be neglected and therefore the momentum of the system is 
constant. In the horizontal direction, we have that 

1
 3
 m1 
!v m1 

!v m1
!v3 . (10.9.11)
= −
 +
1 14
 4
 

Equation (10.9.11) can now be solved for the velocity of the larger piece immediately 
after the collision, 

! v3 = 
5 
3 
! v1 . (10.9.12) 

The larger piece travels a distance 

x3, f = v3 t1 = 
5 
3

v1 t1 = 
5 
3 

xi . (10.9.13) 

Therefore the total distance the larger piece traveled from the launching station is 

5 8+ = xi , (10.9.14)x f = xi xi3 3 

in agreement with our previous approach. 

Example 10.6 Landing Plane and Sandbag 

Figure 10.9 Plane and sandbag 

A light plane of mass 1000 kg makes an emergency landing on a short runway. With its 
engine off, it lands on the runway at a speed of 40 m s-1 . A hook on the plane snags a ⋅ 
cable attached to a 120 kg sandbag and drags the sandbag along. If the coefficient of 
friction between the sandbag and the runway is µk = 0.4 , and if the plane’s brakes give 
an additional retarding force of magnitude 1400 N , how far does the plane go before it 
comes to a stop? 
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Solution: We shall assume that when the plane snags the sandbag, the collision is 
instantaneous so the momentum in the horizontal direction remains constant, 

p = p (10.9.15)x ,i x ,1 . 

We then know the speed of the plane and the sandbag immediately after the collision. 
After the collision, there are two external forces acting on the system of the plane and 
sandbag, the friction between the sandbag and the ground and the braking force of the 
runway on the plane. So we can use the Newton’s Second Law to determine the 
acceleration and then one-dimensional kinematics to find the distance the plane traveled 
since we can determine the change in kinetic energy. 

The momentum of the plane immediately before the collision is 

 pi = m v p,i î (10.9.16)p 

The momentum of the plane and sandbag immediately after the collision is 

 p = (m + m )v î (10.9.17)1 p s p,1 

Because the x - component of the momentum is constant, we can substitute Eqs. 
(10.9.16) and (10.9.17) into Eq. (10.9.15) yielding 

m v = (m + m )v (10.9.18)p p,i p s p,1 . 

The speed of the plane and sandbag immediately after the collision is 

m v p p,ivp,1 = (10.9.19)
m + m p s 

The forces acting on the system consisting of the plane and the sandbag are the normal 
force on the sandbag,  

N = N ĵ , (10.9.20)g ,s g ,s 

the frictional force between the sandbag and the ground 

 
f = − f î = −µ N î , (10.9.21)k k k g ,s 

the braking force on the plane  
F = −F î , (10.9.22)g , p g , p 

and the gravitational force on the system, 
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(m + m )g = −(m + m )gĵ . (10.9.23)p s p s 

Newton’s Second Law in the î -direction becomes 

− F = (m + m )a . (10.9.24)g , p − fk p s x 

If we just look at the vertical forces on the sandbag alone then Newton’s Second Law in 
the ĵ-direction becomes 

N − msg = 0 . 

The frictional force on the sandbag is then 

 
f = −µ N î = −µ m gî . (10.9.25)k k g ,s k s 

Newton’s Second Law in the î -direction becomes 

−F − µk m g = (m + m )a . g , p s p s x 

The x -component of the acceleration of the plane and the sand bag is then 

− F − µk m g g , p sax = (10.9.26)
m + m p s 

We choose our origin at the location of the plane immediately after the collision, 
xp (0) = 0 . Set t = 0 immediately after the collision. The x -component of the velocity of 

the plane immediately after the collision is v = v Set t = t f when the plane just x ,0 p,1 . 
comes to a stop. Because the acceleration is constant, the kinematic equations for the 
change in velocity is 

v ) − v = a t f . x , f (t f p,1 x 

We can solve this equation for t = t f , where v ) = 0 x , f (t f 

= −v / a t .t f p,1 x 

Then the position of the plane when it first comes to rest is 

1 2 1 v2 
p,1 x (t ) − x (0) = v t + a t = − . (10.9.27)p f p p,1 f x f2 2 a x 
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Then using xp (0) = 0 and substituting Eq. (10.9.26) into Eq. (10.9.27) yields 

1 (m + m )v2 
p s p,1 xp (t f ) = . (10.9.28)

2 (F + µ m g)g , p k s 

We now use the condition from conservation of the momentum law during the collision, 
Eq. (10.9.19) in Eq. (10.9.28) yielding 

2 2m v p p,ix (t ) = . (10.9.29)p f 2(m + m )(F + µ m g)p s g , p k s 

Substituting the given values into Eq. (10.9.28) yields 

-1 )2(1000 kg)2(40 m ⋅ s 
x ) = = 3.8 × 102 m . (10.9.30)p (t f 2(1000 kg + 120 kg)(1400 N + (0.4)(120 kg)(9.8m ⋅ s-2 )) 
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Chapter 11 Reference Frames 

Examples of this sort, together with the unsuccessful attempts to discover any 
motion of the earth relatively to the “light medium” suggest that the phenomena 
of electromagnetism as well as mechanics possess no properties corresponding to 
the idea of absolute rest. They suggest rather that, …, the same laws of 
electrodynamics and optics will be valid for all frames of reference for which the 
equations of mechanics hold good. We will raise this conjecture (the purport of 
which will hereafter be called the “Principle of Relativity”) to the status of a 
postulate, and also introduce another postulate, …, namely that light is always 
propagated in empty space with a definite velocity c, which is independent of the 
state of motion of the emitting body. 1 

Albert Einstein 

11.1 Introduction 

In order to describe physical events that occur in space and time such as the motion of 
bodies, we introduced a coordinate system. Its spatial and temporal coordinates can now 
specify a space-time event. In particular, the position of a moving body can be described 
by space-time events specified by its space-time coordinates. You can place an observer 
at the origin of coordinate system. The coordinate system with your observer acts as a 
reference frame for describing the position, velocity, and acceleration of bodies. The 
position vector of the body depends on the choice of origin (location of your observer) 
but the displacement, velocity, and acceleration vectors are independent of the location of 
the observer. 

You can always choose a second reference frame that is moving with respect to 
the first reference frame. Then the position, velocity and acceleration of bodies as seen by 
the different observers do depend on the relative motion of the two reference frames. The 
relative motion can be described in terms of the relative position, velocity, and 
acceleration of the observer at the origin, O , in reference frame S with respect to a 
second observer located at the origin, O′ , in reference frame S′ . 

11.2 Galilean Coordinate Transformations 
 

Let the vector R point from the origin of frame S to the origin of reference 
frame S′ . Suppose an object is located at a point 1. Denote the position vector of the object with respect to origin of reference frame S by r . Denote the position vector of the object with respect to origin of reference frame S′ by r′ (Figure 11.1). 

1 A. Einstein, Zur Elektrodynamik begetter Körper, (On the	  Electrodynamics of Moving 
Bodies), Ann. Physik, 17, 891 (1905); translated	  by W. Perrett	  and G.B. Jeffrey,	  
19223, in The Principle of Relativity, Dover,	  New York. 
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path of moving object in referenece frame S
 

R 
r 

S 
S 

r 

Figure 11.1 Two reference frames S and S′ . 

The position vectors are related by 
! ! ! 
r′ = r − R (11.2.1) 

These coordinate transformations are called the Galilean Coordinate 
Transformations. They enable the observer in frame S to predict the position vector in 
frame S′ , based only on the position vector in frame S and the relative position of the 
origins of the two frames. 

The relative velocity between the two reference frames is given by the time  
derivative of the vector R , defined as the limit as of the displacement of the two origins 
divided by an interval of time, as the interval of time becomes infinitesimally small, 

 dRV = . (11.2.2)dt 

11.2.1 Relatively Inertial Reference Frames and the Principle of Relativity 

If the relative velocity between the two reference frames is constant, then the relative 
acceleration between the two reference frames is zero, 

 dVA = = 0. (11.2.3)dt 

When two reference frames are moving with a constant velocity relative to each other as 
above, the reference frames are called relatively inertial reference frames. 

We can reinterpret Newton’s First Law 

Law 1: Every body continues in its state of rest, or of uniform motion in a right 
line, unless it is compelled to change that state by forces impressed upon it. 

as the Principle of Relativity: 
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In relatively inertial reference frames, if there is no net force impressed on an 
object at rest in frame S, then there is also no net force impressed on the object in 
frame S ′ . 

11.3 Law of Addition of Velocities: Newtonian Mechanics 

Suppose the object in Figure 11.1 is moving; then observers in different reference 
frames will measure different velocities. Denote the velocity of the object in frame S by
    v = dr dt , and the velocity of the object in frame S′ by v′ = dr′ dt′ . Since the derivative 
of the position is velocity, the velocities of the object in two different reference frames 
are related according to 

dr ′ dr  dR 
 

= − , (11.3.1)
dt′ dt dt 
   
v′ = v − V. (11.3.2) 

This is called the Law of Addition of Velocities. 

11.4 Worked Examples 

Example 11.1 Relative Velocities of Two Moving Planes 

An airplane A is traveling northeast with a speed of vA = 160 m ⋅ s-1 . A second airplane 

B is traveling southeast with a speed of vB = 200 m ⋅ s-1 . (a) Choose a coordinate system 
 and write down an expression for the velocity of each airplane as vectors, vA and v B . 
 Carefully use unit vectors to express your answer. (b) Sketch the vectors vA and v B on 

your coordinate system. (c) Find a vector expression that expresses the velocity of aircraft 
A as seen from an observer flying in aircraft B. Calculate this vector. What is its 
magnitude and direction? Sketch it on your coordinate system. 

Solution: From the information given in the problem we draw the velocity vectors of the 
airplanes as shown in Figure 11.2a. 

(a) (b) 

Figure 11.2 (a): Motion of two planes Figure 11.2 (b): Coordinate System 
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An observer at rest with respect to the ground defines a reference frame S . Choose a 
coordinate system shown in Figure 11.2b. According to this observer, airplane A is 

moving with velocity vA = vA cosθA î + vA sinθA ĵ , and airplane B is moving with 
velocity vB = vB cosθB î + vB sinθB ĵ . According to the information given in the problem 

airplane A flies northeast so θA = π / 4 and airplane B flies southeast east so θB = −π / 4 . 
 -1 ) ĵThus vA = (80 2 m ⋅ s-1 )î + (80 2 m ⋅ s-1 ) ĵ and v B = (100 2 m ⋅ s-1 )î − (100 2 m ⋅ s 

Consider a second observer moving along with airplane B, defining reference frame S ′ . 
What is the velocity of airplane A according to this observer moving in airplane B ? The 
velocity of the observer moving along in airplane B with respect to an observer at rest on 
the ground is just the velocity of airplane B and is given by V = vB = vB cosθB î + vB sinθB ĵ . Using the Law of Addition of Velocities, Equation 
(11.3.2), the velocity of airplane A with respect to an observer moving along with 
Airplane B is given by 

   
v′ A = vA − V = (vA cosθA ̂i + vA sinθA ĵ) − (vB cosθB î + vB sinθB ĵ) 

= (vA cosθA − vB cosθB )î + (vA sinθA − vB sinθB ) ĵ 
-1 )) ĵ.= ((80 2 m ⋅ s-1 ) − (100 2 m ⋅ s-1 ))î + ((80 2 m ⋅ s-1 ) + (100 2 m ⋅ s (11.4.1) 

-1 ) ĵ= −(20 2 m ⋅ s-1 )î + (180 2 m ⋅ s 

= v′ î + v′ ĵAx Ay 

Figure 11.3 shows the velocity of airplane A with respect to airplane B in reference frame 
S ′ . 

Figure 11.3 Airplane A as seen from observer in airplane B 

The magnitude of velocity of airplane A as seen by an observer moving with airplane B 
is given by 
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 2 + 2 )1/ 2 -1 )2 )1/ 2 -1 vA ′ = (v′ v′ = ((−20 2 m ⋅ s-1 )2 + (180 2 m ⋅ s = 256 m ⋅ s . (11.4.2)Ax Ay 

The angle of velocity of airplane A as seen by an observer moving with airplane B is 
given by, 

θ′ = tan−1(v′ / v′ ) = tan−1((180 2 m ⋅ s-1 ) / (−20 2 m ⋅ s-1 )) A Ay Ax . (11.4.3) 
= tan−1(−9) = 180 − 83.7 = 96.3 

Example 11.2 Relative Motion and Polar Coordinates 

By relative velocity we mean velocity with respect to a specified coordinate system. (The 
term velocity, alone, is understood to be relative to the observer’s coordinate system.) (a)

A point is observed to have velocity v A relative to coordinate system A . What is its 
velocity relative to coordinate system B , which is displaced from system A by distance   
R ? ( R can change in time.) (b) Particles a and b move in opposite directions around a 
circle with the magnitude of the angular velocity ω , as shown in Figure 11.4. At t = 0 

they are both at the point r = l̂j , where l is the radius of the circle. Find the velocity of 
a relative to b . 

Figure 11.5 Particles a and b 
moving relative to each otherFigure 11.4 Particles a and b 

moving relative to each other 
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Solution: (a) The position vectors are related by 

rB A 
r =
 −
 

 
R
.
 (11.4.4)
 

The velocities are related by the taking derivatives, (law of addition of velocities Eq. 
(11.3.2))


v B =
 
v A −
 

 
V
.
 (11.4.5)
 

(b) Let’s choose two reference frames; frame B is centered at particle b, and frame A is 
centered at the center of the circle in Figure 11.5. Then the relative position vector 
between the origins of the two frames is given by 

 
R = l r̂ . (11.4.6) 

The position vector of particle a relative to frame A is given by 

 = l r̂′ . (11.4.7)rA 

The position vector of particle b in frame B can be found by substituting Eqs. (11.4.7) 
and (11.4.6) into Eq. (11.4.4), 

   
− R = l r̂′ − l r̂ . (11.4.8)rB = rA 

We can decompose each of the unit vectors r̂ and r̂′ with respect to the Cartesian unit 
vectors î and ĵ (see Figure 11.5), 

r̂ = − sinθ î + cosθ ĵ (11.4.9) 
r̂′ = sinθ î + cosθ ĵ . (11.4.10) 

Then Eq. (11.4.8) giving the position vector of particle b in frame B becomes 

 rB = l r̂′ − l r̂ = l (sinθ î + cosθ ĵ) − l (− sinθ î + cosθ ĵ) = 2l sinθ î . (11.4.11) 

In order to find the velocity vector of particle a in frame B (i.e. with respect to particle b), 
differentiate Eq. (11.4.11) 

 d dθ v B = (2l sinθ) î = (2l cosθ) î = 2ω l cosθ î . (11.4.12)
dt dt 
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Example 11.3 Recoil in Different Frames 

A person of mass m1 is standing on a cart of mass m2 . Assume that the cart is free to 
move on its wheels without friction. The person throws a ball of mass m3 at an angle of 
θ with respect to the horizontal as measured by the person in the cart. The ball is thrown 
with a speed v0 with respect to the cart (Figure 11.6). (a) What is the final velocity of the 
ball as seen by an observer fixed to the ground? (b) What is the final velocity of the cart
as seen by an observer fixed to the ground? (c) With respect to the horizontal, what angle
the fixed observer see the ball leave the cart? 

Figure 11.6 Recoil of a person on cart due to thrown ball 

Solution: a), b) Our reference frame will be that fixed to the ground. We shall take as our 
initial state that before the ball is thrown (cart, ball, throwing person stationary) and our 
final state that after the ball is thrown. We are assuming that there is no friction, and so 
there are no external forces acting in the horizontal direction. The initial x -component of 
the total momentum is zero, 

total px ,0 = 0 . (11.4.13) 

After the ball is thrown, the cart and person have a final momentum 

 îp f ,cart = −(m2 + m1)v f ,cart (11.4.14) 

as measured by the person on the ground, where v f ,cart is the speed of the person and cart. 
(The person’s center of mass will move with respect to the cart while the ball is being 
thrown, but since we’re interested in velocities, not positions, we need only assume that
the person is at rest with respect to the cart after the ball is thrown.) 

The ball is thrown with a speed v0 and at an angle θ with respect to the horizontal as 
measured by the person in the cart. Therefore the person in the cart throws the ball with 
velocity 

 v′ f ,ball = v0 cosθ î + v0 sinθ ĵ . (11.4.15). 
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Because the cart is moving in the negative x -direction with speed v f ,cart just as the ball 
leaves the person’s hand, the x -component of the velocity of the ball as measured by an 
observer on the ground is given by 

. (11.4.16)vxf , ball = v0 cosθ − v f , cart 

The ball appears to have a smaller x -component of the velocity according to the observer
on the ground. The velocity of the ball as measured by an observer on the ground is 

 v = (v cosθ − v ) î + v sinθ ĵ . (11.4.17)f , ball 0 f , cart 0 

The final momentum of the ball according to an observer on the ground is 

 p f , ball = m3 ⎣⎡(v0 cosθ − v f , cart ) î + v0 sinθ ĵ⎦⎤ . (11.4.18) 

The momentum flow diagram is shown in (Figure 11.7). 

Figure 11.7 Momentum flow diagram for recoil 

Because the x -component of the momentum of the system is constant, we have that 

0 = ( p ) + ( px , f cart x , f )ball (11.4.19) 
= −(m + m )v + m (v cosθ − v ). 2 1 f , cart 3 0 f , cart 

We can solve Equation (11.4.19) for the final speed and velocity of the cart as measured
by an observer on the ground, 

m v cosθ v f ,cart = 3 0 , (11.4.20)
m + m + m2 1 3 

 m v cosθˆ 3 0 ˆv f , cart = v f , cart i = i . (11.4.21)
m + m + m2 1 3 
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Note that the y -component of the momentum is not constant because as the person is
throwing the ball he or she is pushing off the cart and the normal force with the ground 
exceeds the gravitational force so the net external force in the y -direction is non-zero. 

Substituting Equation (11.4.20) into Equation (11.4.17) gives 

 v f ,ball = (v0 cosθ − v f ,cart ) ̂i + v0 sinθ ĵ 
(11.4.22) 

= 
m1 + m2 (v0 cosθ )î + (v0 sinθ ) ĵ. 

m1 + m2 + m3 

As a check, note that in the limit m3 << m1 + m2 , v f ,ball has speed v0 and is directed at an 
angle θ above the horizontal; the fact that the much more massive person-cart 
combination is free to move doesn’t affect the flight of the ball as seen by the fixed 
observer. Also note that in the unrealistic limit m >> m1 the ball is moving at a + m2 

speed much smaller than v0 as it leaves the cart. 

c) The angle φ at which the ball is thrown as seen by the observer on the ground is given 
by 

)(v f ,ball y v0 sinθφ = tan−1 = tan−1 

(v f ,ball )x ⎡⎣(m1 + m2 ) / (m1 + m2 + m3)⎤⎦v0 cosθ 
(11.4.23)

⎞ ⎤ 
= tan−1 

⎡
⎢ 
⎛ m1 + m2 + m3 

⎠⎟ 
tanθ ⎥. 

⎢ ⎝⎜ ⎣ m1 + m2 ⎦⎥ 

For arbitrary values for the masses, the above expression will not reduce to a simplified 
form. However, we can see that tanφ > tanθ for arbitrary masses, and that in the limit 

<< m1 + m2 , φ →θ and in the unrealistic limit m3 >> m1 + m2 , φ →π / 2 . Can you m3 

explain this last odd prediction? 
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Chapter 12 Momentum and the Flow of Mass 

Even though the release was pulled, the rocket did not rise at first, but the 
flame came out, and there was a steady roar. After a number of seconds it 
rose, slowly until it cleared the flame, and then at express-train speed, 
curving over to the left, and striking the ice and snow, still going at a 
rapid rate. It looked almost magical as it rose, without any appreciably 
greater noise or flame, as if it said, “I've been here long enough; I think 
I'll be going somewhere else, if you don't mind.” 1 

Robert Goddard 

Preface: The Challenger Flight 

When the Rogers Commission in 1986 investigated the Challenger disaster, a 
commission member, physicist Richard Feynman, made an extraordinary demonstration 
during the hearings. 

“He (Feynman) also learned that rubber used to seal the solid rocket booster joints using 
O-rings, failed to expand when the temperature was at or below 32 degrees F (0 degrees 
C). The temperature at the time of the Challenger liftoff was 32 degrees F. Feynman 
now believed that he had the solution, but to test it, he dropped a piece of the O-ring 
material, squeezed with a C-clamp to simulate the actual conditions of the shuttle, into a 
glass of ice water. Ice, of course, is 32 degrees F. At this point one needs to understand 
exactly what role the O-rings play in the solid rocket booster (SRB) joints. When the 
material in the SRB start to heat up, it expands and pushes against the sides of the SRB. 
If there is an opening in a joint in the SRB, the gas tries to escape through that opening 
(think of it like water in a tea kettle escaping through the spout.) This leak in the 
Challenger's SRB was easily visible as a small flicker in a launch photo. This flicker 
turned into a flame and began heating the fuel tank, which then ruptured. When this 
happened, the fuel tank released liquid hydrogen into the atmosphere where it exploded. 
As Feynman explained, because the O-rings cannot expand in 32 degree weather, the gas 
finds gaps in the joints, which led to the explosion of the booster and then the shuttle 
itself.”2 

In the Report of the Presidential Commission on the Space Shuttle Challenger Accident 
(1986), Appendix F - Personal observations on the reliability of the Shuttle, Feynman 
wrote 

The Challenger flight is an excellent example. … The O-rings of the Solid Rocket 
Boosters were not designed to erode. Erosion was a clue that something was wrong. 
Erosion was not something from which safety can be inferred. There was no way, without 

1 describing the first rocket flight using liquid propellants at Aunt Effie's farm, 17 March 1926. 

2 http://www.fotuva.org/online/frameload.htm?/online/challenger.htm. 
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full understanding, that one could have confidence that conditions the next time might not 
produce erosion three times more severe than the time before. Nevertheless, officials 
fooled themselves into thinking they had such understanding and confidence, in spite of 
the peculiar variations from case to case. A mathematical model was made to calculate 
erosion. This was a model based not on physical understanding but on empirical curve 
fitting. To be more detailed, it was supposed a stream of hot gas impinged on the O-ring 
material, and the heat was determined at the point of stagnation (so far, with reasonable 
physical, thermodynamic laws). But to determine how much rubber eroded it was 
assumed this depended only on this heat by a formula suggested by data on a similar 
material. A logarithmic plot suggested a straight line, so it was supposed that the erosion 
varied as the .58 power of the heat, the .58 being determined by a nearest fit. At any rate, 
adjusting some other numbers, it was determined that the model agreed with the erosion 
(to depth of one-third the radius of the ring). There is nothing much so wrong with this as 
believing the answer! Uncertainties appear everywhere. How strong the gas stream might 
be was unpredictable, it depended on holes formed in the putty. Blow-by showed that the 
ring might fail even though not, or only partially eroded through. The empirical formula 
was known to be uncertain, for it did not go directly through the very data points by 
which it was determined. There were a cloud of points some twice above, and some twice 
below the fitted curve, so erosions twice predicted were reasonable from that cause alone. 
Similar uncertainties surrounded the other constants in the formula, etc., etc. When using 
a mathematical model careful attention must be given to uncertainties in the model. … 

In any event this has had very unfortunate consequences, the most serious of which is to 
encourage ordinary citizens to fly in such a dangerous machine, as if it had attained the 
safety of an ordinary airliner. The astronauts, like test pilots, should know their risks, and 
we honor them for their courage. Who can doubt that McAuliffe was equally a person of 
great courage, who was closer to an awareness of the true risk than NASA management 
would have us believe? Let us make recommendations to ensure that NASA officials deal 
in a world of reality in understanding technological weaknesses and imperfections well 
enough to be actively trying to eliminate them. …. For a successful technology, reality 
must take precedence over public relations, for nature cannot be fooled. 

3 

12.1 Introduction 

So far we have restricted ourselves to considering systems consisting of discrete objects 
or point-like objects that have fixed amounts of mass. We shall now consider systems in 
which material flows between the objects in the system, for example we shall consider 
coal falling from a hopper into a moving railroad car, sand leaking from railroad car fuel, 
grain moving forward into a railroad car, and fuel ejected from the back of a rocket, In 
each of these examples material is continuously flows into or out of an object. We have 
already shown that the total external force causes the momentum of a system to change, 

3 R. P. Feynman, Appendix F - Personal observations on the reliability of the Shuttle, Report of the 
PRESIDENTIAL COMMISSION on the Space Shuttle Challenger Accident (1986), 
http://history.nasa.gov/rogersrep/genindex.htm. 
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 d p  
total system F = . (12.2.1)ext dt 

We shall analyze how the momentum of the constituent elements our system change over 
a time interval [t,t + Δt] , and then consider the limit as Δt → 0 . We can then explicit 
calculate the derivative on the right hand side of Eq. (12.2.1) and Eq. (12.2.1) becomes 

pd Δ (t + Δt) − (t)system system system system 
ext 

p p p
F total = lim = lim (12.2.2)
=
 .


dt Δt ΔtΔt→0 Δt→0 

We need to be very careful how we apply this generalized version of Newton’s Second 
Law to systems in which mass flows between constituent objects. In particular, when we 
isolate elements as part of our system we must be careful to identify the mass Δm of the 
material that continuous flows in or out of an object that is part of our system during the 
time interval Δt under consideration. 

We shall consider four categories of mass flow problems that are characterized by the 
momentum transfer of the material of mass Δm . 

12.1.1 Transfer of Material into an Object, but no Transfer of Momentum 

Consider for example rain falling vertically downward with speed u into car of mass m 
moving forward with speed v . A small amount of falling rain Δmr has no component of 
momentum in the direction of motion of the car. There is a transfer of rain into the car but 
no transfer of momentum in the direction of motion of the car (Figure 12.1). 

u 
m r u 

v
frictionless

rain

v
frictionless

Figure 12.1 Transfer of rain mass into the car but no transfer of momentum in direction 
of motion 

12.1.2 Transfer of Material Out of an Object, but no Transfer of Momentum 

The material continually leaves the object but it does not transport any momentum away 
from the object in the direction of motion of the object (Figure 12.2). Consider an ice 
skater gliding on ice at speed v holding a bag of sand that is leaking straight down with 
respect to the moving skater. The sand continually leaves the bag but it does not transport 
any momentum away from the bag in the direction of motion of the object. In Figure 
12.2, sand of mass Δms leaves the bag. 
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Figure 12.2 Transfer of mass out of object but no transfer of momentum in direction of 
motion 

12.1.3 Transfer of Material Impulses Object Via Transfer of Momentum 

Suppose a fire hose is used to put out a fire on a boat of mass mb . Assume the column of 
water moves horizontally with speed u . The incoming water continually hits the boat 
propelling it forward. During the time interval Δt , a column of water of mass Δms will 
hit the boat that is moving forward with speed v increasing it’s speed (Figure 12.3). 

Figure 12.3 Transfer of mass of water increases speed of boat 

12.1.4 Material Continually Ejected From Object results in Recoil of Object 

When fuel of mass Δmf is ejected from the back of a rocket with speed u relative to the 

rocket, the rocket of mass mr recoils forward. Figure 12.4a shows the recoil of the rocket 
in the reference frame of the rocket. The rocket recoils forward with speed Δvr . In a 
reference frame in which the rocket is moving forward with speed vr , then the speed after 
recoil is v + Δv . The speed of the backwardly ejected fuel is u − v (Figure 12.4b).r r r 

(a) (b) 
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Figure 12.4 Transfer of mass out of rocket provides impulse on rocket in (a) reference 
frame of rocket, (b) reference frame in which rocket moves with speed vr 

We must carefully identify the momentum of the object and the material transferred at 
time t in order to determine p (t) . We must also identify the momentum of the object system 

and the material transferred at time t + Δt in order to determine p (t + Δt) as well. system 

Recall that when we defined the momentum of a system, we assumed that the mass of the 
system remain constant. Therefore we cannot ignore the momentum of the transferred 
material at time t + Δt even though it may have left the object; it is still part of our 
system (or at time t even though it has not flowed into the object yet). 

12.2 Worked Examples 

Example 12.1 Filling a Coal Car 

An empty coal car of mass m0 starts from rest under an applied force of magnitude F . 
At the same time coal begins to run into the car at a steady rate b from a coal hopper at 
rest along the track (Figure 12.5). Find the speed when a mass mc of coal has been 
transferred. 

Figure 12.5 Filling a coal car 

Solution: We shall analyze the momentum changes in the horizontal direction, which we 
call the x -direction. Because the falling coal does not have any horizontal velocity, the 
falling coal is not transferring any momentum in the x -direction to the coal car. So we 
shall take as our system the empty coal car and a mass mc of coal that has been 
transferred. Our initial state at t = 0 is when the coal car is empty and at rest before any 
coal has been transferred. The x -component of the momentum of this initial state is zero, 

px (0) = 0 . (12.3.1) 
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Our final state at t = t is when all the coal of mass m = bt has been transferred into thef c f 

car that is now moving at speed v f . The x -component of the momentum of this final 
state is 

p + m + bt f . (12.3.2)x (t f ) = (m0 c )v f = (m0 )v f 

There is an external constant force Fx = F applied through the transfer. The momentum 
principle applied to the x -direction is 

t f 

F dt = Δp = ) − p (0) . (12.3.3)∫ x x px (t f x 
0 

Because the force is constant, the integral is simple and the momentum principle becomes 

Ft f + bt f . (12.3.4)= (m0 )v f 

So the final speed is 
Ft f= . (12.3.5)v f (m0 + bt f ) 

Example 12.2 Emptying a Freight Car 

A freight car of mass mc contains sand of mass ms . At t = 0 a constant horizontal force 
of magnitude F is applied in the direction of rolling and at the same time a port in the 
bottom is opened to let the sand flow out at the constant rate b = dms / dt . Find the speed 
of the freight car when all the sand is gone (Figure 12.6). Assume that the freight car is at 
rest at t = 0 . 

Figure 12.6 Emptying a freight car 

Solution: Choose the positive x -direction to point in the direction that the car is moving. 

Choose for the system the amount of sand in the fright car at time t , mc (t) . At time t , 
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!the car is moving with velocity v c (t) = vc (t)î . The momentum diagram for the system at 
time t is shown in the diagram on the left in Figure 12.7. 

time time 

v c (t) v c (t) + v c 

t + tt 

m c (t) + m c m c (t) 

m s 

v c (t) + v c 

Figure 12.7 Momentum diagram at time t and at time t + Δt 

The momentum of the system at time t is given by 

! psys (t) = m c (t)
! v c (t) . (12.3.6) 

During the time interval [ ,t t t]+ Δ , an amount of sand of mass sΔm leaves the freight car 
and the mass of the freight car changes by m (t + Δt) = m (t) + Δm , where Δm = −Δm . c c c c s 

At the end of the interval the car is moving with velocity
!
 v c (t + Δt) = 

!
 v c (t) + Δ c 
!v = (vc (t) + Δv c )î . The momentum diagram for the system at time 

t + Δt is shown in the diagram on the right in Figure 12.7. The momentum of the system 
at time t + Δt is given by 

! ! ! p (t + Δt) = (Δm + m (t) + Δm )(v ! (t) + Δv ) = m (t)(v ! (t) + Δv ) .(12.3.7)sys s c c c c c c c 

! !Note that the sand that leaves the car is shown with velocity v c (t) + Δv c . This implies 
that all the sand leaves the car with the velocity of the car at the end of the interval. This 
is an approximation. Because the sand leaves continuous, the velocity will vary from 
! ! ! v (t) to v (t) + Δv but so does the change in mass of the car and these two c c c 

contributions to the system’s moment exactly cancel. The change in momentum of the 
system is then 

Δp !
!
 
sys =
 psys (t + Δt) − !
 psys (t) = mc (t)( 

!
 v c (t) + Δ!
 v c ) − mc (t)
!
 v c (t) = mc (t)Δv !
 c .(12.3.8)
 

! 
Throughout the interval a constant force F = Fî is applied to the system so the 
momentum principle becomes 
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! !(t + Δt) − Δ! 

Δt 
vc (t) 

d! v c .
dt 

(12.3.9)
 
!
 
= lim = lim mc (t) = m

Δt cΔt→0 Δt→0 
F


(t)sys sys 

Because the motion is one-dimensional, Eq. (12.3.9) written in terms of x -components 
becomes 

dv cF = m (t) . (12.3.10)c dt 

Denote by initial mass of the car by mc,0 = mc + ms where mc is the mass of the car and 
is the mass of the sand in the car at t = 0 . The mass of the sand that has left the car at ms 

time t is given by 
t dm t 

sm (t) = dt = bdt = bt . (12.3.11)s ∫ ∫ 
0 dt 0 

Thus 
m (t) = m − bt = m + m − bt . (12.3.12) 

p 

c c,0 c s 

Therefore Eq. (12.3.10) becomes 
dv cF = (m + m − bt) . (12.3.13)c s dt 

p 

This equation can be solved for the x -component of the velocity at time t , vc (t) , (which 
in this case is the speed) by the method of separation of variables. Rewrite Eq. (12.3.13) 
as 

Fdt dv c = . (12.3.14)
(mc + ms − bt) 

Then integrate both sides of Eq. (12.3.14) with the limits as shown 

vc ′ =v (t )c t′=t Fdt′ dv′ = . (12.3.15)∫ c ∫ m + m − bt′ v′ =0 t′=0 c sc 

Integration yields the speed of the car as a function of time 

t′= t F ⎛ m + m − bt ⎞ F ⎛ m + m ⎞F c s c svc (t) = − ln(m c + ms − bt′) = − ln ln 
⎠⎟ 

. (12.3.16)
b t′= 0 b ⎝⎜ m c + m s ⎠⎟ 

= 
b ⎝⎜ m c + m s − bt 
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In writing Eq. (12.3.16), we used the property that ln(a) − ln(b) = ln(a / b) and therefore 
ln(a / b) = − ln(b / a) . Note that m + m ≥ m + m − bt , so the term c s c s 

⎛ m + m ⎞ 
ln c s 

⎠⎟ 
≥ 0 , and the speed of the car increases as we expect.

⎝⎜ m + m − bt c s 

Example 12.3 Filling a Freight Car 

Grain is blown into car A from car B at a rate of b kilograms per second. The grain 
leaves the chute vertically downward, so that it has the same horizontal velocity, u as car 
B , (Figure 12.8). Car A is initially at rest before any grain is transferred in and has mass 

At the moment of interest, car A has mass and speed v . Determine an mA,0 . mA 

expression for the speed car A as a function of time t . 

Figure 12.8 Filling a freight car 

Solution: Choose positive x -direction to the right in the direction the cars are moving. 
Define the system at time t to be the car and grain that is already in it, which together has 
mass (t) , and the small amount of material of mass Δm that is blown into car AmA g 

during the time interval [t,t + Δt] . At time that is moving with x -component of the 
!velocity vA . At time t , car A is moving with velocity v A (t) = vA (t)î , and the material 

!blown into car is moving with velocity u = uî At time t + Δt , car A is moving with 
! !velocity v (t) + Δv = (vA (t) + ΔvA )î , and the mass of car A is mA (t + Δt) = mA (t) + ΔmA ,A A 

where ΔmA = Δm g . The momentum diagram for times t and for t + Δt is shown in 
Figure 12.9. 

time time t + tt 

î 

mA 
(t) 

m g 

u 

v A 
(t) 

A 

v A 
(t) + v A 

A mA 
(t) + mA 

Figure 12.9 Momentum diagram at times t and t + Δt 
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The momentum at time t is ! 
P
 (t) = mA (t)

!v A (t) + Δmg 
!u . (12.3.17)
sys 

The momentum at time t + Δt is 

(t) + Δ 

There are no external forces acting on the system in the x -direction and the external 
forces acting on the system perpendicular to the motion sum to zero, so the momentum 

!v 

principle becomes ! ! 
! P (t + Δt) − P (t)sys sys 0 = lim . (12.3.19)

Δt→0 Δt 

Using the results above (Eqs. (12.3.17) and (12.3.18), the momentum principle becomes 

! 
P


!v(t + Δt) = (mA (t) + ΔmA )(
 ) . (12.3.18)
A Asys 

!
0
 

!u !v !v)( (t) + Δ (t) (t) + Δm )(mA (t) + ΔmA A A ) − (mA A g 
!v 

lim (12 3 20)= . . . 
Δt→0 Δt 

!v !u !v !v 

which after using the condition that ΔmA = Δmg and some rearrangement becomes 

(t)Δ ( (t) − ) ΔmA A ΔmA A ΔmA A 
!
0
= lim + lim + lim . (12.3.21)


Δt Δt ΔtΔt→0 Δt→0 Δt→0 

!v

Δ!In the limit as , the product ΔmA v A is a second order differential (the product of two 
Δ!first order differentials) and the term ΔmA v A / Δt approaches zero, therefore the 

momentum principle yields the differential equation 

d A 
!
0


dmA !v !u(t) (
 (t) − ) . (12.3.22)
+
= mA Adt dt 

The x -component of Eq. (12.3.22) is then 

dvA dmA0 = mA (t) + (t) − u) . (12.3.23)(vAdt dt 

Rearranging terms and using the fact that the material is blown into car A at a constant 
rate b ≡ dmA / dt , we have that the rate of change of the x -component of the velocity of 
car A is given by 

dvA (t) 
dt 

= 
b(u − vA (t)) 

mA (t) 
. (12.3.24) 
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We cannot directly integrate Eq. (12.3.24) with respect to dt because the mass of the car 
A is a function of time. In order to find the x -component of the velocity of car A we 
need to know the relationship between the mass of car A and the x -component of the 
velocity of the car A . There are two approaches. In the first approach we separate 
variables in Eq. (12.3.24) where we have suppressed the dependence on t in the 
expressions for mA and vA yielding 

dvA dmA= , (12.3.25)
u − vA mA 

which becomes the integral equation 

v′ A = vA (t ) ′ m ′ A = mA (t ) ′dvA dmA= , (12.3.26)∫ ∫
′ ′ 
v′ A =0 u − vA m′ 

A = mA ,0 
mA 

where mA,0 is the mass of the car before any material has been blown in. After integration 
we have that 

u (t)mAln = ln . (12.3.27)
u − vA (t) mA,0 

Exponentiate both side yields 
u mA (t)= . (12.3.28)

(t)u − vA mA,0 

We can solve this equation for the x -component of the velocity of the car 

mA (t) − mA,0 (t) = u . (12.3.29)vA (t)mA 

Because the material is blown into the car at a constant rate b ≡ dmA / dt , the mass of the 
car as a function of time is given by 

+ bt . (12.3.30)mA (t) = mA,0 

Therefore substituting Eq. (12.3.30) into Eq. (12.3.29) yields the x -component of the 
velocity of the car as a function of time 

bt
(t) = u . (12.3.31)vA + btmA,0 

In a second approach, we substitute Eq. (12.3.30) into Eq. (12.3.24) yielding 
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dvA b(u − vA )= . (12.3.32)
dt m + btA,0 

Separate variables in Eq. (12.3.32): 
dvA bdt 

= , (12.3.33)
u − v m + btA A,0 

which then becomes the integral equation 

vA 
′ =vA (t ) t ′ = tdvA dt′ 

= . (12.3.34)∫ 
′

′ ∫ 
′ =0 u − v t ′ =0 m + bt′ vA A A,0 

Integration yields 
u m + bt 

ln = ln A,0 . (12.3.35)
u − v (t) mA A,0 

Again exponentiate both sides resulting in 
u m + bt 

= A,0 . (12.3.36)
u − v (t) mA A,0 

After some algebraic manipulation we can find the speed of the car as a function of time 
bt(t) = u . (12.3.37)vA + btmA,0 

in agreement with Eq. (12.3.31). 

Check result: 

We can rewrite Eq. (12.3.37) as 
(mA,0 + bt)vA (t) = btu , (12.3.38) 

which illustrates the point that the momentum of the system at time t is equal to the 
momentum of the grain that has been transferred to the system during the interval [0,t] . 

Example 12.4 Boat and Fire Hose 

A burning boat of mass m0 is initially at rest. A fire fighter stands on a bridge and sprays 
water onto the boat. The water leaves the fire hose with a speed u at a rate α (measured 
in kg s-1 ). Assume that the motion of the boat and the water jet are horizontal, that ⋅ 
gravity does not play any role, and that the river can be treated as a frictionless surface. 
Also assume that the change in the mass of the boat is only due to the water jet and that 
all the water from the jet is added to the boat, (Figure 12.10). 
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Figure 12.10 Example 12.4 

a)	 In a time interval [ ,t t + Δt] , an amount of water Δm hits the boat. Choose a 
system. Is the total momentum constant in your system? Write down a differential 
equation that results from the analysis of the momentum changes inside your 
system. 

b)	 Integrate the differential equation you found in part a), to find the velocity ( )v m 

as a function of the increasing mass m of the boat, m0 , and u . 

Solution: Let’s take as our system the boat, the amount of water of mass Δm that enters w 

the boat during the time interval [ ,t t + Δt] and whatever water is in the boat at time t . 
The water from the fire hose has a speed u . Denote the mass of the boat (including some 
water) at time t by mb (t) , and the speed of the boat by v ≡ vb (t) . At time t + Δt the≡ mb 

speed of the boat is v + Δv . Choose the positive x - direction in the direction that the boat 
is moving. Then the x -components of the momentum of the system at time t and t + Δt 
are shown in Figure 12.11. 

u v 

t + t 

t 

m w 

m w 

v + v 

mb 

mb 

Figure 12.11 Momentum diagrams for burning boat 

Because we are assuming that the burning boat slides with negligible resistance and that 
gravity has a negligible effect on the arc of the water jet, there are no external forces 
acting on the system in the x -direction. Therefore the x -component of the momentum of 
the system is constant during the interval [ ,t t + Δt] and so 
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p t( t) ( )  +  Δ − p tx x0 = lim . (12.3.39)
t 0Δ →  Δt 

Using the information from the figure above, Eq. (12.3.39) becomes 

(m + Δm )(v +  Δ  − Δ  v) ( m u  + m v)b w w b0 = lim . (12.3.40)
t 0Δ →  Δt 

Eq. (12.3.40) simplifies to 
Δv Δmw ΔmwΔv Δmw0 = lim mb + lim v + lim − lim u . (12.3.41)

Δ →t 0 Δ →t 0 t t 0 Δ t 0 ΔtΔ →Δt Δ Δ →  t 

The third term vanishes when we take the limit Δ →t 0 because it is of second order in 
the infinitesimal quantities (in this case m v ) and when dividing by ΔtΔ Δ so thew 

quantity is of first order and hence vanishes since both Δmw → 0 and Δ →v 0 . Eq. 
(12.3.41) becomes 

Δv Δmw Δmw0 = lim mb + lim v − lim u . (12.3.42)
t 0 t Δ →0Δ →  Δ →0 tΔt Δt Δt 

We now use the definition of the derivatives: 

Δv dv  Δm  dmw wlim = ; lim = . (12.3.43)
t 0Δ →t 0 Δt dt Δ → Δt dt 

in Eq. (12.3.42) to fund the differential equation describing the relation between the 
acceleration of the boat and the time rate of change of the mass of water entering the 
boat 

dv dmw0 = mb + (v − u) . (12.3.44)
dt dt 

The mass of the boat is increasing due to the addition of the water. Let m t( ) denote the w

mass of the water that is in the boat at time t . Then the mass of the boat can be written as 

+ m (t) , (12.3.45)mb (t) = m0 w 

where m0 is the mass of the boat before any water entered. Note we are neglecting the 
effect of the fire on the mass of the boat. Differentiating Eq. (12.3.45) with respect to 
time yields 

dmb dmw= , (12.3.46)
dt dt 

Then Eq. (12.3.44) becomes 
dv dmb0 = mb + (v − u) . (12.3.47)
dt dt 
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(b) We can integrate this equation through the separation of variable technique. Rewrite 
Eq. (12.3.47) as (cancel the common factor dt ) 

dv dmb= − . (12.3.48)
v u  m− b 

We can then integrate both sides of Eq. (12.3.48) with the limits as shown 

v(t ) mb (t )dv dmb= − (12.3.49)∫ ∫v − u v=0 m0 
mb 

Integration yields 
⎛ v(t) − u⎞ ⎛ mb (t)⎞ln 

⎠⎟ 
= − ln (12.3.50)

⎝⎜ −u ⎝⎜ m0 ⎠⎟ 

Recall that ln( / ) b a so Eq. (12.3.50) becomesa b = − ln( / ) 

⎛ v(t) − u ⎞ ⎛ ⎞
ln 

⎠⎟ 
= ln 

m0 (12.3.51)
⎝⎜ −u ⎝⎜ mb (t)⎠

⎟ 

Also recall that exp(ln( / )) /a b  = a b and so exponentiating both sides of Eq. (12.3.51) 
yields 

v(t) − u m0= (12.3.52)
−u (t)mb 

So the speed of the boat at time t can be expressed as 

⎛ ⎞m0v(t) = u 1− (12.3.53)
⎝⎜ (t)⎠⎟mb 

Check result: 

We can rewrite Eq. (12.3.52) as 

mb (t)(v(t) − u) = −m0u ⇒ mb (t)v(t) = (mb (t) − m0 )u . (12.3.54) 

Recall that the mass of the water that enters the car during the interval [0,t] is 
m (t) = mb . Therefore Eq. (12.3.54) becomes w (t) − m0 

(t)v(t) = m (t)u . (12.3.55)mb w 

12-15 



  

 
       

            
           

          
       

          
 

 
      

 
     

 
 

            
 

 

   

 
          

          
  

 
  

 
           

         
           
            

               
 

 

 
 

   

 

 

 

 

   
  

    

 

 

   

  

  


 

During the interaction between the jet of water and the boat, the water transfers an 
amount of momentum m (t)u to the boat and car producing a momentum (t)v(t) . w mb 

Because all the water that collides with the boat ends up in the boat, all the interaction 
forces between the jet of water and the boat are internal forces. The boat recoils forward 
and the water recoils backward and through collisions with the boat stays in the boat. 
Therefore if we choose as our system, all of the water that eventually ends up in the boat 
and the boat then the momentum principle states 

p (t) = p (0) , (12.3.56)sys sys 

where p (0) = m (t)u is the momentum of all of the water that eventually ends up in thesys w 

boat. 

Note that the problem didn’t ask to find the speed of the boat as a function t . We shall 
now show how to find that. We begin by observing that 

dmb dmw= ≠α (12.3.57)
dt dt 

where the constant α is measured in kg s⋅ -1 and is specified as a given constant 
according to the information in the problem statement. The reason is that α is the rate 
that the water is ejected from the hose but not the rate that the water enters the boat. 

u t 

m = u t 

Figure 12.12 Mass per unit length of water jet 

Consider a small amount of water that is moving with speed u that, in a time interval Δt , 
flows through a cross sectional area oriented perpendicular to the flow (see Figure 12.12). 
The area is larger than the cross sectional area of the jet of water. The amount of water 
that floes through the area element Δm = λuΔt , where λ is the mass per unit length of 
the jet and uΔt is the length of the jet that flows through the area in the interval Δt . The 
mass rate of water that flows through the cross sectional area element is then 

Δmα = = λu . (12.3.58)
Δt 
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In the Figure 12.13 we consider a small length uΔt of the water jet that is just behind the 
boat at time t . During the time interval [ ,t t + Δt] , the boat moves a distance v t .Δ 

u t v 
t 

v t 
(u v) t 

t + t 

Figure 12.13 Amount of water that enter boat in time interval [t,t + Δt] 

Only a fraction of the length uΔt of water enters the boat and is given by 

αΔmw = λ(u − v)Δt = (u − v)Δt (12.3.59)
u 

Dividing Eq. (12.3.59) through by Δt and taking limits we have that 

dmw Δmw α = lim = (u − v) = α (1− 
v ) . (12.3.60)

dt Δt→0 Δt u u 

Substituting Eq. (12.3.53) and Eq. (12.3.46) into Eq. (12.3.60) yields 

dmb = α (1− 
v m0) = α . (12.3.61)

dt u (t)mb 

We can integrate this equation by separating variables to find an integral expression for 
the mass of the boat as a function of time 

mb (t ) t 

dt . (12.3.62)∫ mb dmb = α m0 ∫ 
t=0m0 

We can easily integrate both sides of Eq. (12.3.62) yielding 
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1 (mb (t)
2 − m0

2 ) = α mb,0t . (12.3.63)
2 

The mass of the boat as a function of time is then 

αt(t) = m0 1+ 2 . (12.3.64)mb m0 

We now substitute Eq. (12.3.64) into Eq. (12.3.65)yielding the speed of the burning boat 
as a function of time 

⎛ ⎞ 
⎜ ⎟ 
⎜ 1 ⎟v t( ) = u 1 (12.3.66)⎟⎜ − 

αt⎜ 1+ 2 ⎟⎜ ⎟m⎝ b,0 ⎠ 

12.3 Rocket Propulsion 

!A rocket at time t = ti is moving with velocity v r ,i with respect to a fixed reference 

frame. During the time interval [ti ,t f ] the rocket continuously burns fuel that is 
!continuously ejected backwards with velocity u relative to the rocket. This exhaust 

velocity is independent of the velocity of the rocket. The rocket must exert a force to 
accelerate the ejected fuel backwards and therefore by Newton’s Third law, the fuel 
exerts a force that is equal in magnitude but opposite in direction accelerating the rocket 

!forward. The rocket velocity is a function of time, v (t) . Because fuel is leaving the 
r 

rocket, the mass of the rocket is also a function of time, mr (t) , and is decreasing at a rate 
! 

dm / dt . Let F denote the total external force acting on the rocket. We shall use the r ext 
!momentum principle, to determine a differential equation that relates dv r / dt , dmr / dt , 

! ! ! 
u , v (t) , and F , an equation known as the rocket equation.ext r 

We shall apply the momentum principle during the time interval [t,t + Δt] with Δt taken 
to be a small interval (we shall eventually consider the limit that Δt → 0 ), and ti < t < t f . 
During this interval, choose as our system the mass of the rocket at time t , 

m = m (t) = m (t) , (12.3.67)sys r r ,d + mf 

where mr ,d is the dry mass of the rocket and mf (t) is the mass of the fuel in the rocket at 

time t . During the time interval [t,t + Δt] , a small amount of fuel of mass Δmf (in the 
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!limit that Δt → 0 , Δmf → 0 ) is ejected backwards with velocity u to the rocket. Before 
the fuel is ejected, it is traveling at the velocity of the rocket and so during the time 
interval [t,t + Δt] , the elected fuel undergoes a change in momentum and the rocket 

! recoils forward. At time t + Δt the rocket has velocity v r (t + Δt) . Although the ejected 
fuel continually changes its velocity, we shall assume that the fuel is all ejected at the 
instant t + Δt and then consider the limit as Δt → 0 . Therefore the velocity of the ejected 
fuel with respect to the fixed reference frame is the vector sum of the relative velocity of

! !the fuel with respect to the rocket and the velocity of the rocket, u + v r (t + Δt) . Figure 
12.14 represents momentum diagrams for our system at time t and t + Δt relative to a 

!fixed inertial reference frame in which velocity of the rocket at time t is v (t) . 
r 

v r (t)( ) 

time 

mf 

u + v v r (t + t)
r (t + t) 

m r (t) + m r 

time t + 

Figure 12.14 Momentum diagrams for system at time t and t + Δt 

The momentum of the system at time t is 

!psys (t) = mr (t)v
!
r (t) . 	 (12.3.68) 

Note that the mass of the system at time t	 is 

m = m (t) . (12.3.69)sys r 

The momentum of the system at time t + Δt is 

t 

!psys (t + Δt) = mr (t + Δt)!v r (t + Δt) + Δmf (
!u+

!v r (t + Δt)) , (12.3.70) 

where m (t + Δt) = m (t) + Δm . With this notation the mass of the system at time t + Δt r r r 

is given by 
msys = mr (t + Δt) + Δmf = mr (t) + Δmr + Δmf . (12.3.71) 

Because the mass of the system is constant, setting Eq. (12.3.69) equal to Eq. (12.3.71) 
requires that 
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Δmr = −Δmf . (12.3.72) 

The momentum of the system at time t + Δt (Eq. (12.3.70)) can be rewritten as 

!p
!p 

(t + Δt) = (mr (t) + Δmr 

(t) (t + Δt) − Δmr 
!v r 

) (t + Δt) − Δmr 
!u 

!v r (
!u+

!v r (t + Δt)) sys , (12.3.73)


(t + Δt) = mrsys 

We can now apply Newton’s Second Law in the form of the momentum principle, 

!!( ( ) ( Δ ) − Δ ) − ( ) ( )t t + t t tm v m u m v r r r r rFext = lim 

v v r r 

!!
 

ΔtΔt→0 .. (12.3.74)
!
 !
(t + Δt) − (t) Δm !
(t) lim
Δt→0 

− lim r= m u
Δt Δtr Δt→0 

We now take the limit as 
!v!

Fext 

Eq. (12.3.75) is known as the rocket equation. 


Suppose the rocket is moving in the positive x -direction with an external force given by 
! !F = F î Then u = −u î , where u > 0 is the relative speed of the fuel and it is moving ext ext ,x 

!in the negative x -direction, v = v î . Then the rocket equation (Eq. (12.3.75)) becomesr r ,x 

dv dmr ,x rF = m (t) + u . (12.3.76)ext ,x r dt dt 

Note that the rate of decrease of the mass of the rocket, dmr / dt , is equal to the negative 
of the rate of increase of the exhaust fuel 

dm dmfr = − . (12.3.77)
dt dt 

We can rewrite Eq. (12.3.76) as 
dm dv 

r r ,xF − u = m (t) . (12.3.78)ext ,x rdt dt 

The second term on the left-hand-side of Eq. (12.3.78) is called the thrust 

d dm
− !u(t) (12.3.75)
r r= m .


dt dtr 
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dmr 
dmf= − u = u . (12.3.79)Fthrust ,x dt dt 

Note that this is not an extra force but the result of the forward recoil due to the ejection 
of the fuel. Because we are burning fuel at a positive rate dmf / dt > 0 and the speed 
u > 0 , the direction of the thrust is in the positive x -direction. 

12.3.1 Rocket Equation in Gravity-free Space 

We shall first consider the case in which there are no external forces acting on the 
system, then Eq. (12.3.78) becomes 

dm dv 
r r ,x− u = mr (t) . (12.3.80)

dt dt 

In order to solve this equation, we separate the variable quantities vr ,x (t) and mr (t) and 
multiply both sides by dt yielding 

dm rdv = −u . (12.3.81)r ,x mr (t) 

We now integrate both sides of Eq. (12.3.81) with limits corresponding to the values of 
the x -component of the velocity and mass of the rocket at times ti when the ejection of 
the burned fuel began and the time t f when the process stopped, 

v ′ =v m′ = mr ,x r ,x , f r r , f u
∫ dvr ′ ,x = − ∫ m′ 

dmr ′ . (12.3.82) 
v ′ = v m′ = m rr ,x r ,x ,i r r ,i 

Performing the integration and substituting in the values at the endpoints yields 

⎛
 ⎞
m r , f 

m r ,i 

− v = −u ln (12.3.83)
⎜
⎝


⎟
⎠
 

v .
 r ,x , f r ,x ,i 

Because the rocket is losing fuel, m < m , we can rewrite Eq. (12.3.83) as r , f r ,i 

⎛
 ⎞
m r ,i 

m r , f 

− v = u ln (12.3.84)
⎜
⎝
 

⎟
⎠
 

v .
 r ,x , f r ,x ,i 
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We note ln(m / m ) > 1 . Therefore v > v as we expect. After a slightr ,i r , f r ,x , f r ,x ,i , 
rearrangement of Eq. (12.3.84), we have an expression for the x -component of the 
velocity of the rocket as a function of the mass mr of the rocket 

⎛
 ⎞
m r ,i 

m r , f 

+ u ln .
 (12.3.85)
⎜
⎝
 

⎟
⎠
 

v = v r ,x , f r ,x ,i 

Let’s examine our result. First, let’s suppose that all the fuel was burned and ejected. 
Then m ≡ m is the final dry mass of the rocket (empty of fuel). The ratior , f r ,d 

m 
R = r ,i (12.3.86)

m r ,d 

is the ratio of the initial mass of the rocket (including the mass of the fuel) to the final dry 
mass of the rocket (empty of fuel). The final velocity of the rocket is then 

v = v + u ln R . (12.3.87)r ,x , f r ,x ,i 

This is why multistage rockets are used. You need a big container to store the fuel. Once 
all the fuel is burned in the first stage, the stage is disconnected from the rocket. During 
the next stage the dry mass of the rocket is much less and so R is larger than the single 
stage, so the next burn stage will produce a larger final speed then if the same amount of 
fuel were burned with just one stage (more dry mass of the rocket). In general rockets do 
not burn fuel at a constant rate but if we assume that the burning rate is constant where 

dmf dm
b = = − r (12.3.88)

dt dt 
then we can integrate Eq. (12.3.88) 

mr ′ = mr (t ) t ′= t 

dm′ = −b dt′ (12.3.89)∫ r ∫ 
m′ = t ′= tir mr ,i 

and find an equation that describes how the mass of the rocket changes in time 

m (t) = m − b(t − ti ) . (12.3.90)r r ,i 

For this special case, if we set t f = t in Eq. (12.3.85), then the velocity of the rocket as a 
function of time is given by 

⎛
 ⎞
m r ,i 

m − bt r ,i 

+ u ln (12.3.91)
v = v ⎜
⎝


⎟
⎠
 

.
 r ,x , f r ,x ,i 
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Example 12.4 Single-Stage Rocket 

Before a rocket begins to burn fuel, the rocket has a mass of mr ,i = 2.81× 107 kg , of 

which the mass of the fuel is mf ,i = 2.46 × 107 kg . The fuel is burned at a constant rate 
with total burn time is 510 s and ejected at a speed u = 3000 m/s relative to the rocket. If 
the rocket starts from rest in empty space, what is the final speed of the rocket after all 
the fuel has been burned? 

Solution: The dry mass of the rocket is m ≡ m − m = 0.35 × 107 kg , hence r ,d r ,i f ,i 

R = m / m = 8.03 . The final speed of the rocket after all the fuel has burned isr ,i r ,d 

v = Δv = u ln R = 6250 m/s . (12.3.92)r , f r 

Example 12.5 Two-Stage Rocket 

Now suppose that the same rocket in Example 12.4 burns the fuel in two stages ejecting 
the fuel in each stage at the same relative speed. In stage one, the available fuel to burn is 
m = 2.03 × 107 kg with burn time 150 s . Then the empty fuel tank and accessories f ,1,i 

from stage one are disconnected from the rest of the rocket. These disconnected parts 
have a mass m = 1.4 × 106 kg . All the remaining fuel with mass is burned during the 
second stage with burn time of 360 s . What is the final speed of the rocket after all the 
fuel has been burned? 

Solution: The mass of the rocket after all the fuel in the first stage is burned is 
m r ,1,d = m − m = 0.78 × 107 kg and R1 = m r ,1,i / mr ,1,d = 3.60 . The change in speed r ,1,i f ,1,i 

after the first stage is complete is 

Δvr ,1 = u ln R1 = 3840 m/s . (12.3.93) 

After the empty fuel tank and accessories from stage one are disconnected from the rest 
of the rocket, the remaining mass of the rocket is m = 2.1× 106 kg . The remaining fuel r ,2,d 

has mass m = 4.3 × 106 kg . The mass of the rocket plus the unburned fuel at the f ,2,i 

beginning of the second stage is m = 6.4 × 106 kg . Then = m / m = 3.05 . r ,2,i R2 r ,2,i r ,2,d 

Therefore the rocket increases its speed during the second stage by an amount 

Δvr ,2 = u ln R2 = 3340 m/s . (12.3.94) 

The final speed of the rocket is the sum of the change in speeds due to each stage, 

12-23 



  

 
     

 
         

  
  

 
 

  

  
 

                
  

       

 
       

  
 

 
  

  

 
      

  

 
  

  

 

     

 

 

     

  

  

  

= Δv = u ln R1 + u ln R2 = u ln(R1R2 ) = 7190 m/s , (12.3.95)v f r 

which is greater than if the fuel were burned in one stage. Plots of the speed of the rocket 
as a function time for both one-stage and two-stage burns are shown Figure 12.15. 

Figure 12.15 Plots of speed of rocket for both one-stage burn and two-stage burn 

12.3.2 Rocket in a Constant Gravitational Field: 

Now suppose that the rocket takes off from rest at time t = 0 in a constant gravitational 
field then the external force is 

F
 

total  = m g . (12.3.96)ext r 

Choose the positive x -axis in the upward direction then Fext ,x (t) = −mr (t)g . Then the 
rocket equation (Eq. (12.3.75) becomes 

dm dv 
r r ,x−m (t)g − u = m (t) . (12.3.97)r dt r dt 

Multiply both sides of Eq. (12.3.97) by dt , and divide both sides by mr (t) . Then Eq. 
(12.3.97) can be written as 

dm
dvr ,x = −gdt − r u . (12.3.98)

mr (t) 

We now integrate both sides 
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v (t ) m (t )r ,x r tdm′ 
dv′ = −u r − g dt′ , (12.3.99)∫ r ,x ∫ m′ ∫ 

v 0 m r 0r ,x ,i = r ,i 

where mr ,i is the initial mass of the rocket and the fuel. Integration yields 

⎛
 ⎛⎞ ⎞
m r (t) 
m r ,i 

m r ,iv r ,x (t) = −u ln ⎟
⎠
 
− gt = u ln ⎜

⎝
 
− gt . (12.3.100)⎜

⎝

⎟
⎠
(t)m r 

After all the fuel is burned at t = t f , the mass of the rocket is equal to the dry mass 

and somr , f = mr ,d 

v r ,x (t f ) = u ln R − gt f . (12.3.101) 

The first term on the right hand side is independent of the burn time. However the second 
term depends on the burn time. The shorter the burn time, the smaller the negative 
contribution from the third turn, and hence the rocket ends up with a larger final speed. 
So the rocket engine should burn the fuel as fast as possible in order to obtain the 
maximum possible speed. 
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Chapter 13 Energy, Kinetic Energy, and Work 

Acceleration of the expansion of the universe is one of the most exciting 
and significant discoveries in physics, with implications that could 
revolutionize theories of quantum physics, gravitation, and cosmology. 
With its revelation that close to the three-quarters of the energy density of 
the universe, given the name dark energy, is of a new, unknown origin and 
that its exotic gravitational “repulsion” will govern the fate of the 
universe, dark energy and the accelerating universe becomes a topic not 
just of great interest to research physicists but to science students at all 
levels. 1 

Eric Linder 

13.1 The Concept of Energy and Conservation of Energy 

The transformation of energy is a powerful concept that enables us to describe a vast 
number of processes: 

Falling water releases stored gravitational potential energy, which can become the 
kinetic energy associated with a coherent motion of matter. The harnessed mechanical 
energy can be used to spin turbines and alternators, doing work to generate electrical 
energy, transmitted to consumers along power lines. When you use any electrical 
device, the electrical energy is transformed into other forms of energy. In a 
refrigerator, electrical energy is used to compress a gas into a liquid. During the 
compression, some of the internal energy of the gas is transferred to the random 
motion of molecules in the outside environment. The liquid flows from a high-
pressure region into a low-pressure region where the liquid evaporates. During the 
evaporation, the liquid absorbs energy from the random motion of molecules inside of 
the refrigerator. The gas returns to the compressor. 

“Human beings transform the stored chemical energy of food into various forms 
necessary for the maintenance of the functions of the various organ system, tissues 

2
and cells in the body.” A person can do work on their surroundings – for example, by 
pedaling a bicycle – and transfer energy to the surroundings in the form of increasing 
random motion of air molecules, by using this catabolic energy. 

Burning gasoline in car engines converts chemical energy, stored in the molecular 
bonds of the constituent molecules of gasoline, into coherent (ordered) motion of the 
molecules that constitute a piston. With the use of gearing and tire/road friction, this 
motion is converted into kinetic energy of the car; the automobile moves. 

1 Eric Linder, Resource Letter: Dark Energy and the Accelerating Universe, Am.J.Phys.76: 197-
204, 2008; p. 197. 
2 George B. Benedek and Felix M.H. Villars, Physics with Illustrative Examples from Medicine and 
Biology, Volume 1: Mechanics, Addison-Wesley, Reading, 1973, p. 115-6. 
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Stretching or compressing a spring stores elastic potential energy that can be released 
as kinetic energy. 

The process of vision begins with stored atomic energy released as electromagnetic 
radiation (light), which is detected by exciting photoreceptors in the eye, releasing 
chemical energy. 

When a proton fuses with deuterium (a hydrogen atom with a neutron and proton for 
a nucleus), helium-three is formed (with a nucleus of two protons and one neutron) 
along with radiant energy in the form of photons. The combined internal energy of 
the proton and deuterium are greater than the internal energy of the helium-three. This 
difference in internal energy is carried away by the photons as light energy. 

There are many such processes involving different forms of energy: kinetic energy, 
gravitational energy, thermal energy, elastic energy, electrical energy, chemical energy, 
electromagnetic energy, nuclear energy and more. The total energy is always conserved 
in these processes, although different forms of energy are converted into others. 

Any physical process can be characterized by two states, initial and final, between 
which energy transformations can occur. Each form of energy E j , where “ j ” is an 
arbitrary label identifying one of the N forms of energy, may undergo a change during 
this transformation, 

ΔE j ≡ Efinal, j − Einitial, j . (13.1.1) 

Conservation of energy means that the sum of these changes is zero, 

N 

ΔE1 + ΔE2 + ⋅⋅⋅+ ΔEN = ∑ΔE j = 0 . (13.1.2) 
j=1 

Two important points emerge from this idea. First, we are interested primarily in 
changes in energy and so we search for relations that describe how each form of energy 
changes. Second, we must account for all the ways energy can change. If we observe a 
process, and the sum of the changes in energy is not zero, either our expressions for 
energy are incorrect, or there is a new type of change of energy that we had not 
previously discovered. This is our first example of the importance of conservation laws in 
describing physical processes, as energy is a key quantity conserved in all physical 
processes. If we can quantify the changes of different forms of energy, we have a very 
powerful tool to understand nature. 

We will begin our analysis of conservation of energy by considering processes 
involving only a few forms of changing energy. We will make assumptions that greatly 
simplify our description of these processes. At first we shall only consider processes 
acting on bodies in which the atoms move in a coherent fashion, ignoring processes in 
which energy is transferred into the random motion of atoms. Thus we will initially 
ignore the effects of friction. We shall then treat processes involving friction between 
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consider rigid bodies. We will later return to processes in which there is an energy 
transfer resulting in an increase or decrease in random motion when we study the First 
Law of Thermodynamics. 

Energy is always conserved but we often prefer to restrict our attention to a set of 
objects that we define to be our system. The rest of the universe acts as the surroundings. 
We illustrate this division of system and surroundings in Figure 13.1. 

Figure 13.1 A diagram of a system and its surroundings with boundary 

Because energy is conserved, any energy that leaves the system must cross 
through the boundary and enter the surroundings. Consider any physical process in which 
energy transformations occur between initial and final states. We assert that 

when a system and its surroundings undergo a transition from an initial 
state to a final state, the change in energy is zero, 

ΔE = ΔEsystem + ΔEsurroundings = 0 . (13.1.3) 

Eq. (13.1.3) is called conservation of energy and is our operating definition for energy. 
We will sometime refer to Eq. (13.1.3) as the energy principle. In any physical 
application, we first identify our system and surroundings, and then attempt to quantify 
changes in energy. In order to do this, we need to identify every type of change of energy 
in every possible physical process. When there is no change in energy in the surroundings 
then the system is called a closed system, and consequently the energy of a closed system 
is constant. 

ΔE = 0, (closed system) . (13.1.4)system 

If we add up all known changes in energy in the system and surroundings and do 
not arrive at a zero sum, we have an open scientific problem. By searching for the 
missing changes in energy, we may uncover some new physical phenomenon. Recently, 
one of the most exciting open problems in cosmology is the apparent acceleration of the 
expansion of the universe, which has been attributed to dark energy that resides in space 
itself, an energy type without a clearly known source.3 

3 http://www-supernova.lbl.gov/~evlinder/sci.html 
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13.2 Kinetic Energy 

The first form of energy that we will study is an energy associated with the coherent 
motion of molecules that constitute a body of mass m ; this energy is called the kinetic 
energy (from the Greek word kinetikos which translates as moving). Let us consider a car 
moving along a straight road (along which we will place the x -axis). For an observer at 

 ˆrest with respect to the ground, the car has velocity v = vx i . The speed of the car is the 

magnitude of the velocity, v ≡ .vx 

The kinetic energy K of a non-rotating body of mass m moving with speed 
v is defined to be the positive scalar quantity 

1 2K ≡ mv (13.2.1)
2 

The kinetic energy is proportional to the square of the speed. The SI units for kinetic 
2 ⋅ senergy are [kg ⋅ m −2 ] . This combination of units is defined to be a joule and is denoted 

2 ⋅ s−2by [J] , thus 1 J ≡ 1 kg ⋅ m . (The SI unit of energy is named for James Prescott 
Joule.) The above definition of kinetic energy does not refer to any direction of motion, 
just the speed of the body. 

Let’s consider a case in which our car changes velocity. For our initial state, the 
!car moves with an initial velocity v = v î along the x -axis. For the final state (at some i x ,i 

later time), the car has changed its velocity and now moves with a final velocity 
 v f = vx, f î . Therefore the change in the kinetic energy is 

1 2 − 
1 2ΔK = mv f mvi . (13.2.2)

2 2 

Example 13.1 Change in Kinetic Energy of a Car 

Suppose car A increases its speed from 10 to 20 mph and car B increases its speed from 
50 to 60 mph. Both cars have the same mass m . (a) What is the ratio of the change of 
kinetic energy of car B to the change of kinetic energy of car A? In particular, which car 
has a greater change in kinetic energy? (b) What is the ratio of the change in kinetic 
energy of car B to car A as seen by an observer moving with the initial velocity of car A? 

Solution: (a) The ratio of the change in kinetic energy of car B to car A is 
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1 )2 − 
1 )2 

)2 − (vB,i )
2m(vB, f m(vB,iΔKB 2 2 (vB, f= = 

)2ΔK A 1 )2 − 
1 )2 (vA, f )

2 − (vA,i 
2 

m(vA, f 2 
m(vA,i 

(60 mph)2 − (50 mph)2 

= = 11/ 3. 
(20 mph)2 − (10 mph)2 

Thus car B has a much greater increase in its kinetic energy than car A. 

(b) In a reference moving with the speed of car A , car A increases its speed from rest to 
10 mph and car B increases its speed from 40 to 50 mph. The ratio is now 

1 )2 − 
1 )2 

)2ΔKB 2 
m(vB, f 2 

m(vB,0 (vB, f )
2 − (vB,0 = = 

ΔK A 1 )2 − 
1 )2 (vA, f )

2 − (vA,0 )
2 

2 
m(vA, f 2 

m(vA,0 

(50 mph)2 − (40 mph)2 

= = 9. 
(10 mph)2 

The ratio is greater than that found in part a). Note that from the new reference frame 
both car A and car B have smaller increases in kinetic energy. 

13.3 Kinematics and Kinetic Energy in One Dimension 

13.3.1 Constant Accelerated Motion 

Let’s consider a constant accelerated motion of a rigid body in one dimension in which 
we treat the rigid body as a point mass. Suppose at t = 0 the body has an initial x -
component of the velocity given by vx ,i . If the acceleration is in the direction of the 
displacement of the body then the body will increase its speed. If the acceleration is 
opposite the direction of the displacement then the acceleration will decrease the body’s 
speed. The displacement of the body is given by 

Δx = v t + 
1 

a t2 . (13.3.1)x ,i x2 

The product of acceleration and the displacement is 

a Δx = a (v t + 
1 

a t2 ) . (13.3.2)x x x ,i x2 
The acceleration is given by 
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Δv (v − v )
x x , f x ,ia = = . (13.3.3)x Δt t 

Therefore 
⎛ ⎞(vx , f − v x ,i ) 1 (v x , f − v x ,i ) t2a Δx = v t + ⎟ . (13.3.4)x ⎜ x ,it ⎝ 2 t ⎠ 

Equation (13.3.4) becomes 

1 1 2 − 
1 2a Δx = (vx , f − v x ,i )(v ) + (v − v )(v x , f − vx ,i ) = v v (13.3.5)x x ,i x , f x ,i x , f x ,i .2 2 2 

If we multiply each side of Equation (13.3.5) by the mass m of the object this 
kinematical result takes on an interesting interpretation for the motion of the object. We 
have 

1 2 1 2ma x Δx = 
2 

mv x , −f m 
2 

vx ,i = K f − Ki . (13.3.6) 

Recall that for one-dimensional motion, Newton’s Second Law is Fx = ma x , for the 
motion considered here, Equation (13.3.6) becomes 

F Δx = K − K . (13.3.7)x f i 

13.3.2 Non-constant Accelerated Motion 

If the acceleration is not constant, then we can divide the displacement into N intervals 
indexed by j = 1 to N . It will be convenient to denote the displacement intervals by Δx j , 

the corresponding time intervals by Δt j and the x -components of the velocities at the 
beginning and end of each interval as vx, j−1 and vx, j . Note that the x -component of the 

velocity at the beginning and end of the first interval j = 1 is then v = v and the x ,1 x ,i 

velocity at the end of the last interval, j = N is vx N = vx, j . Consider the sum of the , 

products of the average acceleration (a ) and displacement Δx j in each interval,x, j ave 

j= N 

∑ (a ) Δx j . (13.3.8)x , j ave 
j=1 

The average acceleration over each interval is equal to 

Δv (v − v )x , j x , j+1 x , j(a ) = = , (13.3.9)x , j ave Δt j Δt j 
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and so the contribution in each integral can be calculated as above and we have that 

1 2 − 
1 2(a x , j )ave Δx j = 

2 
v x , j 2 

v x , j−1 . (13.3.10) 

When we sum over all the terms only the last and first terms survive, all the other terms 
cancel in pairs, and we have that 

j= N 1 2 1 2∑ (ax , j )ave Δx j = 
2 

vx , f − 
2 

vx ,i . (13.3.11) 
j=1 

In the limit as N →∞ and Δx j → 0 for all j (both conditions must be met!), the limit of 
the sum is the definition of the definite integral of the acceleration with respect to the 
position, 

x=x fj=N 

lim ∑ (a x , j )ave Δx j ≡ ∫ a x ( x) dx . (13.3.12)
N→∞ 

j=1Δx j →0 x=xi 

Therefore In the limit as N →∞ and Δx j → 0 for all j , with v → v , Eq. (13.3.11)x , N x , f 

becomes 
x=x f 1 2 2( x)dx = (v − v ) (13.3.13)x x , f x ,i∫ a 

2 x=xi 

This integral result is consequence of the definition that ax ≡ dvx / dt . The integral in Eq. 
(13.3.13) is an integral with respect to space, while our previous integral 

t = t f 

a (t) dt = v − v (13.3.14)∫ x x , f x ,i . 
t = ti 

requires integrating acceleration with respect to time. Multiplying both sides of Eq. 
(13.3.13) by the mass m yields 

x=x f 1 2 2ma ( x) dx = m(v − v ) = K f − Ki . (13.3.15)∫ x 2 x , f x ,i 
x=xi 

When we introduce Newton’s Second Law in the form Fx = ma x , then Eq. (13.3.15) 
becomes 

x= x f 

F (x) dx = K − K (13.3.16)∫ x f i . 
x = xi 
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The integral of the x -component of the force with respect to displacement in Eq.  
(13.3.16) applies to the motion of a point-like object. For extended bodies, Eq. (13.3.16) 
applies to the center of mass motion because the external force on a rigid body causes the 
center of mass to accelerate. 

13.4 Work done by Constant Forces 

We will begin our discussion of the concept of work by analyzing the motion of an object 
in one dimension acted on by constant forces. Let’s consider the following example: push 
a cup forward with a constant force along a desktop. When the cup changes velocity (and 
hence kinetic energy), the sum of the forces acting on the cup must be non-zero according 
to Newton’s Second Law. There are three forces involved in this motion: the applied      pushing force Fa ; the contact force C ≡ N + fk ; and gravity Fg = mg . The force diagram 
on the cup is shown in Figure 13.2. 

Figure 13.2 Force diagram for cup. 

Let’s choose our coordinate system so that the +x -direction is the direction of the 
forward motion of the cup. The pushing force can then be described by 

 
Fa a= Fx î . (13.4.1) 

Suppose a body moves from an initial point to a final point so that the xi x f 

displacement of the point the force acts on is Δx ≡ x f . The work done by a − xi 
 

constant force Fa = Fx
a î acting on the body is the product of the component of 

the force Fx
a and the displacement Δx , 

W a = Fx
a Δx . (13.4.2) 

Work is a scalar quantity; it is not a vector quantity. The SI unit for work is 
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-2 2 -2 [1 N m] = [1 kg ⋅ m s ⋅ ][1 m] = [1 kg ⋅ m ⋅s ] = [1 J] . (13.4.3)⋅ 

Note that work has the same dimension and the same SI unit as kinetic energy. Because 
our applied force is along the direction of motion, both Fx

a > 0 and Δx > 0 . In this 
example, the work done is just the product of the magnitude of the applied force and the 
distance through which that force acts and is positive. In the definition of work done by a 
force, the force can act at any point on the body. The displacement that appears in 
Equation (13.4.2) is not the displacement of the body but the displacement of the point of 
application of the force. For point-like objects, the displacement of the point of 
application of the force is equal to the displacement of the body. However for an 
extended body, we need to focus on where the force acts and whether or not that point of 
application undergoes any displacement in the direction of the force as the following 
example illustrates. 

Example 13.2 Work Done by Static Fiction 

Suppose you are initially standing and you start walking by pushing against the ground 
with your feet and your feet do not slip. What is the work done by the static friction force 
acting on you? 

Solution: When you apply a contact force against the ground, the ground applies an 
equal and opposite contact force on you. The tangential component of this constant force 
is the force of static friction acting on you. Since your foot is at rest while you are 
pushing against the ground, there is no displacement of the point of application of this 
static friction force. Therefore static friction does zero work on you while you are 
accelerating. You may be surprised by this result but if you think about energy 
transformation, chemical energy stored in your muscle cells is being transformed into 
kinetic energy of motion and thermal energy. 

When forces are opposing the motion, as in our example of pushing the cup, the 
kinetic friction force is given by 

! 
F f = fk ,x î = −µk N î = −µkmg î . (13.4.4) 

Here the component of the force is in the opposite direction as the displacement. The 
work done by the kinetic friction force is negative, 

W f = −µkmgΔx . (13.4.5) 

Since the gravitation force is perpendicular to the motion of the cup, the gravitational 
force has no component along the line of motion. Therefore the gravitation force does 
zero work on the cup when the cup is slid forward in the horizontal direction. The 
normal force is also perpendicular to the motion, and hence does no work. 
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We see that the pushing force does positive work, the kinetic friction force does 
negative work, and the gravitation and normal force does zero work. 

Example 13.3 Work Done by Force Applied in the Direction of Displacement 

Push a cup of mass 0.2 kg along a horizontal table with a force of magnitude 2.0 N for a 
distance of 0.5 m. The coefficient of friction between the table and the cup is µk = 0.10 . 
Calculate the work done by the pushing force and the work done by the friction force. 

Solution: The work done by the pushing force is 

W a = Fx
a Δx = (2.0 N)(0.5 m) = 1.0 J . (13.4.6) 

The work done by the friction force is 

W f = −µkmgΔx = −(0.1)(0.2 kg)(9.8 m ⋅s-2 )(0.5 m)= − 0.10 J . (13.4.7) 

Example 13.4 Work Done by Force Applied at an Angle to the Direction of 
Displacement 

Suppose we push the cup in the previous example with a force of the same magnitude but 
at an angle θ = 30o upwards with respect to the table. Calculate the work done by the 
pushing force. Calculate the work done by the kinetic friction force. 

Solution: The force diagram on the cup and coordinate system is shown in Figure 13.3. 

Figure 13.3 Force diagram on cup. 

The x -component of the pushing force is now 

Fx 
a = F a cos(θ ) = (2.0 N)(cos(30 )) = 1.7 N . (13.4.8) 

The work done by the pushing force is 
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W a = Fx
a Δx = (1.7 N)(0.5 m) = 8.7 ×10−1 J . (13.4.9) 

The kinetic friction force is  
F f = −µk N î . (13.4.10) 

In this case, the magnitude of the normal force is not simply the same as the weight of the 
cup. We need to find the y -component of the applied force, 

Fy
a = F a sin(θ ) = (2.0 N)(sin(30o ) = 1.0 N . (13.4.11) 

To find the normal force, we apply Newton’s Second Law in the y -direction, 

Fy
a + N − mg = 0 . (13.4.12) 

Then the normal force is 

aN = mg − Fy = (0.2 kg)(9.8 m ⋅s−2 ) − (1.0 N) = 9.6 ×10−1 N . (13.4.13) 

The work done by the kinetic friction force is 

W f = −µk N Δx = −(0.1)(9.6 ×10−1 N)(0.5 m) = 4.8 ×10−2 J . (13.4.14) 

Example 13.5 Work done by Gravity Near the Surface of the Earth 

Consider a point-like body of mass m near the surface of the earth falling directly 
towards the center of the earth. The gravitation force between the body and the earth is  nearly constant, Fgrav = mg . Let’s choose a coordinate system with the origin at the 
surface of the earth and the + y -direction pointing away from the center of the earth 
Suppose the body starts from an initial point yi and falls to a final point y f closer to the 
earth. How much work does the gravitation force do on the body as it falls? 

Solution: The displacement of the body is negative, Δy ≡ y f < 0 . The gravitation − yi 

force is given by  Fg = mg = Fy
g ĵ = −mg ĵ . (13.4.15) 

The work done on the body is then 

W g = Fy
g Δy = −mgΔy . (13.4.16) 
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For a falling body, the displacement of the body is negative, Δy ≡ y f < 0 ; therefore − yi 

the work done by gravity is positive, W g > 0 . The gravitation force is pointing in the 
same direction as the displacement of the falling object so the work should be positive. 

When an object is rising while under the influence of a gravitation force, 
Δy ≡ y f > 0 . The work done by the gravitation force for a rising body is negative, − yi 

W g < 0 , because the gravitation force is pointing in the opposite direction from that in 
which the object is displaced. 

It’s important to note that the choice of the positive direction as being away from the 
center of the earth (“up”) does not make a difference. If the downward direction were 
chosen positive, the falling body would have a positive displacement and the 
gravitational force as given in Equation (13.4.15) would have a positive downward 
component; the product Fy

g Δy would still be positive. 

13.5 Work done by Non-Constant Forces 

Consider a body moving in the x -direction under the influence of a non-constant force in  
the x -direction, F = Fx î . The body moves from an initial position xi to a final position 

. In order to calculate the work done by a non-constant force, we will divide up the x f 

displacement of the point of application of the force into a large number N of small 
j th displacements Δx j where the index j marks the displacement and takes integer 

values from 1 to N . Let (Fx, j )ave denote the average value of the x -component of the 

j th force in the displacement interval [x j−1, x j ] . For the displacement interval we 
calculate the contribution to the work 

Wj = (F x , j )ave Δx j (13.5.1) 

This contribution is a scalar so we add up these scalar quantities to get the total work 

j=N j=N 

WN = ∑Wj = ∑ (F x , j )ave Δx j . (13.5.2) 
j=1 j=1 

The sum in Equation (13.5.2) depends on the number of divisions N and the width of the 
intervals Δx j . In order to define a quantity that is independent of the divisions, we take 

the limit as N →∞ and → 0 for all j . The work is thenΔx j 
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x=x fj= N 

W = lim ∑ (Fx , j )ave Δx j = ∫ Fx (x) dx (13.5.3)
N→∞ 

j=1 x=xi→0Δx j 

This last expression is the definite integral of the x -component of the force with respect 
to the parameter x . In Figure 13.5 we graph the x -component of the force as a function 
of the parameter x . The work integral is the area under this curve between x = xi and 
x = x f . 

Figure 13.5 Plot of x -component of a sample force Fx (x) as a function of x . 

Example 13.6 Work done by the Spring Force 

Connect one end of an unstretched spring of length l0 with spring constant k to an object 
resting on a smooth frictionless table and fix the other end of the spring to a wall. Choose 
an origin as shown in the figure. Stretch the spring by an amount and release the xi 

object. How much work does the spring do on the object when the spring is stretched by 
an amount x f ? 

xi x fl0 

x = 0 

î l0 î l0 î 

x = 0 x = 0 

Figure 13.6 Equilibrium, initial and final states for a spring 

Solution: We first begin by choosing a coordinate system with our origin located at the 
position of the object when the spring is unstretched (or uncompressed). We choose the î 
unit vector to point in the direction the object moves when the spring is being stretched. 
We choose the coordinate function x to denote the position of the object with respect to 
the origin. We show the coordinate function and free-body force diagram in the figure 
below. 
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l0 

x = 0 

î 
x 

x = 0 

î 
x 

F = F x ̂i = kx î 

Figure 13.6a Spring force 

The spring force on the object is given by (Figure 13.6a) 

! 
F = Fx î = −k x î (13.5.4) 

In Figure 13.7 we show the graph of the x -component of the spring force, Fx (x) , as a 
function of x . 

F x (x) 

xix f +x 

F x (x) = k x 

Figure 13.7 Plot of spring force Fx (x) vs. displacement x 

The work done is just the area under the curve for the interval xi to x f , 

x′=x f x′=x f 

W = ∫ Fx x′)dx′ = ∫ −kx dx′ = − 
1
2 

k(x2 
f − xi 

2 )( ′ (13.5.5) 
x′=xi x′=xi 

This result is independent of the sign of and because both quantities appear as xi x f 

squares. If the spring is less stretched or compressed in the final state than in the initial 
state, then the absolute value, , and the work done by the spring force is positive.<x f xi 

The spring force does positive work on the body when the spring goes from a state of 
“greater tension” to a state of “lesser tension.” 

13.6 Work-Kinetic Energy Theorem 
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There is a direct connection between the work done on a point-like object and the change 
in kinetic energy the point-like object undergoes. If the work done on the object is non-
zero, this implies that an unbalanced force has acted on the object, and the object will 
have undergone acceleration. For an object undergoing one-dimensional motion the left 
hand side of Equation (13.3.16) is the work done on the object by the component of the 
sum of the forces in the direction of displacement, 

x=x f 1 2 − 
1 2W = F dx = mv f = ΔK (13.6.1)∫ x 2 2 

mvi = K f − Ki 
x=xi 

When the work done on an object is positive, the object will increase its speed, and 
negative work done on an object causes a decrease in speed. When the work done is zero, 
the object will maintain a constant speed. In fact, the work-energy relationship is quite 
precise; the work done by the applied force on an object is identically equal to the change 
in kinetic energy of the object. 

Example 13.7 Gravity and the Work-Energy Theorem 

Suppose a ball of mass m = 0.2 kg starts from rest at a height = 15 m above the y0 

surface of the earth and falls down to a height y f = 5.0 m above the surface of the earth. 
What is the change in the kinetic energy? Find the final velocity using the work-energy 
theorem. 

Solution: As only one force acts on the ball, the change in kinetic energy is the work 
done by gravity, 

W g = −mg( y f − y0 ) 
(13.6.2) 

= (−2.0 ×10−1 kg)(9.8 m ⋅s-2 )(5 m −15 m) = 2.0 ×101 J. 

The ball started from rest, vy ,0 = 0 . So the change in kinetic energy is 

1 2 − 
1 2 1 2ΔK = mv mv = mv . (13.6.3)y , f y ,0 y , f2 2 2 

We can solve Equation (13.6.3) for the final velocity using Equation (13.6.2) 

v y , f = 
2ΔK 

m 
= 

2W g 

m 
= 

2(2.0 ×101 J) 
0.2 kg 

= 1.4 ×101 m ⋅s-1 . (13.6.4) 

For the falling ball in a constant gravitation field, the positive work of the gravitation 
force on the body corresponds to an increasing kinetic energy and speed. For a rising 
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body in the same field, the kinetic energy and hence the speed decrease since the work 
done is negative. 

Example 13.7 Final Kinetic Energy of Moving Cup 

A person pushes a cup of mass 0.2 kg along a horizontal table with a force of magnitude 
2.0 N at an angle of 30o with respect to the horizontal for a distance of 0.5 m as in 
Example 13.4. The coefficient of friction between the table and the cup is µk = 0.1. If the 
cup was initially at rest, what is the final kinetic energy of the cup after being pushed 0.5 
m? What is the final speed of the cup? 

Solution: The total work done on the cup is the sum of the work done by the pushing 
force and the work done by the friction force, as given in Equations (13.4.9) and 
(13.4.14), 

W a +W f = (F a − µkW = N )(x f )x − xi . (13.6.5) 
= (1.7 N − 9.6 ×10−2 N)(0.5 m) = 8.0 ×10−1 J 

The initial velocity is zero so the change in kinetic energy is just 

1 2 − 
1 1

ΔK = mv mv 2 = mv 2 . (13.6.6)y , f y ,0 y , f2 2 2 

Thus the work-kinetic energy theorem, Eq.(13.6.1)), enables us to solve for the final 
kinetic energy, 

1 2= mv f = ΔK = W = 8.0 ×10−1 J . (13.6.7)K f 2 

We can solve for the final speed, 

v y , f = 
2K f 

m 
= 

2W 
m 

= 
2(8.0 ×10−1 J) 

0.2 kg 
= 2.9 m ⋅s-1 . (13.6.8) 

13.7 Power Applied by a Constant Force 
 

Suppose that an applied force Fa acts on a body during a time interval Δt , and the 
displacement of the point of application of the force is in the x -direction by an amount 
Δx . The work done, ΔW a , during this interval is 

ΔW a = Fx
a Δx . (13.7.1) 

where Fx
a is the x -component of the applied force. (Equation (13.7.1) is the same as 

Equation (13.4.2).) 
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The average power of an applied force is defined to be the rate at which work is 
done, 

ΔW a F a Δxa x aP = = = F v . (13.7.2)ave x ave,xΔt Δt 

The average power delivered to the body is equal to the component of the force in the 
direction of motion times the component of the average velocity of the body. Power is a 
scalar quantity and can be positive, zero, or negative depending on the sign of work. The 

-1] .SI units of power are called watts [W] and [1 W] = [1 J ⋅ s 

The instantaneous power at time t is defined to be the limit of the average power 
as the time interval [t,t + Δt] approaches zero, 

ΔW a F a Δx
Pa x a ⎛ Δx ⎞ a= lim = lim = F x lim 

⎠⎟ 
= Fx vx . (13.7.3)

Δt→0 Δt Δt→0 Δt ⎝⎜ Δt→0 Δt 

The instantaneous power of a constant applied force is the product of the component of 
the force in the direction of motion and the instantaneous velocity of the moving object. 

Example 13.8 Gravitational Power for a Falling Object 

Suppose a ball of mass m = 0.2 kg starts from rest at a height = 15 m above the y0 

surface of the earth and falls down to a height y f = 5.0 m above the surface of the earth. 
What is the average power exerted by the gravitation force? What is the instantaneous 
power when the ball is at a height y f = 5.0 m above the surface of the Earth? Make a 
graph of power vs. time. You may ignore the effects of air resistance. 

Solution: There are two ways to solve this problem. Both approaches require calculating 
the time interval Δt for the ball to fall. Set t0 = 0 for the time the ball was released. We 
can solve for the time interval Δt = t f that it takes the ball to fall using the equation for a 
freely falling object that starts from rest, 

1 2= − gt f . (13.7.4)y f y0 2 
Thus the time interval for falling is 

2 2t = ( y − y ) = (15 m − 5 m) = 1.4 s . (13.7.5)f 0 f -2 g 9.8 m ⋅ s 
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First approach: we can calculate the work done by gravity, 

W g = −mg( y f − y0 ) 
(13.7.6) 

= (−2.0 ×10−1 kg)(9.8 m ⋅s-2 )(5 m −15 m) = 2.0 ×101 J. 

Then the average power is 
g ΔW 2.0 ×101 JP ave = = = 1.4 ×101 W . (13.7.7)

Δt 1.4 s 

Second Approach. We calculate the gravitation force and the average velocity. The 
gravitation force is 

Fy 
g = −mg = −(2.0 ×10−1 kg)(9.8 m ⋅s-2 ) = −2.0 N . (13.7.8) 

The average velocity is 
Δy 5 m −15 m -1 v = = = −7.0 m ⋅s . (13.7.9)ave,y Δt 1.4 s 

The average power is therefore 

Pg = F g v = (−mg)v ave y ave,y ave,y (13.7.10) 
= (−2.0 N)(−7.0 m ⋅s-1) = 1.4 ×101 W. 

In order to find the instantaneous power at any time, we need to find the instantaneous 
velocity at that time. The ball takes a time t f = 1.4 s to reach the height y f = 5.0 m . The 
velocity at that height is given by 

vy = −gt f = −(9.8 m ⋅ s-2 )(1.4 s) = −1.4 × 101 m ⋅ s-1 . (13.7.11) 

So the instantaneous power at time t f = 1.4 s is 

Pg = Fy 
g vy = (−mg)(−gt f ) = mg 2t f (13.7.12) 

= (0.2 kg)(9.8 m ⋅s-2 )2(1.4 s) = 2.7 ×101 W 

If this problem were done symbolically, the answers given in Equation (13.7.11) and 
Equation (13.7.12) would differ by a factor of two; the answers have been rounded to two 
significant figures. 
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The instantaneous power grows linearly with time. The graph of power vs. time is shown 
in Figure 13.8. From the figure, it should be seen that the instantaneous power at any 
time is twice the average power between t = 0 and that time. 

Figure 13.8 Graph of power vs. time 

Example 13.9 Power Pushing a Cup 

A person pushes a cup of mass 0.2 kg along a horizontal table with a force of magnitude 
2.0 N at an angle of 30o with respect to the horizontal for a distance of 0.5 m , as in 
Example 13.4. The coefficient of friction between the table and the cup is µk = 0.1. What 
is the average power of the pushing force? What is the average power of the kinetic 
friction force? 

Solution: We will use the results from Examples 13.4 and 13.7 but keeping extra 
significant figures in the intermediate calculations. The work done by the pushing force 
is 

W a = F a (x f ) = (1.732 N)(0.50 m) = 8.660 ×10−1 J . (13.7.13)x − x0 

The final speed of the cup is vx, f = 2.860 m s⋅ -1 . Assuming constant acceleration, the 
time during which the cup was pushed is 

2(x f − x0 )t f = = 0.3496s . (13.7.14)
vx, f 

The average power of the pushing force is then, with Δt = t f , 

ΔW a 

Pa 8.660 ×10−1 J 
ave = = = 2.340 W , (13.7.15)

Δt 0.3496 s 

or 2 3W to two significant figures. The work done by the friction force is. 

W f = fk − x0 )(x f (13.7.16)
) = −(9.6 ×10−2 N)(0.50 m) = −(4.8 ×10−2 J). = −µk N (x f − x0 
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The average power of kinetic friction is 

ΔW f 

P f −4.8 ×10−2 J 
ave = = = −1.4 ×10−1 W. (13.7.17)

Δt 0.3496 s 

The time rate of change of the kinetic energy for a body of mass m moving in the x -
direction is 

dK d ⎛ 1 2 ⎞ dvx= mv = m v = ma v . (13.7.18)⎜ x ⎟ x x xdt dt ⎝ 2 ⎠ dt 

By Newton’s Second Law, Fx = max , and so Equation (13.7.18) becomes 

dK 
= Fxvx = P . (13.7.19)

dt 

The instantaneous power delivered to the body is equal to the time rate of change of the 
kinetic energy of the body. 

13.8 Work and the Scalar Product 

We shall introduce a vector operation, called the scalar product or “dot product” that 
takes any two vectors and generates a scalar quantity (a number). We shall see that the 
physical concept of work can be mathematically described by the scalar product between 
the force and the displacement vectors. 

13.8.1 Scalar Product 

  
Let A and B be two vectors. Because any two non-collinear vectors form a plane, we   
define the angle θ to be the angle between the vectors A and B as shown in Figure 
13.9. Note that θ can vary from 0 to π . 

Figure 13.9 Scalar product geometry. 

    
The scalar product A ⋅ B of the vectors A and B is defined to be product of the   
magnitude of the vectors A and B with the cosine of the angle θ between the 
two vectors: 
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A ⋅ B = ABcos(θ) , (13.8.1) 

    
where A = | A | and B =| B | represent the magnitude of A and B respectively. 
The scalar product can be positive, zero, or negative, depending on the value of 
cosθ . The scalar product is always a scalar quantity. 

The angle formed by two vectors is therefore 

⎛
 
−1 ⎜⎜⎝ 

θ = cos

A

A
 

⋅
 

B

B
 

⎞
 
⎟⎟ 

. (13.8.2) 
⎠ 

 
The magnitude of a vector A is given by the square root of the scalar product of the  
vector A with itself.  

A
 = (

 
A
⋅
 
 
A
)1/ 2 . (13.8.3)
 

We can give a geometric interpretation to the scalar product by writing the definition as 
  
A ⋅ B = ( Acos(θ)) B . (13.8.4) 

 
B
 in the direction of In this formulation, the term Acosθ is the projection of the vector 

 
B
the vector . This projection is shown in Figure 13.10a. So the scalar product is the 

Note that we could also write the scalar product as 

 
product of the projection of the length of A in the direction of 

 
B with t

 
Bhe length of . 

  
A ⋅ B = A(Bcos(θ)) . (13.8.5) 

  

 
B 

Now the term Bcos(θ) is the projection of the vector B in the direction of the vector A 
as shown in Figure 13.10b. From this perspective, the scalar product is the product of the   
projection of the length of in the direction of A with the length of A . 

(a) (b) 
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Figure 13.10 (a) and (b) Projection of vectors and the scalar product 

From our definition of the scalar product we see that the scalar product of two vectors 
that are perpendicular to each other is zero since the angle between the vectors is π / 2 
and cos(π / 2) = 0 . 

We can calculate the scalar product between two vectors in a Cartesian coordinates  
system as follows. Consider two vectors A = A î + A ĵ + A k̂ and x y z 
 
B = B î + B ĵ + B k̂ . Recall that x y z 

î ⋅ ̂i = ĵ⋅ ̂j = k̂ ⋅ k̂ = 1 
(13.8.6)

î ⋅ ̂j = ĵ⋅ k̂ = î ⋅ k̂ = 0. 

  
The scalar product between A and B is then 

  
A ⋅ B = A B + A B + A B . (13.8.7)x x y y z z 

The time derivative of the scalar product of two vectors is given by 

d 

dt 
(


A
⋅
 

B
) =
 

d 

dt 
(Ax Bx + Ay By + Az Bz ) 

d d d d d d = (Ax )Bx + (Ay )By + ( Az )Bz + Ax ( Bx ) + Ay ( By ) + Az ( Bz ) (13.8.8)
dt dt dt dt dt dt 

=
 ⎛
 ⎝⎜
 
d 

dt 

A
⎞
 ⎠⎟ ⋅
 

B
+
 

A
⋅⎛ ⎝⎜ 

d 

dt 

B
⎞
 ⎠⎟ .
 

  
In particular when A = B , then the time derivative of the square of the magnitude of the  
vector A is given by 

d d d d d(


A
⋅
 

A
) =
 


A

⎞
 
⎠⎟ 
⋅
 

A
+
 

A
⋅
 


A



A

⎞
 
⎠⎟ 
⋅
 

A
.
 (13.8.9)
⎛
 ⎛
 ⎞ ⎛
A2 = 2
=
 

⎝⎜
 ⎝⎜
 ⎠⎟
 ⎝⎜
dt dt dt dt dt 

13.8.2 Kinetic Energy and the Scalar Product 

For an object undergoing three-dimensional motion, the velocity of the object in 
Cartesian components is given by v = v î + v ĵ + v k̂ . Recall that the magnitude of a x y z 

vector is given by the square root of the scalar product of the vector with itself, 

A ≡
 
 
A
 ≡ (
 

 
A
⋅
 
 
A
)1/ 2 A2 + A2 + 2 )1/ 2 

z A
= (
 . (13.8.10)
x y 

Therefore the square of the magnitude of the velocity is given by the expression 
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2 ≡ (v   2 + v2 + v2v ⋅ v) = v . (13.8.11)x y z 

Hence the kinetic energy of the object is given by 

1   1 2 + v2 + vK = m(v ⋅ v) = m(v 2 ) . (13.8.12)x y z2 2 

13.8.2 Work and the Scalar Product 

Work is an important physical example of the mathematical operation of taking the scalar 
product between two vectors. Recall that when a constant force acts on a body and the 
point of application of the force undergoes a displacement along the x -axis, only the 
component of the force along that direction contributes to the work, 

W = Fx Δx . (13.8.13) 

 
Suppose we are pulling a body along a horizontal surface with a force F . Choose  

coordinates such that horizontal direction is the x -axis and the force F forms an angle 
β with the positive x -direction. In Figure 13.11 we show the force vector 
 
F = Fx î + Fy ĵ and the displacement vector of the point of application of the force 
 Δx = Δx î . Note that Δx = Δx î is the component of the displacement and hence can be 

greater, equal, or less than zero (but is shown as greater than zero in the figure for  clarity). The scalar product between the force vector F and the displacement vector Δx 
is   ˆ ˆ ˆF ⋅Δx = (F i + F j) (⋅ Δx i) = F Δx . (13.8.14)x y x 

Figure 13.11 Force and displacement vectors 

The work done by the force is then  ΔW = F ⋅Δx . (13.8.15) 
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In general, the angle β takes values within the range −π ≤ β ≤ π (in Figure 13.11, 
 

0 ≤ β ≤ π / 2 ). Because the x -component of the force is Fx = F cos(β) where F = | F | 
 

denotes the magnitude of F , the work done by the force is 

 W = F ⋅Δx = (F cos( ))Δx .β (13.8.16) 

Example 13.10 Object Sliding Down an Inclined Plane 

An object of mass m = 4.0 kg , starting from rest, slides down an inclined plane of length 
l = 3.0 m . The plane is inclined by an angle of θ = 300 to the ground. The coefficient of 
kinetic friction is µk = 0.2 . (a) What is the work done by each of the three forces while 
the object is sliding down the inclined plane? (b) For each force, is the work done by the 
force positive or negative? (c) What is the sum of the work done by the three forces? Is 
this positive or negative? 

Solution: (a) and (b) Choose a coordinate system with the origin at the top of the inclined 
plane and the positive x -direction pointing down the inclined plane, and the positive y -
direction pointing towards the upper right as shown in Figure 13.12. While the object is 
sliding down the inclined plane, three uniform forces act on the object, the gravitational 
force which points downward and has magnitude Fg = mg , the normal force N which is 
perpendicular to the surface of the inclined plane, and the friction force which opposes 
the motion and is equal in magnitude to = µk N . A force diagram on the object is fk 

shown in Figure 13.13. 

Figure 13.12 Coordinate system for Figure 13.13 Free-body force diagram
object sliding down inclined plane for object 

In order to calculate the work we need to determine which forces have a component in 
the direction of the displacement. Only the component of the gravitational force along the 
positive x -direction Fgx = mg sinθ and the friction force are directed along the 
displacement and therefore contribute to the work. We need to use Newton’s Second Law 
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to determine the magnitudes of the normal force. Because the object is constrained to 
move along the positive x -direction, ay = 0 , Newton’s Second Law in the ĵ -direction 
N − mg cosθ = 0 . Therefore N = mg cosθ and the magnitude of the friction force is 

mg cosθ .fk = µk 

With our choice of coordinate system with the origin at the top of the inclined plane and 
the positive x -direction pointing down the inclined plane, the displacement of the object 

is given by the vector Δr = Δx î (Figure 13.14). 

Figure 13.14 Force vectors and displacement vector for object 

 
FgThe vector decomposition of the three forces are = mgsinθ ̂i − mgcosθ ĵ , 

  
F f = −µkmgcosθ î , and FN = mgcosθ ĵ . The work done by the normal force is zero 
because the normal force is perpendicular the displacement 

W N 
  = FN ⋅ Δr = mgcosθ ĵ⋅ l î = 0 . 

Then the work done by the friction force is negative and given by 

W f   = F f ⋅ Δr = −µkmgcosθ î ⋅ l î = −µkmgcosθl < 0 . 

Substituting in the appropriate values yields 

W f = −µkmg cosθl = −(0.2)(4.0kg)(9.8m ⋅s-2 )(3.0m)(cos(30o )(3.0m) = −20.4 J . 

The work done by the gravitational force is positive and given by 

 
W g  = Fg ⋅ Δr = (mgsinθ î − mgcosθ ĵ) ⋅ l î = mglsinθ > 0 . 

Substituting in the appropriate values yields 

W g = mglsinθ = (4.0kg)(9.8 m ⋅s-2 )(3.0m)(sin(30o ) = 58.8 J . 
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(c) The scalar sum of the work done by the three forces is then 

W g +W fW = = mgl(sinθ − µk cosθ ) 

W = (4.0kg)(9.8m ⋅s-2 )(3.0m)(sin(30o ) − (0.2)(cos(30o )) = 38.4 J. 

13.9 Work done by a Non-Constant Force Along an Arbitrary Path 
 

Suppose that a non-constant force F acts on a point-like body of mass m while the body 
is moving on a three dimensional curved path. The position vector of the body at time t with respect to a choice of origin is r( )t . In Figure 13.15 we show the orbit of the body 

for a time interval [t t ] moving from an initial position r ≡ r  ) at time t = ti to a i , f i (t = ti 
 final position r ≡ r ) at time t = t f .f (t = t f 

Figure 13.15 Path traced by the motion of a body.
 

We divide the time interval [ti ,t f ] into N smaller intervals with [t , t ] , j = 1,⋅⋅⋅, N
j−1 j 
 ≡ 
 ≡ 

with tN = t f . Consider two position vectors rj r(t = t j ) and rj −1 r(t = t j −1 ) the 

displacement vector during the corresponding time interval as Δ

rj =
 
rj −

rj −1 . 


 
Let F 

denote the force acting on the body during the interval [t j−1, t j ] . The average force in this 
 

interval is (Fj ) and the average work ΔWj done by the force during the time interval ave 

[t j−1, t j ] is the scalar product between the average force vector and the displacement 
vector,  ΔWj = (Fj )ave ⋅ Δrj . (13.8.17) 

The force and the displacement vectors for the time interval [t j−1, t j ] are shown in Figure 
 

13.16 (note that the subscript “ave” on (Fj ) has been suppressed).ave 
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Figure 13.16 An infinitesimal work element. 

We calculate the work by adding these scalar contributions to the work for each 
interval [t j−1, t j ] , for j = 1 to N , 

j = N j = N 

= ∑ΔWj ∑ ( 

F
j )ave ⋅ Δ


 rj . (13.8.18)
WN =
 
j =1 j =1 

We would like to define work in a manner that is independent of the way we 
divide the interval, so we take the limit as N →∞ and → 0 for all j . In this limit, Δrj 

as the intervals become smaller and smaller, the distinction between the average force 
and the actual force vanishes. Thus if this limit exists and is well defined, then the work 
done by the force is 

j = N

lim ∑ (
N →∞ 


F
j )ave ⋅ Δ

rj = ∫i 

f 
F
⋅ dr .
 (13.8.19)
W
 =
 

rΔ 
j =1→0j 

Notice that this summation involves adding scalar quantities. This limit is called the line  integral of the force F . The symbol dr is called the infinitesimal vector line element. At time t , dr is tangent to the orbit of the body and is the limit of the displacement   vector Δr = r(t + Δt) − r( )t as Δt approaches zero. In this limit, the parameter t does not 
appear in the expression in Equation (13.8.19). 

In general this line integral depends on the particular path the body takes between  the initial position ri and the final position rf , which matters when the force F is non-
constant in space, and when the contribution to the work can vary over different paths in 
space. We can represent the integral in Equation (13.8.19) explicitly in a coordinate system by specifying the infinitesimal vector line element dr and then explicitly 
computing the scalar product. 

13.9.1 Work Integral in Cartesian Coordinates 

In Cartesian coordinates the line element is 
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 ˆ ˆ ˆdr = dx i + dy j + dz k , (13.8.20) 

where dx , dy , and dz represent arbitrary displacements in the î -, ĵ -, and k̂ -directions 
respectively as seen in Figure 13.17. 

Figure 13.17 A line element in Cartesian coordinates. 

The force vector can be represented in vector notation by 

 ˆ ˆ ˆF = F i + F j + F k . (13.8.21)x y z 

The infinitesimal work is the sum of the work done by the component of the force times 
the component of the displacement in each direction, 

dW = F dx + F dy + F dz . (13.8.22)x y z 

Eq. (13.8.22) is just the scalar product 

 dW = F ⋅ dr = (F î + F ĵ + F k̂) ⋅(dx î + dy ĵ + dz k̂)x y z , (13.8.23) 
= F dx + F dy + F dz x y z 

The work is 

r= 
r r= 

r r= 
r r= 

r r= 
rf 

F
⋅ dr =
 
f f f f 

∫ 
r0 

∫ ∫ ∫ ∫x z 
r r r r 

y 

0 0 0 0 

W
 =
 (F dx + F dy + F dz) F dx + Fydy + Fzdz . (13.8.24)=
 x 
r r r r r= = = = = 

13.9.2 Work Integral in Cylindrical Coordinates 

In cylindrical coordinates the line element is 

dr  = dr r̂ + rdθ θ̂ + dz k̂ , (13.8.25) 

where dr , rdθ , and dz represent arbitrary displacements in the 
directions respectively as seen in Figure 13.18. 

r̂ -, θ̂ -, and k̂ -
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Figure 13.18 Displacement vector d s between two points 

The force vector can be represented in vector notation by 

 
F = Fr r̂ + Fθ θ̂ + Fz k̂ . (13.8.26) 

The infinitesimal work is the scalar product 

 dW = F ⋅ dr = (Fr r̂ + Fθ θ̂ + Fz k̂) ⋅(dr r̂ + rdθ θ̂ + dz k̂) 
(13.8.27) 

= Frdr + Fθ rdθ + Fzdz. 

The work is 

r= 
r r= 

r r= 
r r= 

r r= 
rf 

F
⋅ dr =
 
f f f f 

W
 =
 ∫
 ∫ ∫ ∫ ∫θ θr z 
r r r r 

dr + F rdθ + F dz) = F dr + F rdθ + r 

0 0 0 0 

(F
 Fzdz . (13.8.28) 
r r r0 

r r r= = = = = 

13.10 Worked Examples 

Example 13.11 Work Done in a Constant Gravitation Field 

The work done in a uniform gravitation field is a fairly straightforward calculation when 
the body moves in the direction of the field. Suppose the body is moving under the  
influence of gravity, F = −mg ̂j along a parabolic curve. The body begins at the point 
(x0 , y0 ) and ends at the point (x f , y f ) . What is the work done by the gravitation force on 
the body? 

Solution: The infinitesimal line element dr is therefore 

dr = dx ̂i + dy ̂j . (13.9.1) 
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The scalar product that appears in the line integral can now be calculated, 

 F ⋅ d r = −mg ĵ ⋅[dx î + dy ĵ] = −mgdy . (13.9.2) 

This result is not surprising since the force is only in the y -direction. Therefore the only 
non-zero contribution to the work integral is in the y -direction, with the result that 

r y= y y= yf f f 
W dr  = F dy = −mgdy = −mg y f( − y ) . (13.9.3)= ∫ F ⋅ ∫ y ∫ 0 

r y= y y= y0 0 0 

In this case of a constant force, the work integral is independent of path. 

Example 13.12 Hooke’s Law Spring-Body System 

Consider a spring-body system lying on a frictionless horizontal surface with one end of 
the spring fixed to a wall and the other end attached to a body of mass m (Figure 13.19). 
Calculate the work done by the spring force on body as the body moves from some initial 
position to some final position. 

Figure 13.19 A spring-body system. 

Solution: Choose the origin at the position of the center of the body when the spring is 
relaxed (the equilibrium position). Let x be the displacement of the body from the origin. 
We choose the +î unit vector to point in the direction the body moves when the spring is 
being stretched (to the right of x = 0 in the figure). The spring force on the body is then 
given by  ˆ ˆF = Fx i = −kx i . (13.9.4) 

The work done by the spring force on the mass is 

x = x f 1 2 − xW = ∫ (−kx) dx = − k(x 2 ) . (13.9.5)spring f 02 x = x0 

13-31 



  

 
 

   
 

           
         

  
 

           
             
          

      

      
 

   

 
   

  
 

      
 

                
 

 
    

  

 
 

 

 

  
  

 
        

  
 

 
  

  

 
           

        

   

 
  

   
         

 

 

    

   
          

  
        

 

      


 

 

 
  



 


Example 13.13 Work done by the Inverse Square Gravitation Force 

Consider a body of mass m in moving in a fixed orbital plane about the sun. The mass of 
the sun is ms . How much work does the gravitation interaction between the sun and the 
body done on the body during this motion? 

Solution: Let’s assume that the sun is fixed and choose a polar coordinate system with 
the origin at the center of the sun. Initially the body is at a distance r0 from the center of 
the sun. In the final configuration the body has moved to a distance rf < r0 from the 
center of the sun. The infinitesimal displacement of the body is given by
dr = dr r̂ + rdθ θ̂ . The gravitation force between the sun and the body is given by 

 Gm msF = F r̂ = − r̂ . (13.9.6)grav grav 2r 

The infinitesimal work done work done by this gravitation force on the body is given by 

 dW = F ⋅ dr = (F r̂) ⋅(dr r̂ + rdθ θ̂) = F dr . (13.9.7)grav grav ,r grav ,r 

Therefore the work done on the object as the object moves from ri to rf is given by the 
integral 

rf rf rf ⎛ Gm m⎞ sun W = ∫ F grav ⋅ dr = ∫ Fgrav ,r dr = ∫ ⎝⎜ − 2 ⎠⎟ 
dr . (13.9.8)

rri ri ri 

Upon evaluation of this integral, we have for the work 

rf ⎛ ⎞rf ⎛ Gm m⎞ Gm m 1 1sun sun W = ∫ − 
⎠⎟ 

dr = = Gm sun m⎜ − ⎟ . (13.9.9)2⎝⎜ r r ⎝ rf ri ⎠ri ri 

Because the body has moved closer to the sun, rf < ri , hence 1 / rf > 1 / ri . Thus the work 
done by gravitation force between the sun and the body, on the body is positive, 

⎛
 ⎞
1
 1
W = Gm m sun −
 > 0 (13.9.10)
⎜
⎝
 

⎟
⎠
rf ri 

We expect this result because the gravitation force points along the inward radial 
direction, so the scalar product and hence work of the force and the displacement is 
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positive when the body moves closer to the sun. Also we expect that the sign of the work 
is the same for a body moving closer to the sun as a body falling towards the earth in a 
constant gravitation field, as seen in Example 4.7.1 above. 

Example 13.14 Work Done by the Inverse Square Electrical Force 

Let’s consider two point-like bodies, body 1 and body 2, with charges andq1 q2 

respectively interacting via the electric force alone. Body 1 is fixed in place while body 2 
is free to move in an orbital plane. How much work does the electric force do on the body 
2 during this motion? 

Solution: The calculation in nearly identical to the calculation of work done by the 
gravitational inverse square force in Example 13.13. The most significant difference is 
that the electric force can be either attractive or repulsive while the gravitation force is 
always attractive. Once again we choose polar coordinates centered on body 2 in the 
plane of the orbit. Initially a distance separates the bodies and in the final state a r0 

distance rf separates the bodies. The electric force between the bodies is given by 

 1 q1q2ˆ r̂ = r̂ . (13.9.11)Felec = Felec r = Felec,r 24πε0 r 

The work done by this electric force on the body 2 is given by the integral 

rf rf rf  1 q q 
W = F ⋅ dr = F dr = 1 2 dr . (13.9.12)∫ elec ∫ elec ,r ∫ 24πε0 rri ri ri 

Evaluating this integral, we have for the work done by the electric force 

rf 1 q1q2 1 q1q2 

rf 1 ⎛ 1 1 ⎞ W = dr = − = − − ⎟ . (13.9.13)q1q2 ⎜∫ 2 24πε 0 r 4πε 0 r 4πε r r 
ri 

0 ⎝ f i ⎠ri 

If the charges have opposite signs, q1q2 < 0 , we expect that the body 2 will move closer 
to body 1 so rf < ri , and 1 / rf > 1 / ri . From our result for the work, the work done by 
electrical force in moving body 2 is positive, 

1 1W = − 
4πε0 

q1q2 ( 
1 
− ) > 0 . (13.9.14)

rf ri 

Once again we see that bodies under the influence of electric forces only will naturally 
move in the directions in which the force does positive work. If the charges have the 
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same sign, then q1q2 > 0 . They will repel with rf > ri and 1 / rf < 1 / ri . Thus the work is 
once again positive: 

1 ⎛ 1 1 ⎞W = − q1q2 ⎜ − ⎟ > 0 . (13.9.15)
4πε0 ⎝ rf ri ⎠ 

13.11 Work-Kinetic Energy Theorem in Three Dimensions 

Recall our mathematical result that for one-dimensional motion 

f f f fdvx dx 1 2 1 2m a dx = m dx = m dv = m v dv = mv − mv . (13.11.1)∫ x ∫ ∫ x ∫ x x x , f x , idt dt 2 2i i i i 

Using Newton’s Second Law in the form Fx = ma x , we concluded that 

f 1 2 1 2∫ F dx = mv − mv . (13.11.2)x x , f x ,i 
i 2 2 

Eq. (13.11.2) generalizes to the y - and z -directions: 

f 1 2 1 2∫ Fy dy = 
2 

mv y , f − 
2 

mv y , i , (13.11.3) 
i 
f 1 2 1 2F dz = mv − mv . (13.11.4)∫ z z , f z , i 
i 2 2 

Adding Eqs. (13.11.2), (13.11.3), and (13.11.4) yields 

f 1 12 2 2 2 2 2∫ (Fx dx + Fy dy + Fz dz) = 
2 

m(vx , f + vy , f + vz , f ) − 
2 

m(vx , i + vy , i + vz , i ) . (13.11.5) 
i 

Recall (Eq. (13.8.24)) that the left hand side of Eq. (13.11.5) is the work done by the  
force F on the object 

f f f  
W = ∫ dW = ∫ (F dx + F dy + F dz) = ∫F ⋅ dr  (13.11.6)x y z 

i i i 

The right hand side of Eq. (13.11.5) is the change in kinetic energy of the object 

1 2 − 
1 2 1 2 2 2 1 2 2 2ΔK ≡ K f − Ki = mv f mv0 = m(vx , f + vy , f + vz , f ) − m(vx , i + vy , i + vz , i ) . (13.11.7)

2 2 2 2 
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Therefore Eq. (13.11.5) is the three dimensional generalization of the work-kinetic 
energy theorem 

∫ 
f 

F 
 
⋅ dr  = K f − Ki . (13.11.8) 

i 

When the work done on an object is positive, the object will increase its speed, and 
negative work done on an object causes a decrease in speed. When the work done is zero, 
the object will maintain a constant speed. 

13.11.1 Instantaneous Power Applied by a Non-Constant Force for Three 
Dimensional Motion 

Recall that for one-dimensional motion, the instantaneous power at time t is defined to 
be the limit of the average power as the time interval [t,t + Δt] approaches zero, 

a (t)vP(t) = Fx x (t) . (13.11.9) 

A more general result for the instantaneous power is found by using the expression for 
dW as given in Equation (13.8.23), 

dW F 
 
⋅ d r  P = = = F ⋅ v . (13.11.10)

dt dt 

The time rate of change of the kinetic energy for a body of mass m is equal to the power, 

dK 1 d 

dt 
=
 
2 
m 
dt 
(
v ⋅
v) = m 

dv 
dt 

⋅
v = m a ⋅
v =
 

F
⋅
v = P .
 (13.11.11)
 

where the we used Eq. (13.8.9), Newton’s Second Law and Eq. (13.11.10). 
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Appendix 13A Work Done on a System of Two Particles 

We shall show that the work done by an internal force in changing a system of two 
particles of masses m1 and m2 respectively from an initial state A to a final state B is 
equal to 

W c = 
1 µ(vB 

2 − vA 
2 ) (13.1.1)

2 

where vB 
2 is the square of the relative velocity in state B , vA 

2 is the square of the relative 
velocity in state A , and µ = m1m2 / (m1 + m2 ) . 

Consider two bodies 1 and 2 and an interaction pair of forces shown in Figure 13A.1. 

Figure 13A.1 System of two bodies interacting 

We choose a coordinate system shown in Figure 13A.2. 

Figure 13A.2 Coordinate system for two-body interaction 

Newton’s Second Law applied to body 1 is 

 d 2
 
F2,1 = m1 dt

r
2 
1 (13.1.2)
 

and applied to body 2 is 
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 d 2
 
F1,2 = m2 dt

r
2 
2 . (13.1.3)
 

Divide each side of Equation (13.1.2) by m1 , 

 
d 2F2,1 r1= (13.1.4)
dt2m1 

and divide each side of Equation (13.1.3) by m2 , 

 

r 

rF1,2 d 2 
= 2 . (13.1.5)

dt2m2 

r 

Subtract Equation (13.1.5) from Equation (13.1.4) yielding 

rd 2 d 2 d 2 
2,1 1,2 1 2 2,1 

 
F 

 
F 

−
 −
 (13.1.6)
=
 =
 ,

dt2 dt2 dt2m1 m2 

 
 
2 ,1 1 2 .
 

Equation (13.1.6) to obtain
 

r r r F2,1 = −F1, 2 where −
 Use Newton’s Third Law, 


F

d 2 

2,1 

the left hand side of =
 on 

r1 

dt2 

rrd 2 d 2 
2 2,1 

dt2 dt2 

⎛ 1 1 ⎞
 
−
 (13.1.7)
+ 

⎠⎟ 
= =
 

⎝⎜
 
.
 

m m1 2 

r 

Fr 


F 

The quantity d 2r1,2 / dt
2 is the relative acceleration of body 1 with respect to body 2. 

Define 
1 1 1≡ + . (13.1.8)
µ m m1 2 

The quantity µ is known as the reduced mass of the system. Equation (13.1.7) now takes 
the form 

 d 2r  
F = µ 2,1 . (13.1.9)2,1 dt2 

The work done in the system in displacing the two masses from an initial state A to a 
final state B is given by 

2,1 1 1,2 2 

B B 

W
 = ∫
 ⋅ d + ∫
 ⋅ d . (13.1.10)
 
A A 
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Recall by the work energy theorem that the LHS is the work done on the system, 

B B 

=
 2,1 1 1,2 2 
A A 

From Newton’s Third Law, the sum in Equation (13.1.10) becomes 

r 

Fr 


F∫
 ∫
W
 ⋅ d ⋅ d = ΔK . (13.1.11)
+
 

B B B B r 

F 

A A A A 

r 

(13.1.12), 

r 


F 

2 2d d d2,1 2,1 2,1 
2,1 2,1 2,1 

r 

r 

F r 

dwhere is the relative displacement of the two bodies. We can now substitute r2 1, 

Newton’s Second Law, Equation (13 1 9) for the relative acceleration into Equation . . , 

r 

r2,1 1 2,1 2 2,1 1 2 2,1 2,1 

r
F 


F∫
 ∫
 ∫
 ∫
W
 ⋅ d ⋅ d ⋅(d − d ⋅ d (13.1.12)
−
 )
=
 =
 =
 ,
 

r 
dt2 

⎛
 ⎞
B B B 

∫
 ∫
 ∫
W
 ⋅ d ⋅ d ⎟ dt⋅
 (13.1.13)
⎜
µ
 = µ
=
 =
 ,

dt2 dt⎝
 ⎠
A A A 

r r r r 

d  r2,1 where we have used the relation between the differential elements d = dt . The r2,1 dt 
product rule for derivatives of the scalar product of a vector with itself is given for this 

d d d 2 d2,1 2,1 2,1 2,1 

case by 
⎛
 ⎞ 

⎟
⎠
 

1 d
⋅
 ⋅
 (13.1.14)
⎜

⎝
 
=
 .
 

dt22 dt dt dt dt 

Substitute Equation (13.1.14) into Equation (13.1.13), which then becomes 

⎛

⎜
⎝


d r2,1 

dt
⋅
 
d r2,1 

dt 
⎞
 

∫
 
B 1 d 

2 dt
W
 = µ
 dt . (13.1.15)⎟

⎠
A 

Equation (13.1.15) is now the integral of an exact derivative, yielding 

rd 2,1 

dt 
⋅
 
rd 2,1 

dt 

B
⎛
 ⎞
1
 1
 B 

= 
1 2 − vA 

2 ) ,µ(vBA
µ (
v2,1 ⋅


v2,1 )
W
 =
 (13.1.16)
µ ⎜
⎝ 

⎟
⎠ 

=
 
2
 2
 2 


A 

where is the relative velocity between the two bodies. It’s important to note that in v2,1 

the above derivation had we exchanged the roles of body 1 and 2 i.e. 1→ 2 and 2 → 1 , 
we would have obtained the identical result because 

13-38 



  

 

    

  

 
           

         
 

 
  

  

 
 
  
 
 

 
  

 
 

 

 

 

  

 


 


− 

 
F2,1 
r 

= − 
r2 = − 

r1 

=
 

1,2 

1,2 

d 1,2 

1,2 

r 
r

 
F 

v 

2,1 

) = −d 

r1 

− 
(13.1.17)
 

2 2,1 

Equation (13.1.16) implies that the work done is the change in the kinetic energy of the 
system, which we can write in terms of the reduced mass and the change in the square of 
relative speed of the two objects 

ΔK = 
1 2 − vA 

2 ) . (13.1.18)µ(vB2 

r r= d( 

= −
 2,1. 
v 
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Equation Chapter 8 Section 1 Chapter 14 Potential Energy and 

Conservation of Energy 

There is a fact, or if you wish, a law, governing all natural phenomena 
that are known to date. There is no exception to this law — it is exact as 
far as we know. The law is called the conservation of energy. It states that 
there is a certain quantity, which we call energy that does not change in 
the manifold changes which nature undergoes. That is a most abstract 
idea, because it is a mathematical principle; it says that there is a 
numerical quantity, which does not change when something happens. It is 
not a description of a mechanism, or anything concrete; it is just a strange 
fact that we can calculate some number and when we finish watching 
nature go through her tricks and calculate the number again, it is the 

1same. 

Richard Feynman 

So far we have analyzed the motion of point-like objects under the action of forces using 
Newton’s Laws of Motion. We shall now introduce the Principle of Conservation of 
Energy to study the change in energy of a system between its initial and final states. In 
particular we shall introduce the concept of potential energy to describe the effect of 
conservative internal forces acting on the constituent components of a system. 

14.1 Conservation of Energy 

Recall from Chapter 13.1, the principle of conservation of energy. When a system and its 
surroundings undergo a transition from an initial state to a final state, the change in 
energy is zero, 

ΔE = ΔE = 0 . (14.1.1)system + ΔEsurroundings 

Figure 14.1 Diagram of a system and its surroundings 

We shall study types of energy transformations due to interactions both inside and across 
the boundary of a system. 

Richard P. Feynman, Robert B. Leighton, and Matthew Sands, The Feynman Lectures on Physics, 
Vol. 1, p. 4.1. 
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14.2 Conservative and Non-Conservative Forces 

Our first type of “energy accounting” involves mechanical energy. There are two types of 
mechanical energy, kinetic energy and potential energy. Our first task is to define what 
we mean by the change of the potential energy of a system. 

 
We defined the work done by a force F , on an object, which moves along a path 

 from an initial position ri to a final position rf , as the integral of the component of the 
force tangent to the path with respect to the displacement of the point of contact of the 
force and the object, 

W = ∫ F 
 
⋅ dr  . (14.2.1) 

path 

Does the work done on the object by the force depend on the path taken by the 
object? 

(a) (b) 

Figure 14.2 (a) and (b) Two different paths connecting the same initial and final points 

First consider the motion of an object under the influence of a gravitational force near the 
surface of the earth. Let’s consider two paths 1 and 2 shown in Figure 14.2. Both paths 
begin at the initial point (xi , yi ) = (0, yi ) and end at the final point (x f , y f ) = (x f ,0) . The 
gravitational force always points downward, so with our choice of coordinates,  
F = −mg ̂j . The infinitesimal displacement along path 1 (Figure 14.2a) is given by 
dr1 = dx1 î + dy1 ĵ . The scalar product is then 

 F ⋅ dr1 = −mg ĵ ⋅ (dx1 î + dy1 ĵ) = −mgdy1 . (14.2.2) 

The work done by gravity along path 1 is the integral 

( x f ,0)  
⋅ dW1 = ∫ F r = ∫ −mgdy1 = −mg(0 − yi ) = mgyi . (14.2.3) 

path 1 (0,yi ) 
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Path 2 consists of two legs (Figure 14.2b), leg A goes from the initial point (0, yi ) 
to the origin (0,0) , and leg B goes from the origin (0,0) to the final point (x f ,0) . We 
shall calculate the work done along the two legs and then sum them up. The infinitesimal 

displacement along leg A is given by drA = dyA ĵ . The scalar product is then 

 F ⋅ drA = −mg ĵ ⋅ dyA ĵ = −mgdyA . (14.2.4) 

The work done by gravity along leg A is the integral 

(0,0)  WA = ∫ F ⋅ drA = ∫ −mgdyA = −mg(0 − yi ) = mgyi . (14.2.5) 
leg A (0, yi ) 

The infinitesimal displacement along leg B is given by drB = dxB î . The scalar product is 
then  F ⋅ drB = −mg ĵ ⋅ dxB î = 0 . (14.2.6) 

Therefore the work done by gravity along leg B is zero, WB = 0 , which is no surprise 
because leg B is perpendicular to the direction of the gravitation force. Therefore the 
work done along path 2 is equal to the work along path 1, 

W2 = WA + WB = mgyi = W1 . (14.2.7) 

Now consider the motion of an object on a surface with a kinetic frictional force 
between the object and the surface and denote the coefficient of kinetic friction by µk . 
Let’s compare two paths from an initial point xi to a final point x f . The first path is a 
straight-line path. Along this path the work done is just 

 
W f  = ∫ F ⋅ dr = ∫ F dx = −µk N s1 N Δx < 0 , (14.2.8)x = −µk 

path 1 path 1 

where the length of the path is equal to the displacement, s1 = Δx . Note that the fact that 
the kinetic frictional force is directed opposite to the displacement, which is reflected in 
the minus sign in Equation (14.2.8). The second path goes past x f some distance and 
them comes back to x f (Figure 14.3). Because the force of friction always opposes the 
motion, the work done by friction is negative, 

 
W f  = ∫ F ⋅ dr = ∫ Fx dx = −µk N s2 < 0 . (14.2.9) 

path 2 path 2 

14-3 



  

        
       

 
 

  
 

       
 
      

        
        

 
 

          
          

 
 

        
         

    

 
  

 
       

       
 

 

   

 

 

  

   

 

The work depends on the total distance traveled s2 , and is greater than the displacement 
s2 > Δx . The magnitude of the work done along the second path is greater than the 
magnitude of the work done along the first path. 

Figure 14.3 Two different paths from xi to x f . 

These two examples typify two fundamentally different types of forces and their 
contribution to work. The work done by the gravitational force near the surface of the 
earth is independent of the path taken between the initial and final points. In the case of 
sliding friction, the work done depends on the path taken. 

Whenever the work done by a force in moving an object from an initial 
point to a final point is independent of the path, the force is called a 
conservative force. 

 
The work done by a conservative force Fc in going around a closed path is zero. Consider 
the two paths shown in Figure 14.4 that form a closed path starting and ending at the 
point A with Cartesian coordinates (1,0) . 

Figure 14.4 Two paths in the presence of a conservative force. 

The work done along path 1 (the upper path in the figure, blue if viewed in color) from 
point A to point B with coordinates (0,1) is given by 
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B  
W1 = ∫F c (1) ⋅ dr 1 . (14.2.10) 

A 

The work done along path 2 (the lower path, green in color) from B to A is given by 

A  
W2 = ∫F c (2) ⋅ dr 2 . (14.2.11) 

B 

The work done around the closed path is just the sum of the work along paths 1 and 2, 

B  A  
W = W1 +W2 = ∫F c (1) ⋅ dr  1 + ∫F c (2) ⋅ dr  2 . (14.2.12) 

A B 

If we reverse the endpoints of path 2, then the integral changes sign, 

A B
F
 


F


r2 2 
r 

B A 

We can then substitute Equation (14.2.13) into Equation (14.2.12) to find that the work 
done around the closed path is 

∫
 ∫
W2 (2) ⋅ d (2) ⋅ d (14.2.13)
= −
=
 .
 c c 

B B
F
 


F


r1 2 
r 

A A 

Since the force is conservative, the work done between the points A to B is independent 
of the path, so 

B  B  

∫
 ∫
W
 (1) ⋅ d (2) ⋅ d (14.2.14)
−
=
 .
 c c 


 

∫
 = ∫
 rFr 

path 

F 2 .c 1 c 
A A 

We now use path independence of work for a conservative force (Equation (14.2.15) in 
Equation (14.2.14)) to conclude that the work done by a conservative force around a 
closed path is zero, 

∫ F 
 

W = c ⋅ dr  = 0 . (14.2.16) 
closed 

14.3 Changes in Potential Energies of a System 

Consider an object near the surface of the earth as a system that is initially given a 
velocity directed upwards. Once the object is released, the gravitation force, acting as an 
external force, does a negative amount of work on the object, and the kinetic energy 
decreases until the object reaches its highest point, at which its kinetic energy is zero. The 

(1) ⋅ d (2) ⋅ d (14.2.15) 
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gravitational force then does positive work until the object returns to its initial starting 
point with a velocity directed downward. If we ignore any effects of air resistance, the 
descending object will then have the identical kinetic energy as when it was thrown. All 
the kinetic energy was completely recovered. 

Now consider both the earth and the object as a system and assume that there are 
no other external forces acting on the system. Then the gravitational force is an internal 
conservative force, and does work on both the object and the earth during the motion. As 
the object moves upward, the kinetic energy of the system decreases, primarily because 
the object slows down, but there is also an imperceptible increase in the kinetic energy of 
the earth. The change in kinetic energy of the earth must also be included because the 
earth is part of the system. When the object returns to its original height (vertical distance 
from the surface of the earth), all the kinetic energy in the system is recovered, even 
though a very small amount has been transferred to the Earth. 

If we included the air as part of the system, and the air resistance as a non-
conservative internal force, then the kinetic energy lost due to the work done by the air 
resistance is not recoverable. This lost kinetic energy, which we have called thermal 
energy, is distributed as random kinetic energy in both the air molecules and the 
molecules that compose the object (and, to a smaller extent, the earth). 

We shall define a new quantity, the change in the internal potential energy of the 
system, which measures the amount of lost kinetic energy that can be recovered during an 
interaction. 

When only internal conservative forces act in a closed system, the sum of 
the changes of the kinetic and potential energies of the system is zero. 

Consider a closed system, ΔEsys = 0 , that consists of two objects with masses m1 
and m2 respectively. Assume that there is only one conservative force (internal force) 
that is the source of the interaction between two objects. We denote the force on object 1  
due to the interaction with object 2 by F2,1 and the force on object 2 due to the interaction 

 
with object 1 by F1,2 . From Newton’s Third Law, 

  
= − (14.3.1)F2,1 F1, 2 . 

The forces acting on the objects are shown in Figure 14.5. 

Figure 14.5 Internal forces acting on two objects 
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Choose a coordinate system (Figure 14.6) in which the position vector of object 1 
 is given by r1 and the position vector of object 2 is given by r2 . The relative position of 

2 ,1 1 2 . 

r 

 interaction, object 1 is displaced by dr1 and object 2 is displaced by dr2 , so the relative 

2 ,1 2 . r 

r r robject 1 with respect to object 2 is given by −
 During the course of the =
 

r1displacement of the two objects during the interaction is given by d = d − d 

r r r 

r 

Fr 


F 

2 ,1 1 2 

Recall that the change in the kinetic energy of an object is equal to the work done by the 
forces in displacing the object. For two objects displaced from an initial state A to a 
final state B , 

2 .2,1 1 1,2 

Figure 14.6 Coordinate system for two objects with relative position vector −
=
 

B B 

∫
 ∫
ΔK sys = ΔK1 + ΔK2 = W ⋅ d ⋅ d (14.3.2)
+
=
 c 
A A 

(In Equation (14.3.2), the labels “ A ” and “ B ” refer to initial and final states, not paths.) 

From Newton’s Third Law, Equation (14.3.1), the sum in Equation (14.3.2) becomes 

B B B B r 

Fr r 

r 


F 


F 

r 

r 


F 


F 

r 

F2,1 1 2,1 2 2,1 1 2 2,1 2,1 

is the relative displacement of the two objects. Note that since 

2,1 2,1 1, 2 1, 2 

∫
 ∫
 ∫
 ∫
ΔK = W
 ⋅ d ⋅ d ⋅(d − d ⋅ d (14.3.3)
−
 )
=
 =
 =
 sys c 
A A A A 

!r !r !r2 ,1 1 2 

  
and dr  = −d r F2,1 = −F1, 2 2 ,1 1,2 , ∫ 

where d = d − d 
B B 

∫
⋅ d ⋅ d=
 .
 
A A 
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Consider a system consisting of two objects interacting through a  
conservative force. Let F2,1 denote the force on object 1 due to the 

2 ,1 1 2 

r r rinteraction with object 2 and let d = d − d be the relative 
displacement of the two objects. The change in internal potential energy 
of the system is defined to be the negative of the work done by the 
conservative force when the objects undergo a relative displacement from 
the initial state A to the final state B along any displacement that 
changes the initial state A to the final state B , 

B B 

2,1 2,1 1,2 
A A 


F 

Our definition of potential energy only holds for conservative forces, because the 
work done by a conservative force does not depend on the path but only on the initial and 

r 

final positions. Because the work done by the conservative force is equal to the change in 
kinetic energy, we have that 


F 

ΔU = −ΔK , (closed system with no non-conservative forces) . (14.3.5)sys sys 

Recall that the work done by a conservative force in going around a closed path is 
zero (Equation (14.2.16)); therefore the change in kinetic energy when a system returns 
to its initial state is zero. This means that the kinetic energy is completely recoverable. 

In the Appendix 13A: Work Done on a System of Two Particles, we showed that 
the work done by an internal force in changing a system of two particles of masses m1 
and m2 respectively from an initial state A to a final state B is equal to 

1 2 − vW = µ (vB A 
2 ) = ΔK sys , (14.3.6)

2 

where vB 
2 is the square of the relative velocity in state B , vA 

2 is the square of the relative 
velocity in state A , and µ = m1m2 / (m1 + m2 ) is a quantity known as the reduced mass of 
the system. 

14.3.1 Change in Potential Energy for Several Conservative Forces 

When there are several internal conservative forces acting on the system we define a 
separate change in potential energy for the work done by each conservative force, 

ΔU = −W = −∫ 
B 

F 
 

⋅ dr  i . (14.3.7)sys, i c,i c, i 
A 

r1,2 ∫
 ∫
ΔU = −W
 = −
 ⋅ d = −
 ⋅ d (14.3.4)
.
 sys c 
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 where Fc, i is a conservative internal force and dri a change in the relative positions of 
 

the objects on which Fc, i when the system is changed from state A to state B . The work 
done is the sum of the work done by the individual conservative forces, 

W + ⋅ ⋅ ⋅ . (14.3.8)c = Wc,1 + Wc, 2 

Hence, the sum of the changes in potential energies for the system is the sum 

ΔU sys = ΔUsys,1 + ΔUsys,2 + ⋅⋅⋅ . (14.3.9) 

Therefore the change in potential energy of the system is equal to the negative of the 
work done 

B  ΔU sys = −W c = −∑∫F c, i ⋅ dri . (14.3.10) 
i A 

If the system is closed (external forces do no work), and there are no non-conservative 
internal forces then Eq. (14.3.5) holds. 

14.4 Change in Potential Energy and Zero Point for Potential Energy 

We already calculated the work done by different conservative forces: constant gravity 
near the surface of the earth, the spring force, and the universal gravitation force. We 
chose the system in each case so that the conservative force was an external force. In 
each case, there was no change of potential energy and the work done was equal to the 
change of kinetic energy, 

W = ΔK sys . (14.4.1)ext 

We now treat each of these conservative forces as internal forces and calculate the change 
in potential energy of the system according to our definition 

ΔU = −W = −∫
B 

F 
 
⋅ dr  . (14.4.2)sys c c 

A 

We shall also choose a zero reference potential for the potential energy of the system, so 
that we can consider all changes in potential energy relative to this reference potential. 

14.4.1 Change in Gravitational Potential Energy Near Surface of the Earth 

Let’s consider the example of an object falling near the surface of the earth. Choose our 
system to consist of the earth and the object. The gravitational force is now an internal 
conservative force acting inside the system. The distance separating the object and the 
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center of mass of the earth, and the velocities of the earth and the object specifies the 
initial and final states. 

Let’s choose a coordinate system with the origin on the surface of the earth and the + y -
direction pointing away from the center of the earth. Because the displacement of the 
earth is negligible, we need only consider the displacement of the object in order to 
calculate the change in potential energy of the system. 

Suppose the object starts at an initial height yi above the surface of the earth and ends at 
 

final height y f . The gravitational force on the object is given by Fg = −mg ĵ , the 
displacement is given by dr = dy ĵ , and the scalar product is given by 

 Fg ⋅ dr = −mg ĵ ⋅ dyĵ = −mgdy . The work done by the gravitational force on the object is 
then 

y f y f W g = ∫ Fg ⋅ dr = ∫ −mg dy = −mg(yf − yi ) . (14.4.3) 
yi ) yi ) 

The change in potential energy is then given by 

ΔU g = −W g = mg Δy = mg y − mg y (14.4.4)f i . 

We introduce a potential energy function U so that 

ΔU g ≡ U gf − Ui
g . (14.4.5) 

Only differences in the function U g have a physical meaning. We can choose a zero 
reference point for the potential energy anywhere we like. We have some flexibility to 
adapt our choice of zero for the potential energy to best fit a particular problem. Because 
the change in potential energy only depended on the displacement, Δy . In the above 
expression for the change of potential energy (Eq. (14.4.4)), let y f = y be an arbitrary 

point and yi = 0 denote the surface of the earth. Choose the zero reference potential for 
the potential energy to be at the surface of the earth corresponding to our origin y = 0 , 
with U g (0) = 0 . Then 

ΔU g = U g ( y) − U g (0) = U g ( y) . (14.4.6) 

Substitute yi = 0 , y f = y and Eq. (14.4.6) into Eq. (14.4.4) yielding a potential energy as 
a function of the height y above the surface of the earth, 

U g ( y) = mgy, with U g ( y = 0) = 0 . (14.4.7) 
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14.4.2 Hooke’s Law Spring-Object System 

Consider a spring-object system lying on a frictionless horizontal surface with one end of 
the spring fixed to a wall and the other end attached to an object of mass m (Figure 
14.7). The spring force is an internal conservative force. The wall exerts an external force 
on the spring-object system but since the point of contact of the wall with the spring 
undergoes no displacement, this external force does no work. 

Figure 14.7 A spring-object system. 

Choose the origin at the position of the center of the object when the spring is 
relaxed (the equilibrium position). Let x be the displacement of the object from the 
origin. We choose the +î unit vector to point in the direction the object moves when the 
spring is being stretched (to the right of x = 0 in the figure). The spring force on a mass  is then given by Fs = Fx

s î = −kx ̂i . The displacement is dr = dx ̂i . The scalar product is 
 F ⋅ dr = −kx î ⋅ dx î = −kx dx . The work done by the spring force on the mass is 

x=x fx=x f  
W s  1 1 1 = ∫ F⋅ dr = − 

2 ∫ − (−kx) dx = − k(x f 
2 − xi 

2 ) . (14.4.8)
2 2 x=xi x=xi 

We then define the change in potential energy in the spring-object system in moving the 
object from an initial position from equilibrium to a final position x f fromxi 

equilibrium by 
1 2ΔU s ) = −W s = k(x 2 ) . (14.4.9)≡ U s (x f ) − U s (xi f − xi2 

Therefore an arbitrary stretch or compression of a spring-object system from equilibrium 
= 0 to a final position x f = x changes the potential energy by 

ΔU s = U s (x f ) − U s (0) = 
1 

k x2 . (14.4.10)
2 

xi 
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For the spring-object system, there is an obvious choice of position where the potential 
energy is zero, the equilibrium position of the spring- object, 

U s (0) ≡ 0 . (14.4.11) 

Then with this choice of zero reference potential, the potential energy as a function of the 
displacement x from the equilibrium position is given by 

U s (x) = 
1 

k x2 , with U s (0) ≡ 0 . (14.4.12)
2 

14.4.3 Inverse Square Gravitation Force 

Consider a system consisting of two objects of masses m1 and m2 that are separated by a 
center-to-center distance A coordinate system is shown in the Figure 14.8. Ther2,1 . 
internal gravitational force on object 1 due to the interaction between the two objects is 
given by 

 
G G m1 m2= − r̂2 ,1 . (14.4.13)F2 ,1 2r2 ,1 

 ˆThe displacement vector is given by dr r . So the scalar product is2,1 = dr2,1 2,1 

 
G  G m1 m2 G m1 m2⋅ d = − ˆ ⋅ dr2 ,1 

ˆ = − dr2 ,1 . (14.4.14)F2 1, r2 ,1 2 r2 ,1 r2 ,1 2r2 ,1 r2 ,1 

Figure 14.8 Gravitational interaction 

Using our definition of potential energy (Eq. (14.3.4)), we have that the change in the 
gravitational potential energy of the system in moving the two objects from an initial 
position in which the center of mass of the two objects are a distance ri apart to a final 
position in which the center of mass of the two objects are a distance rf apart is given by 
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B  f G m m G m m 
rf G m m G m m 

ΔU G G  1 2 1 2 1 2 1 2= − + . (14.4.15)= − ⋅ d = − − = −∫F2,1 r2,1 ∫ 2 dr2,1 rA ri 2,1 
r2,1 rf riri 

We now choose our reference point for the zero of the potential energy to be at infinity, 
= ∞ , with the choice that U G (∞) ≡ 0 . By making this choice, the term 1/ r in the ri 

expression for the change in potential energy vanishes when = ∞ . The gravitationalri 

potential energy as a function of the relative distance r between the two objects is given 
by 

G m1 m2U G (r) = − , with U G (∞) ≡ 0 . (14.4.16)
r 

14.5 Mechanical Energy and Conservation of Mechanical Energy 

The total change in the mechanical energy of the system is defined to be 
the sum of the changes of the kinetic and the potential energies, 

ΔE = ΔK + ΔU . (14.4.17)m sys sys 

For a closed system with only conservative internal forces, the total change in the 
mechanical energy is zero, 

ΔE = ΔK + ΔU = 0 . (14.4.18)m sys sys 

Equation (14.4.18) is the symbolic statement of what is called conservation of 
mechanical energy. Recall that the work done by a conservative force in going around a 
closed path is zero (Equation (14.2.16)), therefore both the changes in kinetic energy and 
potential energy are zero when a closed system with only conservative internal forces 
returns to its initial state. Throughout the process, the kinetic energy may change into 
internal potential energy but if the system returns to its initial state, the kinetic energy is 
completely recoverable. We shall refer to a closed system in which processes take place 
in which only conservative forces act as completely reversible processes. 

14.5.1 Change in Gravitational potential Energy Near Surface of the Earth 

Let’s consider the example of an object of mass mo falling near the surface of the earth 
(mass me ). Choose our system to consist of the earth and the object. The gravitational 
force is now an internal conservative force acting inside the system. The initial and final 
states are specified by the distance separating the object and the center of mass of the 
earth, and the velocities of the earth and the object. The change in kinetic energy between 
the initial and final states for the system is 

ΔK = ΔK + ΔK , (14.4.19)sys e o 
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⎛ 1 ⎞ ⎛ 1 ⎞
)2 − 

1 )2 )2 − 
1 )2ΔK sys = 

⎝⎜ 
m e (ve, f m e (ve,i ⎠⎟ 

+ 
⎝⎜ 

mo (vo, f mo (vo,i ⎠⎟ 
. (14.4.20)

2 2 2 2 

The change of kinetic energy of the earth due to the gravitational interaction between the 
earth and the object is negligible. The change in kinetic energy of the system is 
approximately equal to the change in kinetic energy of the object, 

1 )2 − 
1 )2ΔK ≅ ΔK = m (v m (v . (14.4.21)sys o o o, f o o,i2 2 

We now define the mechanical energy function for the system 

E = K +U g = 
1 )2 + m gy, with U g (0) = 0 , (14.4.22)m m o (vb o2 

where K is the kinetic energy and U g is the potential energy. The change in mechanical 
energy is then 

ΔE ≡ Em, f − E = (K + U g ) − (K + U g ) . (14.4.23)m m, i f f i i 

When the work done by the external forces is zero and there are no internal non-
conservative forces, the total mechanical energy of the system is constant, 

E = E (14.4.24)m, f m, i , 
or equivalently 

(14.4.25)(K f + U f ) = (Ki + Ui ) . 

14.6 Spring Force Energy Diagram 
 

The spring force on an object is a restoring force Fs = Fx
s î = −k x ̂i where we choose a 

coordinate system with the equilibrium position at xi = 0 and x is the amount the spring 
has been stretched (x > 0) or compressed (x < 0) from its equilibrium position. We 
calculate the potential energy difference Eq. (14.4.9) and found that 

U s (x) − U s (xi ) = −∫
x 

Fx
s dx = 

1 
k(x2 − xi 

2 ) . (14.5.1)
xi 2 

The first fundamental theorem of calculus states that 

x ′= x dU
U (x) − U (xi ) = dx′ . (14.5.2)∫x ′= xi dx′ 
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Comparing Equation (14.5.1) with Equation (14.5.2) shows that the force is the negative 
derivative (with respect to position) of the potential energy, 

F s dU s (x)
= − . (14.5.3)x dx 

Choose the zero reference point for the potential energy to be at the equilibrium position, 
U s (0) ≡ 0 . Then the potential energy function becomes 

U s (x) = 
1 

k x2 . (14.5.4)
2 

From this, we obtain the spring force law as 

s dU s (x) d ⎛ 1 ⎞
F = − = − k x2 

⎠⎟ 
= −k x . (14.5.5)x dx dx ⎝⎜ 2 

In Figure 14.9 we plot the potential energy function Us (x) for the spring force as 
function of x with U s (0) ≡ 0 (the units are arbitrary). 

Figure 14.9 Graph of potential energy function as function of x for the spring. 

The minimum of the potential energy function occurs at the point where the first 
derivative vanishes 

dU s (x) 
dx 

= 0 . (14.5.6) 

From Equation (14.5.4), the minimum occurs at x = 0 , 

0 = 
dU s (x) 

dx 
= k x . (14.5.7) 

14-15 



  

           
               

  
 

 
       

          
        

          
           
         

       
  

 

 
 

  
 
          

 
 

   
     
 

        
      

         
        
            

 
 
         

          
      

      
        

 
 

 

  

   
      

        

         

        

  

  

 

 

         

Because the force is the negative derivative of the potential energy, and this derivative 
vanishes at the minimum, we have that the spring force is zero at the minimum x = 0 
agreeing with our force law, Fx

s = 0 .= −k x 
x =0x =0 

The potential energy function has positive curvature in the neighborhood of a 
minimum equilibrium point. If the object is extended a small distance x > 0 away from 
equilibrium, the slope of the potential energy function is positive, dU ( )x dx > 0 , hence 
the component of the force is negative because Fx = − dU ( )x dx < 0 . Thus the object 
experiences a restoring force towards the minimum point of the potential. If the object is 
compresses with x < 0 then dU ( )x dx < 0 , hence the component of the force is positive, 
Fx = − dU ( )x dx > 0 , and the object again experiences a restoring force back towards the 
minimum of the potential energy as in Figure 14.10. 

Figure 14.10 Stability diagram for the spring force. 

The mechanical energy at any time is the sum of the kinetic energy ( ) and the K x 

potential energy U s (x) 
Em = K(x) + U s (x) . (14.5.8) 

Suppose our spring-object system has no loss of mechanical energy due to dissipative 
forces such as friction or air resistance. Both the kinetic energy and the potential energy 
are functions of the position of the object with respect to equilibrium. The energy is a 
constant of the motion and with our choice of U s (0) ≡ 0 , the energy can be either a 
positive value or zero. When the energy is zero, the object is at rest at the equilibrium 
position. 

In Figure 14.10, we draw a straight horizontal line corresponding to a non-zero 
positive value for the energy Em on the graph of potential energy as a function of x . The 
energy intersects the potential energy function at two points {−x , x } with x > 0 .max max max 

These points correspond to the maximum compression and maximum extension of the 
spring, which are called the turning points. The kinetic energy is the difference between 
the energy and the potential energy, 
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K(x) = Em − U s (x) . (14.5.9) 

At the turning points, where Em = U s (x) , the kinetic energy is zero. Regions where the 
kinetic energy is negative, x < −x or x > x are called the classically forbidden max max 

regions, which the object can never reach if subject to the laws of classical mechanics. In 
quantum mechanics, with similar energy diagrams for quantum systems, there is a very 
small probability that the quantum object can be found in a classically forbidden region. 

Example 14.1 Energy Diagram 

The potential energy function for a particle of mass m , moving in the x -direction is 
given by 

3 2 ⎞⎛ ⎛ x ⎞ ⎛ x ⎞ 
U (x) = −U1 ⎜ − ⎟ , (14.5.10)

⎜ ⎝⎜ ⎝⎜ ⎝ x1 ⎠
⎟ x1 ⎠

⎟ ⎟⎠ 

where U1 and x1 are positive constants and U (0) = 0 . (a) Sketch x as a function U ( ) /U1 
of x / x1 . (b) Find the points where the force on the particle is zero. Classify them as 
stable or unstable. Calculate the value of U (x) / U1 at these equilibrium points. (c) For 
energies E that lies in 0 < E < (4 / 27)U1 find an equation whose solution yields the 
turning points along the x-axis about which the particle will undergo periodic motion. (d) 
Suppose E = (4 / 27)U1 and that the particle starts at x = 0 with speed v0 . Find v0 . 

Solution: a) Figure 14.11 shows a graph of U (x) vs. x , with the choice of values = 1.5 m ,x1 

= 27 / 4 J , and E = 0.2 J .U1 

Figure 14.11 Energy diagram for Example 14.1 

b) The force on the particle is zero at the minimum of the potential which occurs at 
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⎛
 ⎞
⎛
 ⎞
 ⎛
 ⎞
 
(x) = − 

dU 
dx 

(x) = U1 

3
 2
 
x2 −F
 = 0 (14.5.11)
⎜

⎝
 
⎟
⎠
 

x⎜
⎝


⎟
⎠


⎜
⎝


⎟
⎠
3 2x x1 x1 

which becomes 
x2 = (2x1 / 3)x . (14.5.12) 

We can solve Eq. (14.5.12) for the extrema. This has two solutions 

x = (2x1 / 3) and x = 0 . (14.5.13) 

The second derivative is given by 

⎛
 ⎞
⎛
 ⎛
⎞
 ⎞
d 2U 
dx2 (x) = −U1 

6
 2
 
⎟
⎠
 

x − ⎜
⎝
 

. (14.5.14)
⎜
⎝
 

⎟
⎠


⎜
⎝


⎟
⎠
3 2x1 x1 

Evaluating the second derivative at x = (2x1 / 3) yields a negative quantity 

⎛
 ⎞
⎛
 ⎞
 ⎛
 ⎞
d 2U 
dx2 (x = (2x1 / 3)) = −U1 

2U
2x16
 2
 1−
 = −
 < 0 , (14.5.15)
⎜
⎝
 

⎟
⎠


⎜
⎝


⎟
⎠


⎜
⎝


⎟
⎠
3 2 23
x1 x1 x1 

indicating the solution x = (2x1 / 3) represents a local maximum and hence is an unstable point. 
At x = (2x1 / 3) , the potential energy is given by the value U ((2x1 / 3)) = (4 / 27)U1 . Evaluating 
the second derivative at x = 0 yields a positive quantity 

⎛
 ⎞
⎛
 ⎛
⎞
 ⎞
d 2U 
dx2 (x = 0) = −U1 

2U
6
 2
 1
⎟
⎠
 

0 −
⎜
⎝
 

> 0 , (14.5.16)
⎜
⎝
 

⎟
⎠
 
=
⎜

⎝

⎟
⎠
3 2 2x1 x1 x1 

indicating the solution x = 0 represents a local minimum and is a stable point. At the local 
minimum x = 0 , the potential energy U (0) = 0 . 

c) Consider a fixed value of the energy of the particle within the range 

4U1U (0) = 0 < E < U (2x1 / 3) = . (14.5.17)
27 

If the particle at any time is found in the region x / 3, where x and xb are the a < x < xb < 2x1 a 

turning points and are solutions to the equation 
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⎛ ⎛ x ⎞ 
3 

⎛ x ⎞ 
2 ⎞ 

E = U (x) = −U1 ⎜ − ⎟ . (14.5.18)
⎜ ⎝⎜ ⎝⎜ ⎝ x1 ⎠

⎟ x1 ⎠
⎟ ⎟⎠ 

then the particle will undergo periodic motion between the values x . Within a < x < xb 

this region xa < x < xb , the kinetic energy is always positive because K(x) = E −U (x) . 
There is another solution x to Eq. (14.5.18) somewhere in the region x / 3 . If the c c > 2x1 

particle at any time is in the region x > xc then it at any later time it is restricted to the 
region xc < x < +∞ . 

For E > U (2x1 / 3) = (4 / 27)U1 , Eq. (14.5.18) has only one solution xd . For all values of 
x > xd , the kinetic energy is positive, which means that the particle can “escape” to 
infinity but can never enter the region x < xd . 

For E < U (0) = 0 , the kinetic energy is negative for the range −∞ < x < xe where xe 

satisfies Eq. (14.5.18) and therefore this region of space is forbidden. 

(d) If the particle has speed v0 at x = 0 where the potential energy is zero, U (0) = 0 , the 
energy of the particle is constant and equal to kinetic energy 

1 2E = K(0) = mv0 . (14.5.19)
2 

Therefore 
1 2(4 / 27)U1 = mv0 , (14.5.20)
2 

which we can solve for the speed 
8U1 / 27m .v0 = (14.5.21) 

14.7 Change of Mechanical Energy for Closed System with Internal 
Non-conservative Forces 

Consider a closed system (energy of the system is constant) that undergoes a 
transformation from an initial state to a final state by a prescribed set of changes. 

Whenever the work done by a force in moving an object from an initial point to a 
final point depends on the path, the force is called a non-conservative force. 
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Suppose the internal forces are both conservative and non-conservative. The work W 
done by the forces is a sum of the conservative work W c , which is path-independent, and 

the non-conservative work W nc , which is path-dependent, 

W = W c + W nc . (14.6.1) 

The work done by the conservative forces is equal to the negative of the change in the 
potential energy 

ΔU = −W c . (14.6.2) 

Substituting Equation (14.6.2) into Equation (14.6.1) yields 

W = −ΔU + W nc . (14.6.3) 

The work done is equal to the change in the kinetic energy, 

W = ΔK . (14.6.4) 

Substituting Equation (14.6.4) into Equation (14.6.3) yields 

ΔK = −ΔU + W nc . (14.6.5) 
which we can rearrange as 

W nc = ΔK + ΔU . (14.6.6) 

We can now substitute Equation (14.6.4) into our expression for the change in the 
mechanical energy, Equation (14.4.17), with the result 

W nc = ΔEm . (14.6.7) 

The mechanical energy is no longer constant. The total change in energy of the system is 
zero, 

ΔE = ΔE − W = 0 . (14.6.8)system m nc 

Energy is conserved but some mechanical energy has been transferred into non-
recoverable energy W nc . We shall refer to processes in which there is non-zero non-
recoverable energy as irreversible processes. 

14.7.1 Change of Mechanical Energy for a Non-closed System 

When the system is no longer closed but in contact with its surroundings, the change in 
energy of the system is equal to the negative of the change in energy of the surroundings 
(Eq. (14.1.1)), 
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ΔEsystem = −ΔEsurroundings (14.6.9) 

If the system is not isolated, the change in energy of the system can be the result of 
external work done by the surroundings on the system (which can be positive or negative) 

W = ∫ 
B 

F 
 

⋅ dr  . (14.6.10)ext ext 
A 

This work will result in the system undergoing coherent motion. Note that Wext > 0 if 

work is done on the system ( ΔEsurroundings < 0 ) and W < 0 if the system does work on the ext 

surroundings ( ΔEsurroundings > 0 ). If the system is in thermal contact with the surroundings, 
then energy can flow into or out of the system. This energy flow due to thermal contact is 
often denoted by Q with the convention that Q > 0 if the energy flows into the system 
( ΔEsurroundings < 0 ) and Q < 0 if the energy flows out of the system ( ΔEsurroundings > 0 ). Then 
Eq. (14.6.9) can be rewritten as 

W ext + Q = ΔE sys (14.6.11) 

Equation (14.6.11) is also called the first law of thermodynamics. 

This will result in either an increase or decrease in random thermal motion of the 
molecules inside the system, There may also be other forms of energy that enter the 
system, for example radiative energy. 

Several questions naturally arise from this set of definitions and physical 
concepts. Is it possible to identify all the conservative forces and calculate the associated 
changes in potential energies? How do we account for non-conservative forces such as 
friction that act at the boundary of the system? 

14.8 Dissipative Forces: Friction 

Suppose we consider an object moving on a rough surface. As the object slides it slows 
down and stops. While the sliding occurs both the object and the surface increase in 
temperature. The increase in temperature is due to the molecules inside the materials 
increasing their kinetic energy. This random kinetic energy is called thermal energy. 
Kinetic energy associated with the coherent motion of the molecules of the object has 
been dissipated into kinetic energy associated with random motion of the molecules 
composing the object and surface. 

If we define the system to be just the object, then the friction force acts as an 
external force on the system and results in the dissipation of energy into both the block 
and the surface. Without knowing further properties of the material we cannot determine 
the exact changes in the energy of the system. 
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Friction introduces a problem in that the point of contact is not well defined 
because the surface of contact is constantly deforming as the object moves along the 
surface. If we considered the object and the surface as the system, then the friction force 
is an internal force, and the decrease in the kinetic energy of the moving object ends up as 
an increase in the internal random kinetic energy of the constituent parts of the system. 
When there is dissipation at the boundary of the system, we need an additional model 
(thermal equation of state) for how the dissipated energy distributes itself among the 
constituent parts of the system. 

14.8.1 Source Energy 

Consider a person walking. The frictional force between the person and the ground does 
no work because the point of contact between the person’s foot and the ground undergoes 
no displacement as the person applies a force against the ground, (there may be some 
slippage but that would be opposite the direction of motion of the person). However the 
kinetic energy of the object increases. Have we disproved the work-energy theorem? The 
answer is no! The chemical energy stored in the body tissue is converted to kinetic 
energy and thermal energy. Because the person-air-ground can be treated as a closed 
system, we have that 

0 = ΔE sys = ΔEchemical + ΔEthermal + ΔEmechanical , (closed system) . (14.7.1) 

If we assume that there is no change in the potential energy of the system, then 
= ΔK . Therefore some of the internal chemical energy has been transformed ΔEmechanical 

into thermal energy and the rest has changed into the kinetic energy of the system, 

−ΔE = ΔE + ΔK . (14.7.2)chemical thermal 

14.9 Worked Examples 

Example 14.2 Escape Velocity of Toro 

The asteroid Toro, discovered in 1964, has a radius of about R = 5.0km and a mass of 
about mt = 2.0 ×1015 kg . Let’s assume that Toro is a perfectly uniform sphere. What is the 
escape velocity for an object of mass m on the surface of Toro? Could a person reach 
this speed (on earth) by running? 

Solution: The only potential energy in this problem is the gravitational potential energy. 
We choose the zero point for the potential energy to be when the object and Toro are an 
infinite distance apart, UG (∞) ≡ 0 . With this choice, the potential energy when the object 
and Toro are a finite distance r apart is given by 

Gmt m
U G (r) = − (14.8.1)

r 
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with U G (∞) ≡ 0 . The expression escape velocity refers to the minimum speed necessary 
for an object to escape the gravitational interaction of the asteroid and move off to an 
infinite distance away. If the object has a speed less than the escape velocity, it will be 
unable to escape the gravitational force and must return to Toro. If the object has a speed 
greater than the escape velocity, it will have a non-zero kinetic energy at infinity. The 
condition for the escape velocity is that the object will have exactly zero kinetic energy at 
infinity. 

We choose our initial state, at time ti , when the object is at the surface of the asteroid 
with speed equal to the escape velocity. We choose our final state, at time t f , to occur 
when the separation distance between the asteroid and the object is infinite. 

The initial kinetic energy is = (1/ 2)mv 2 . The initial potential energy isKi esc 

= −Gm m / R , and so the initial mechanical energy isUi t 

1 2 Gmt m 
= mv − . (14.8.2)Ei = Ki +Ui esc 2 R 

The final kinetic energy is K f = 0 , because this is the condition that defines the escape 

velocity. The final potential energy is zero, U f = 0 because we chose the zero point for 
potential energy at infinity. The final mechanical energy is then 

= 0 . (14.8.3)E f = K f + U f 

There is no non-conservative work, so the change in mechanical energy is zero 

0 = W = ΔE (14.8.4)nc m = E f − Ei . 
Therefore 

⎛ 1 2 Gmt m⎞
0 = − mv esc − (14.8.5)

⎝⎜ 2 R ⎠⎟ 
. 

This can be solved for the escape velocity, 

(14.8.6) 
= 7.3 m ⋅s−1. 

v esc = 
2Gmt 

R 

= 
2(6.67 ×10−11 N ⋅m2 ⋅kg−2 )(2.0 ×1015 kg) 

(5.0 ×103 m) 

14-23 



  

        
    

     
          

 
 

 
 

           
          

        
         

          
     

     
          

          
 

 
 

  
 

             
         

 
 

   

 
              

 
         

   
 

 
  

  

 
         

    

 

 

     

       

 

  

 

    
 

Considering that Olympic sprinters typically reach velocities of 12 m ⋅ s−1 , this is an easy 
speed to attain by running on earth. It may be harder on Toro to generate the acceleration 
necessary to reach this speed by pushing off the ground, since any slight upward force 
will raise the runner’s center of mass and it will take substantially more time than on 
earth to come back down for another push off the ground. 

Example 14.3 Spring-Block-Loop-the-Loop 

A small block of mass m is pushed against a spring with spring constant k and held in 
place with a catch. The spring is compressed an unknown distance x (Figure 14.12). 
When the catch is removed, the block leaves the spring and slides along a frictionless 
circular loop of radius r . When the block reaches the top of the loop, the force of the 
loop on the block (the normal force) is equal to twice the gravitational force on the mass. 
(a) Using conservation of energy, find the kinetic energy of the block at the top of 
the loop. (b) Using Newton’s Second Law, derive the equation of motion for the block 
when it is at the top of the loop. Specifically, find the speed vtop in terms of the 
gravitation constant g and the loop radius r . (c) What distance was the spring 
compressed? 

Figure 14.12 Initial state for spring-block-loop-the-loop system 

Solution: a) Choose for the initial state the instant before the catch is released. The initial 
kinetic energy is Ki = 0 . The initial potential energy is non-zero, Ui = (1 / 2)k x2 . The 
initial mechanical energy is then 

1
Ei = Ki + Ui = k x2 . (14.8.7)

2 

Choose for the final state the instant the block is at the top of the loop. The final kinetic 
energy is K f = (1/ 2)mv2 ; the block is in motion with speed v . The final potential top top 

energy is non-zero, U f = (mg)(2R) . The final mechanical energy is then 

= 2mgR + 
1
2 

mv2 . (14.8.8)E f = K f + U f top 

Because we are assuming the track is frictionless and neglecting air resistance, there is no 
non- conservative work. The change in mechanical energy is therefore zero, 
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0 = W nc = ΔEm = E f − Ei . (14.8.9) 

Mechanical energy is conserved, E f , therefore= Ei 

1 2 1
2mgR + mvtop = k x2 . (14.8.10)

2 2 

From Equation (14.8.10), the kinetic energy at the top of the loop is 

1 2 1 
mvtop = k x2 − 2mgR . (14.8.11)

2 2 

b) At the top of the loop, the forces on the block are the gravitational force of magnitude 
mg and the normal force of magnitude N , both directed down. Newton’s Second Law 
in the radial direction, which is the downward direction, is 

2mv 
−mg − N = − top . (14.8.12)

R 

In this problem, we are given that when the block reaches the top of the loop, the force of 
the loop on the block (the normal force, downward in this case) is equal to twice the 
weight of the block, N = 2mg . The Second Law, Eq. (14.8.12), then becomes 

2mv 
3mg = top . (14.8.13)

R 

We can rewrite Equation (14.8.13) in terms of the kinetic energy as 

3 1 2mg R = mvtop . (14.8.14)
2 2 

The speed at the top is therefore 
vtop = 3mg R . (14.8.15) 

c) Combing Equations (14.8.11) and (14.8.14) yields 

7 
mg R = 

1 
k x2 . (14.8.16)

2 2 

Thus the initial displacement of the spring from equilibrium is 
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7mg R 
x 

k 
= .	 (14.8.17)
 

Example 14.4 Mass-Spring on a Rough Surface 

A block of mass m slides along a horizontal table with speed v0 . At x = 0 it hits a 
spring with spring constant k and begins to experience a friction force. The coefficient of 
friction is variable and is given by µ = bx , where b is a positive constant. Find the loss 
in mechanical energy when the block first momentarily comes to rest. 

Figure 14.13 Spring-block system 

Solution: From the model given for the frictional force, we could find the non-
conservative work done, which is the same as the loss of mechanical energy, if we knew 
the position x f where the block first comes to rest. The most direct (and easiest) way to 

find x f is to use the work-energy theorem. The initial mechanical energy is Ei = mvi 
2 / 2 

and the final mechanical energy is E f = k x 2 
f / 2 (note that there is no potential energy 

term in and no kinetic energy term in ). The difference between these two Ei 	 E f 

mechanical energies is the non-conservative work done by the frictional force, 

x=x x=x x=xf f	 f 

W = F dx = −F dx = −µ N dx nc	 ∫ nc ∫ friction ∫ 
x=0 x=0 x=0 (14.8.18) 

x 1 2= − 
f b xmg dx = − bmg x f .∫0 2 

We then have that 
W = ΔE nc m 

W 	 (14.8.19)nc = E f − Ei 

1 2 1 1 2− bmg x f = k x 2 −f mvi .2 2 2 

Solving the last of these equations for x2 
f yields 
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mv0
2 

x2 = . (14.8.20)f k + bmg 

Substitute Eq. (14.8.20) into Eq. (14.8.18) gives the result that 

bmg mv 2 mv 2 ⎛ k ⎞
−1 

Wnc = − 0 = − 0 ⎜1+ ⎟ . (14.8.21)
2 k + bmg 2 ⎝ bmg ⎠ 

It is worth checking that the above result is dimensionally correct. From the model, the 
parameter b must have dimensions of inverse length (the coefficient of friction µ must 
be dimensionless), and so the product bmg has dimensions of force per length, as does 
the spring constant k ; the result is dimensionally consistent. 

Example 14.5 Cart-Spring on an Inclined Plane 

An object of mass m slides down a plane that is inclined at an angle θ from the 
horizontal (Figure 14.14). The object starts out at rest. The center of mass of the cart is a 
distance d from an unstretched spring that lies at the bottom of the plane. Assume the 
spring is massless, and has a spring constant k . Assume the inclined plane to be 
frictionless. (a) How far will the spring compress when the mass first comes to rest? (b) 
Now assume that the inclined plane has a coefficient of kinetic friction µk . How far will 
the spring compress when the mass first comes to rest? The friction is primarily between 
the wheels and the bearings, not between the cart and the plane, but the friction force may 
be modeled by a coefficient of friction µk . (c) In case (b), how much energy has been 
lost to friction? 

Figure 14.14 Cart on inclined plane 

Solution: Let x denote the displacement of the spring from the equilibrium position. 
Choose the zero point for the gravitational potential energy U g (0) = 0 not at the very 
bottom of the inclined plane, but at the location of the end of the unstretched spring. 
Choose the zero point for the spring potential energy where the spring is at its 
equilibrium position, U s (0) = 0 . 

a) Choose for the initial state the instant the object is released (Figure 14.15). The initial 
kinetic energy is Ki = 0 . The initial potential energy is non-zero, Ui = mg d sinθ . The 
initial mechanical energy is then 
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= mg d sinθ (14.8.22)Ei = Ki + Ui 

Choose for the final state the instant when the object first comes to rest and the spring is 
compressed a distance x at the bottom of the inclined plane (Figure 14.16). The final 
kinetic energy is K f = 0 since the mass is not in motion. The final potential energy is 

non-zero, = k x2 / 2 − x mg sinθ . Notice that the gravitational potential energy is U f 

negative because the object has dropped below the height of the zero point of 
gravitational potential energy. 

Figure 14.15 Initial state Figure 14.16 Final state 

The final mechanical energy is then 

= 
1 

k x2 − x mg sinθ . (14.8.23)E f = K f + U f 2 

Because we are assuming the track is frictionless and neglecting air resistance, there is no 
non- conservative work. The change in mechanical energy is therefore zero, 

0 = W nc = ΔE m = E f − Ei . (14.8.24) 
Therefore 

d mg sinθ = 
1 
2 

k x2 − x mg sinθ . (14.8.25) 

This is a quadratic equation in x , 

x2 − 
2mg sinθ 

k 
x − 

2d mg sinθ 

k 
= 0 . (14.8.26) 

In the quadratic formula, we want the positive choice of square root for the solution to 
ensure a positive displacement of the spring from equilibrium, 
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1+ 2(k d / mg)sinθ ). 

mg sinθ ⎛ m2 g 2 sin2θ 2d mg sinθ ⎞
1 2 

x = + + 
⎝⎜ k 2 ⎠⎟k k (14.8.27) 

mg = (sinθ +
k 

(What would the solution with the negative root represent?) 

b) The effect of kinetic friction is that there is now a non-zero non-conservative work 
done on the object, which has moved a distance, d + x , given by 

W (d + x) = −µk N (d + x) = −µk mg cosθ(d + x) . (14.8.28)nc = − fk 

Note the normal force is found by using Newton’s Second Law in the perpendicular direction 
to the inclined plane, 

N − mg cosθ = 0 . (14.8.29) 

The change in mechanical energy is therefore 

W = ΔE (14.8.30)nc m = E f − Ei , 
which becomes 

⎛ 1 ⎞
−µk mg cosθ(d + x) = k x2 − x mg sinθ

⎠⎟ 
− d mg sinθ . (14.8.31)

⎝⎜ 2 

Equation (14.8.31) simplifies to 

⎛ 1 ⎞
0 = k x2 − x mg(sinθ − µk cosθ )

⎠⎟ 
− d mg(sinθ − µk cosθ ) . (14.8.32)

⎝⎜ 2 

This is the same as Equation (14.8.25) above, but with sinθ → sinθ − µk cosθ . The 
maximum displacement of the spring is when there is friction is then 

mg 
x = ((sinθ − µk cosθ ) + 1+ 2(k d / mg)(sinθ − µk cosθ )) . (14.8.33)

k 
. 
c) The energy lost to friction is given by W mg cosθ(d + x) , where x is given in nc = −µk 

part b). 

Example 14.6 Object Sliding on a Sphere 

A small point like object of mass m rests on top of a sphere of radius R . The object is 
released from the top of the sphere with a negligible speed and it slowly starts to slide 
(Figure 14.17). Let g denote the gravitation constant. (a) Determine the angle θ1 with 
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respect to the vertical at which the object will lose contact with the surface of the sphere. 
(b) What is the speed v1 of the object at the instant it loses contact with the surface of the 
sphere. 

Figure 14.17 Object sliding on surface of sphere 

Solution: We begin by identifying the forces acting on the object. There are two forces 
acting on the object, the gravitation and radial normal force that the sphere exerts on the 
particle that we denote by N . We draw a free-body force diagram for the object while it 
is sliding on the sphere. We choose polar coordinates as shown in Figure 14.18. 

Figure 14.18 Free-body force diagram on object 

The key constraint is that when the particle just leaves the surface the normal force is 
zero, 

N (θ1) = 0 , (14.8.34) 

where θ1 denotes the angle with respect to the vertical at which the object will just lose 
contact with the surface of the sphere. Because the normal force is perpendicular to the 
displacement of the object, it does no work on the object and hence conservation of 
energy does not take into account the constraint on the motion imposed by the normal 
force. In order to analyze the effect of the normal force we must use the radial component 
of Newton’s Second Law, 

2vN − mg cosθ = −m . (14.8.35)
R 

Then when the object just loses contact with the surface, Eqs. (14.8.34) and (14.8.35) 
require that 
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v1
2 

mg cosθ1 = m . (14.8.36)
R 

where v1 denotes the speed of the object at the instant it loses contact with the surface of 
the sphere. Note that the constrain condition Eq. (14.8.36) can be rewritten as 

mgRcosθ1 = mv1
2 . (14.8.37) 

We can now apply conservation of energy. Choose the zero reference point U = 0 for 
potential energy to be the midpoint of the sphere. 

Identify the initial state as the instant the object is released (Figure 14.19). We can 
neglect the very small initial kinetic energy needed to move the object away from the top 
of the sphere and so Ki = 0 . The initial potential energy is non-zero, Ui = mgR . The 
initial mechanical energy is then 

= mgR . (14.8.38)Ei = Ki + Ui 

Figure 14.19 Initial state Figure 14.20 Final state 

Choose for the final state the instant the object leaves the sphere (Figure 14.20). The final 
kinetic energy is K f = mv1

2 / 2 ; the object is in motion with speed v1 . The final potential 

energy is non-zero, U f = mgRcosθ1 . The final mechanical energy is then 

1E f = K f + U f = mv1 
2 + mgRcosθ1 

. (14.8.39)
2 

Because we are assuming the contact surface is frictionless and neglecting air resistance, 
there is no non-conservative work. The change in mechanical energy is therefore zero, 

0 = W = ΔE (14.8.40)nc m = E f − Ei . 
Therefore 

1 mv1
2 + mgRcosθ1 = mgR . (14.8.41)

2 
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We now solve the constraint condition Eq. (14.8.37) into Eq. (14.8.41) yielding 

1 mgRcosθ1 + mgRcosθ1 = mgR . (14.8.42)
2 

We can now solve for the angle at which the object just leaves the surface 

= cos−1(2 / 3) . (14.8.43)θ1 

We now substitute this result into Eq. (14.8.37) and solve for the speed 

= 2gR / 3 . (14.8.44)v1 
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Chapter 15 Collision Theory 

Despite my resistance to hyperbole, the LHC [Large Hadron Collider] 
belongs to a world that can only be described with superlatives. It is not 
merely large: the LHC is the biggest machine ever built. It is not merely 
cold: the 1.9 kelvin (1.9 degrees Celsius above absolute zero) temperature 
necessary for the LHC’s supercomputing magnets to operate is the coldest 
extended region that we know of in the universe—even colder than outer 
space. The magnetic field is not merely big: the superconducting dipole 
magnets generating a magnetic field more than 100,000 times stronger than 
the Earth’s are the strongest magnets in industrial production ever made. 

And the extremes don’t end there. The vacuum inside the proton-containing 
tubes, a 10 trillionth of an atmosphere, is the most complete vacuum over 
the largest region ever produced. The energy of the collisions are the highest 
ever generated on Earth, allowing us to study the interactions that occurred 
in the early universe the furthest back in time.1 

Lisa Randall 

15.1 Introduction 

When discussing conservation of momentum, we considered examples in which two 
objects collide and stick together, and either there are no external forces acting in some 
direction (or the collision was nearly instantaneous) so the component of the momentum 
of the system along that direction is constant. We shall now study collisions between 
objects in more detail. In particular we shall consider cases in which the objects do not 
stick together. The momentum along a certain direction may still be constant but the 
mechanical energy of the system may change. We will begin our analysis by considering 
two-particle collision. We introduce the concept of the relative velocity between two 
particles and show that it is independent of the choice of reference frame. We then show 
that the change in kinetic energy only depends on the change of the square of the relative 
velocity and therefore is also independent of the choice of reference frame. We will then 
study one- and two-dimensional collisions with zero change in potential energy. In 
particular we will characterize the types of collisions by the change in kinetic energy and 
analyze the possible outcomes of the collisions. 

15.2 Reference Frames and Relative Velocities 
 

We shall recall our definition of relative inertial reference frames. Let R be the 
vector from the origin of frame S to the origin of reference frame S ′ . Denote the 

1 Randall, Lisa, Knocking on Heaven's Door: How Physics and Scientific Thinking Illuminate the Universe 
and the Modern World, Ecco, 2011. 
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position vector of the j th particle with respect to the origin of reference frame S by rj 

j th and similarly, denote the position vector of the particle with respect to the origin of 
reference frame S ′ by r′ j (Figure 15.1). 

S 

rj 

jth particle 

rj 

S 
R 

Figure 15.1 Position vector of j th particle in two reference frames. 

The position vectors are related by
rj 
 

j = r′ +
 

 
R .
 (15.2.1)
 

The relative velocity (call this the boost velocity) between the two reference frames is 
given by  dRV = . (15.2.2)dt 

Assume the boost velocity between the two reference frames is constant. Then, the 
relative acceleration between the two reference frames is zero, 

 dVA = = 0 . (15.2.3)dt 

When Eq. (15.2.3) is satisfied, the reference frames S and S ′ are called relatively 
inertial reference frames. 

Suppose the j th particle in Figure 15.1 is moving; then observers in different 
reference frames will measure different velocities. Denote the velocity of j th particle in 

 frame S by v j = drj / dt , and the velocity of the same particle in frame S ′ by 
 v′ j = drj ′ / dt . Taking derivative, the velocities of the particles in two different reference 
frames are related according to 

   
v j = v′ j + V . (15.2.4) 
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15.2.1 Relative Velocities 

Consider two particles of masses m1 and m2 interacting via some force (Figure 15.2). 

Figure 15.2 Two interacting particles
 

Choose a coordinate system (Figure 15.3) in which the position vector of body 1 is given 
 by r1 and the position vector of body 2 is given by r2 . The relative position of body 1 
  with respect to body 2 is given by r1 2 = r1 − r2 . , 

 

Figure 15.3 Coordinate system for two bodies. 

During the course of the interaction, body 1 is displaced by dr1 and body 2 is displaced 
by dr2 , so the relative displacement of the two bodies during the interaction is given by 

  dr1 2 = dr1 − dr2 . The relative velocity between the particles is, 

  
 dr1 2, dr1 dr2   v1 2 = = − = v1 − v2 . (15.2.5), dt dt dt 

We shall now show that the relative velocity between the two particles is independent of 
the choice of reference frame providing that the reference frames are relatively inertial. 

The relative velocity v′ in reference frame S ′ can be determined from using Eq. 12 

(15.2.4) to express Eq. (15.2.5) in terms of the velocities in the reference frame S ′ , 

= (v 

 v1, 2 = v1 −


 v2 


1 ′ + V) − (v2 


 
 
′v1 −
v′ 2 =
 

′
 +
 V) =
 ′ (15.2.6)v1, 2 
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and is equal to the relative velocity in frame S . 

For a two-particle interaction, the relative velocity between the two 
vectors is independent of the choice of relatively inertial reference frames. 

15.2.2 Center-of-mass Reference Frame 

Let r cm be the vector from the origin of frame S to the center-of-mass of the 
system of particles, a point that we will choose as the origin of reference frame S cm , 

called the center-of-mass reference frame. Denote the position vector of the j th particle 
with respect to origin of reference frame S by and similarly, denote the positionrj 

j th 	 vector of the particle with respect to origin of reference frame S by (Figurecm r′ j 

15.4). 

S cm 

r cm 

rj 

jth particle 

rj 

S ! 

Figure 15.4 Position vector of j th particle in the center-of-mass reference frame. 

The position vector of the j th particle in the center-of-mass frame is then given by 

  − 
 r′ r . 	 (15.2.7)j = rj cm 

The velocity of the j th particle in the center-of-mass reference frame is then given by 

  − 
 v′ j = v j v cm . 	 (15.2.8) 

There are many collision problems in which the center-of-mass reference frame is the 
most convenient reference frame to analyze the collision. 

Consider a system consisting of two particles, which we shall refer to as particle 1 and 
particle 2. We can use Eq. (15.2.8) to determine the velocities of particles 1 and 2 in the 
center-of-mass, 

  
    m1 + m2 m2	 µ  v1 ′ = v1 − v cm = v1 −	 

v1 v2 = (v 1, − v 2 ) = v1, 2 . (15.2.9)
m1 + m2 m1 + m2 m1 
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where v12 =
 
v1 −

v2 is the relative velocity of particle 1 with respect to particle 2 . A 

similar result holds for particle 2 : 

  
    m1 + m2 m1	  v′ 2 = v2 − v cm = v2 −	 

v1 v2 = − (v 1 − v 2 ) = − 
µ v1, 2 . (15.2.10)

m1 + m2 m1 + m2 m2 

The momentum of the system the center-of-mass reference frame is zero as we expect, 

     
m1 ′ + m2v′ = µ − µ = 0 . 	 (15.2.11)v1 2 v12 v12 

15.2.3 Kinetic Energy in the Center-of-Mass Reference Frame 

The kinetic energy in the center of mass reference frame is given by 

1   1  K = ′ ⋅ v′ +	 v′ ⋅ v′ (15.2.12)cm m1v1 1 m2	 2 2 .2 2 

We now use Eqs. (15.2.9) and (15.2.10) to rewrite the kinetic energy in terms of the
  relative velocity v′ ′ − v′ 2 ,12 = v1 

⎛
 ⎞ ⎛
 ⎞ 1 ⎛
 ⎞ ⎛ 

⎠⎟
⋅ − 

µ ⎞
1
 v v v vµ 
m1 

µ 
m1 

− 
µ
K
 

⎠⎟ 
⋅
 
⎝⎜
 ⎠⎟ 

+
m1 m2 =
 
⎝⎜
 ⎝⎜
 ⎝⎜
 ⎠⎟
1, 2 1, 2 1, 2 1, 2 2
 2
cm m2 m2 . (15.2.13)


⎛ 1 1 ⎞
1
 1
v v2 2⋅
 +
µ
 µv1, 2 m2 ⎠
⎟ ==
 

⎝⎜
 m1 
1, 2 1, 2 2
 2
 

where we used the fact that we defined the reduced mass by 

1 1 1≡ + . 	 (15.2.14)
µ m1 m2 

15.2.4 Change of Kinetic Energy and Relatively Inertial Reference Frames 

The kinetic energy of the two particles in reference frame S is given by 

1 2 + 
1 2= . 	 (15.2.15)KS m1v1 m2v22 2 

We can take the scalar product of Eq. (15.2.8) to rewrite Eq. (15.2.15) as 

15-5 



  

 

    

  

 

   
 

 
  

  

 
  

 
 

 
  

   

 
   

 

   
  

   

 

  
 

 
  

   

 
 

 
 

           
 

 
        

 
 

 
  

  

 
 

 
    

             

             

      

   

   

      

  

      

 

 

1     1     = m1 ′ + v ′ + v ) + m2(v′ + v ) ⋅(v′ + v )KS (v1 cm ) ⋅(v1 cm 2 cm 2 cm 2 2 . (15.2.16)
1 1 1  2 + (m1 

 = ′ 2+ ′ 2+ )v v′ ) ⋅ vm1v1 m2v2 (m1 + m2 cm v1 ′ + m2 2 cm 2 2 2 

The last term is zero due to the fact that the momentum of the system in the center of 
mass reference frame is zero (Eq. (15.2.11)). Therefore Eq. (15.2.16) becomes 

1 1 1 2= ′ 2+ ′ 2+ + m2 )v . (15.2.17)KS m1v1 m2v2 (m1 cm 2 2 2 

The first two terms correspond to the kinetic energy in the center of mass frame, thus the 
kinetic energies in the two reference frames are related by 

= K + 
1 + m2 )v 2 . (15.2.18)KS cm (m1 cm 2 

We now use Eq. (15.2.13) to rewrite Eq. (15.2.18) as 

1 2 + 
1 2= + m2 )v (15.2.19)KS 2 

µv1, 2 2 
(m1 cm 

Even though kinetic energy is a reference frame dependent quantity, because the second 
term in Eq. (15.2.19) is a constant, the change in kinetic energy in either reference frame 
is equal to 

1 2 2ΔK = µ(( ) − ( ) ) . (15.2.20)v1, 2 v1, 2 2 f i 

This generalizes to any two relatively inertial reference frames because the relative 
velocity is a reference frame independent quantity, 

the change in kinetic energy is independent of the choice of relatively 
inertial reference frames. 

We showed in Appendix 13A that when two particles of masses m1 and m2 interact, the 
work done by the interaction force is equal to 

1 2 2W = 
2 
µ(( ) − ( ) ) . (15.2.21)v1, 2 v1, 2 f i 

Hence we explicitly verified that for our two-particle system 

W = ΔKsys . (15.2.22) 
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15.3 Characterizing Collisions 

In a collision, the ratio of the magnitudes of the initial and final relative velocities is 
called the coefficient of restitution and denoted by the symbol e , 

vBe = . (15.2.23)
vA 

If the magnitude of the relative velocity does not change during a collision, e = 1, then 
the change in kinetic energy is zero, (Eq. (15.2.21)). Collisions in which there is no 
change in kinetic energy are called elastic collisions, 

ΔK = 0, elastic collision . (15.2.24) 

If the magnitude of the final relative velocity is less than the magnitude of the initial 
relative velocity, e < 1, then the change in kinetic energy is negative. Collisions in which 
the kinetic energy decreases are called inelastic collisions, 

ΔK < 0, inelastic collision . (15.2.25) 

If the two objects stick together after the collision, then the relative final velocity is zero, 
e = 0 . Such collisions are called totally inelastic. The change in kinetic energy can be 
found from Eq. (15.2.21), 

1 2 1 m1m2 2ΔK = − = − vA , totally inelastic collision . (15.2.26)µ vA2 2 m1 + m2 

If the magnitude of the final relative velocity is greater than the magnitude of the initial 
relative velocity, e > 1, then the change in kinetic energy is positive. Collisions in which 
the kinetic energy increases are called superelastic collisions, 

ΔK > 0, superelastic collision . (15.2.27) 

15.4 One-Dimensional Collisions Between Two Objects 

15.4.1 One Dimensional Elastic Collision in Laboratory Reference Frame 

Consider a one-dimensional elastic collision between two objects moving in the x -
direction. One object, with mass m1 and initial x -component of the velocity v1x ,i , 

collides with an object of mass m2 and initial x -component of the velocity v2x ,i . The 

scalar components v1x ,i and v1x ,i can be positive, negative or zero. No forces other than 
the interaction force between the objects act during the collision. After the collision, the 
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final x -component of the velocities are v1x , f and v2 x , f . We call this reference frame the 
“laboratory reference frame”. 

Figure 15.5 One-dimensional elastic collision, laboratory reference frame 


For the collision depicted in Figure 15.5, > 0 , < 0 , < 0 , and > 0 .
v1x ,i v2x ,i v1x , f v2 x , f 

Because there are no external forces in the x -direction, momentum is constant in the x -
direction. Equating the momentum components before and after the collision gives the 
relation 

+ m2 = m1 + m2 (15.3.1)m1v1x , i v2 x , i v1x , f v2x , f . 

Because the collision is elastic, kinetic energy is constant. Equating the kinetic energy 
before and after the collision gives the relation 

1 1 1 12 2 2 2+ = + (15.3.2)m1v1x ,i m2v2x ,i m1v1x , f m2v2 x , f2 2 2 2 

Rewrite these Eqs. (15.3.1) and (15.3.2) as 

) = m2 ) (15.3.3)m1(v1x ,i − v1x , f (v2 x , f − v2x ,i 

2 2 2 2) = m2 ) . (15.3.4)m1(v1x ,i − v1x , f (v2 x , f − v2x ,i 

Eq. (15.3.4) can be written as 

) = m2 ) . (15.3.5)m1(v1x ,i − v1x , f )(v1x ,i + v1x , f (v2 x , f − v2x ,i )(v2 x , f + v2x ,i 

Divide Eq. (15.3.4) by Eq. (15.3.3), yielding 

(15.3.6)v1x ,i + v1x , f = v2 x ,i + v2x , f . 
Eq. (15.3.6) may be rewritten as 

− v1x , f . (15.3.7)v1x ,i − v2 x ,i = v2x , f 

Recall that the relative velocity between the two objects is defined to be 

v rel ≡ v ≡

v −

v2 . (15.3.8)1,2 1 
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where we used the superscript “rel” to remind ourselves that the velocity is a relative 
velocity (and to simplify our notation). Thus v rel is the initial x -componentx ,i = v1x ,i − v2 x ,i 

of the relative velocity, and v rel is the final x -component of the relative x , f = v1x , f − v2 x , f 

velocity. Therefore Eq. (15.3.7) states that during the interaction the initial relative 
velocity is equal to the negative of the final relative velocity 

 rel  rel = −v , (1− dimensional energy-momentum prinicple) . (15.3.9)v i f 

Consequently the initial and final relative speeds are equal. We shall call this relationship 
between the relative initial and final velocities the one-dimensional energy-momentum 
principle because we have combined these two principles to realize this result. The 
energy-momentum principle is independent of the masses of the colliding particles. 

Although we derived this result explicitly, we have already shown that the change in 
kinetic energy for a two-particle interaction (Eq. (15.2.20)), in our simplified notation is 
given by 

1 rel )2 
f − (v rel )i 

2 )ΔK = µ((v (15.3.10)
2 

Therefore for an elastic collision where ΔK = 0 , the square of the relative speed remains 
constant 

rel )2 rel )2(v f = (v i . (15.3.11) 

For a one-dimensional collision, the magnitude of the relative speed remains constant but 
the direction changes by 180 . 

We can now solve for the final x -component of the velocities, and v2 x , f , asv1x , f 

follows. Eq. (15.3.7) may be rewritten as 

− v2x ,i . (15.3.12)v2 x , f = v1x , f + v1x ,i 

Now substitute Eq. (15.3.12) into Eq. (15.3.1) yielding 

m1 + m2 = m1 + m2 ) . (15.3.13)v1x ,i v2x ,i v1x , f (v1x , f + v1x ,i − v2 x ,i 

Solving Eq. (15.3.13) for v1x , f involves some algebra and yields 

− m2 2 m2m1= + v2x ,i . (15.3.14)v1x , f v1x ,im1 + m2 m1 + m2 
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To find v2 x , f , rewrite Eq. (15.3.7) as 

+ v2x ,i . 	 (15.3.15)v1x , f = v2x , f − v1x ,i 

Now substitute Eq. (15.3.15) into Eq. (15.3.1) yielding 

+ m2 = m1	
+ m2 . (15.3.16)m1v1x ,i v2 x ,i (v2x , f − v1x ,i + v2x ,i )v1x , f v2x , f 

We can solve Eq. (15.3.16) for v2 x , f and determine that 

− m1 2 m1m2 . 	 (15.3.17)v2 x , f = v2x ,i + v1x ,im2 + m1 m2 + m1 

Consider what happens in the limits m1 >> m2 in Eq. (15.3.14). Then 

+ ; 	 (15.3.18)v1x , f → v1x ,i 	

2 
m2v2 x ,im1 

the more massive object’s velocity component is only slightly changed by an amount 
proportional to the less massive object’s x -component of momentum. Similarly, the less 
massive object’s final velocity approaches 

→−v2x ,i 	 − v2 x ,i . (15.3.19)v2 x , f 	 + 2v1x ,i = v1x ,i + v1x ,i 

We can rewrite this as 
= v rel . (15.3.20)v2 x , f − v1x ,i = v1x ,i − v2x ,i x ,i 

i.e. the less massive object “rebounds” with the same speed relative to the more massive 
object which barely changed its speed. 

If the objects are identical, or have the same mass, Eqs. (15.3.14) and (15.3.17) become 

= v2x ,i , ; 	 (15.3.21)v1x , f v2x , f = v1x ,i 

the objects have exchanged x -components of velocities, and unless we could somehow 
distinguish the objects, we might not be able to tell if there was a collision at all. 
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15.4.2 One-Dimensional Collision Between Two Objects – Center-of-Mass Reference 
Frame 

We analyzed the one-dimensional elastic collision (Figure 15.5) in Section 15.4.1 in the 
laboratory reference frame. Now let’s view the collision from the center-of-mass (CM) 
frame. The x -component of velocity of the center-of-mass is 

m1 v1x ,i + m2 v2x ,ivx ,cm = . (15.3.22)
m1 + m2 

With respect to the center-of-mass, the x -components of the velocities of the objects are 

m2′ − v )v1x ,i = v1x ,i x ,cm = (v1x ,i − v2x ,i m1 + m2 (15.3.23)
m1′ − v ) .v2 x ,i = v2x ,i x ,cm = (v2x ,i − v1x ,i 
 m1 + m2 


In the CM frame the momentum of the system is zero before the collision and hence the 
momentum of the system is zero after the collision. For an elastic collision, the only way 
for both momentum and kinetic energy to be the same before and after the collision is 
either the objects have the same velocity (a miss) or to reverse the direction of the 
velocities as shown in Figure 15.6. 

Figure 15.6 One-dimensional elastic collision in center-of-mass reference frame 

In the CM frame, the final x -components of the velocities are 

m2′ ′ )v1x , f = −v1x ,i = (v2x ,i − v1x ,i m1 + m2 (15.3.24)
m1′ ′ ) .v2x , f = −v2x ,i = (v2 x ,i − v1x ,i m1 + m2 

The final x -components of the velocities in the “laboratory frame” are then given by 
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′ + vv1x , f = v1x , f x ,cm 

m2 
m1 v1x ,i + m2 v2x ,i) +	 (15.3.25)= (v2x ,i − v1x ,i 
 m1 + m2 m1 + m2 


− m2 2 m2m1= v1x ,i + v2x ,im1 + m2 m1 + m2 

as in Eq. (15.3.14) and a similar calculation reproduces Eq. (15.3.17). 

15.5 Worked Examples 

Example 15.1 Elastic One-Dimensional Collision Between Two Objects 

î 

1 2

î v1,i = v1,x ,i v2,i = 0	 initial state 
m2 = 2m1 

î final stateîv1, f = v1,x , f v2, f = v2,x , fî m2 = 2m1 

1 2 

Figure 15.7 Elastic collision between two non-identical carts 

Consider the elastic collision of two carts along a track; the incident cart 1 has mass m1 

and moves with initial speed v1,i . The target cart has mass m2 = 2 m1 and is initially at 

rest, = 0 , (Figure 15.7). Immediately after the collision, the incident cart has finalv2,i 

speed v1, f and the target cart has final speed v2, f . Calculate the final x -component of the 

velocities of the carts as a function of the initial speed v1,i . 

Solution The momentum flow diagram for the objects before (initial state) and after 
(final state) the collision are shown in Figure 15.7. We can immediately use our results 
above with m2 = 2 m1 and v2,i = 0 . The final x -component of velocity of cart 1 is given 

by Eq. (15.3.14), where we use v1x ,i = v1,i 
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v1x , f = − 
1 
3 

v1,i . (15.4.1) 

The final x -component of velocity of cart 2 is given by Eq. (15.3.17) 

v2 x , f = 
2 
3 

v1,i . (15.4.2) 

Example 15.2 The Dissipation of Kinetic Energy in a Completely Inelastic Collision
Between Two Objects 

î = 0v1,i v2,i 
initial state 

1 2 

î final state v f 

1 2 

Figure 15.7b Inelastic collision between two non-identical carts 

An incident cart of mass m1 and initial speed v1, i collides completely inelastically with a 
cart of mass m2 that is initially at rest (Figure 15.7b). There are no external forces acting 
on the objects in the direction of the collision. Find ΔK / K initial = (Kfinal − K initial ) / K initial . 

Solution: In the absence of any net force on the system consisting of the two carts, the 
momentum after the collision will be the same as before the collision. After the collision 
the carts will move in the direction of the initial velocity of the incident cart with a 
common speed v f found from applying the momentum condition 

m1v1, i = (m1 + m2 )vf ⇒ 

m1 
(15.4.3)

=vf v1, i . m1 + m2 

The initial relative speed is vi 
rel . The final relative velocity is zero because the carts= v1, i 

stick together so using Eq. (15.2.26), the change in kinetic energy is 

1 rel )2 1 m1m2 2ΔK = − µ(vi = − v1, i . (15.4.4)
2 2 m1 + m2 
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The ratio of the change in kinetic energy to the initial kinetic energy is then 

ΔK / K initial = − 
m2 

m1 + m2 

. (15.4.5) 

As a check, we can calculate the change in kinetic energy via 

ΔK = (K f − Ki ) = 
1 

2 
(m1 + m2 )vf 

2 − 
1 

2 
v1, i 
2 

= 
1 

2 
(m1 + m2 ) 

m1 

m1 + m2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

2 

v1, i 
2 − 

1 

2 
v1, i 
2 

= 
m1 

m1 + m2 

−1
⎛ 
⎝⎜ 

⎞ 
⎠⎟ 
1 

2 
m1v1, i 

2⎛ 
⎝⎜ 

⎞ 
⎠⎟ = − 

1 

2 

m1m2 

m1 + m2 

v1, i 
2 . 

(15.4.6) 

in agreement with Eq. (15.4.4). 

Example 15.3 Bouncing Superballs 

1 

2 g 

M2 >> M1 

Figure 15.8b Two superballs dropping 

Consider two balls that are dropped from a height hi above the ground, one on top of the 
other (Figure 15.8). Ball 1 is on top and has mass M1 , and ball 2 is underneath and has 
mass M2 with M2 >> M1 . Assume that there is no loss of kinetic energy during all 
collisions. Ball 2 first collides with the ground and rebounds. Then, as ball 2`starts to 
move upward, it collides with the ball 1 which is still moving downwards (figure below 
left). How high will ball 1 rebound in the air? Hint: consider this collision as seen by an 
observer moving upward with the same speed as the ball 2 has after it collides with 
ground. What speed does ball 1 have in this reference frame after it collides with the ball 
2? 
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Solution 

The system consists of the two balls and the earth. There are five special states for this 
motion shown in the figure below. 

part a)
 

Initial State: the balls are released from rest at a height hi above the ground.
 

State A: the balls just reach the ground with speed v = . This follows from a 2ghi 

= 0 ⇒ ΔK = −ΔU . Thus (1 / 2)mv 2 − 0 = −mgΔh = mghi ⇒ v =ΔEmech a a 2ghi . 

State B: immediately before the collision of the balls. Ball 2 has collided with the ground 
and reversed direction with the same speed, va , but ball 1 is still moving downward with 
speed va . 

State C: immediately after the collision of the balls. Because we are assuming that 
>> m1 , ball 2 does not change its speed as a result of the collision so it is still moving m2 

upward with speed va . As a result of the collision, ball 1 moves upward with speed vb . 

Final State: ball 1 reaches a maximum height hf = vb 
2 / 2g above the ground. This again 

follows from ΔK = −ΔU ⇒ 0 − (1 / 2)mv2 = −mgΔh = −mgh ⇒ h = v2 / 2g .b f f b 

Choice of Reference Frame: 

As indicated in the hint above, this collision is best analyzed from the reference frame of 
an observer moving upward with speed va , the speed of ball 2 just after it rebounded with 
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the ground. In this frame immediately, before the collision, ball 1 is moving downward 
with a speed vb ′ that is twice the speed seen by an observer at rest on the ground (lab 
reference frame). 

va ′ = 2va (15.4.7) 

The mass of ball 2 is much larger than the mass of ball 1, m2 >> m1 . This enables us to 
consider the collision (between States B and C) to be equivalent to ball 1 bouncing off a 
hard wall, while ball 2 experiences virtually no recoil. Hence ball 2 remains at rest in the 
reference frame moving upwards with speed va with respect to observer at rest on 
ground. Before the collision, ball 1 has speed va ′ = 2va . Since there is no loss of kinetic 
energy during the collision, the result of the collision is that ball 1 changes direction but 
maintains the same speed, 

′ = 2v . (15.4.8)vb a 

However, according to an observer at rest on the ground, after the collision ball 1 is 
moving upwards with speed 

= 2v + v = 3v . (15.4.9)vb a a a 

While rebounding, the mechanical energy of the smaller superball is constant (we 
consider the smaller superball and the Earth as a system) hence between State C and the 
Final State, 

ΔK + ΔU = 0 . (15.4.10) 

The change in kinetic energy is 

ΔK = − 
1 m1(3va )

2 . (15.4.11)
2 

The change in potential energy is 
ΔU g hf . (15.4.12)= m1 

So the condition that mechanical energy is constant (Equation (15.4.10)) is now 

− 
1 m1(3v1a )

2 + m1 g hf = 0 . (15.4.13)
2 

We can rewrite Equation (15.4.13) as 
1 

)2m1 g hf = 9 m1( v a . (15.4.14)
2 
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Recall that we can also use the fact that the mechanical energy doesn’t change between 
the Initial State and State A yielding an equation similar to Eq. (15.4.14), 

1 
)2g hi = m1( v . (15.4.15)m1 a2 

Now substitute the expression for the kinetic energy in Eq. (15.4.15) into Eq. (15.4.14) 
yielding 

g hf g hi . (15.4.16)m1 = 9 m1 

Thus ball 1 reaches a maximum height 
= 9 hi . (15.4.17)hf 

15.6 Two Dimensional Elastic Collisions 

15.6.1 Two-dimensional Elastic Collision in Laboratory Reference Frame 

Consider the elastic collision between two particles in which we neglect any external 
forces on the system consisting of the two particles. Particle 1 of mass m1 is initially 

moving with velocity and collides elastically with a particle 2 of mass that isv1, i m2 

initially at rest. We shall refer to the reference frame in which one particle is at rest, ‘the 
target’, as the laboratory reference frame. After the collision particle 1 moves with 

 velocity v1, f and particle 2 moves with velocity v2, f , (Figure 15.9). The angles θ1, f 

and θ2, f that the particles make with the positive forward direction of particle 1 are 

Figure 15.9 Two-dimensional collision in laboratory reference frame 

called the laboratory scattering angles. 

1, f 

2, f 

1 
1 

2 
2 

v1, i 

v1, f 

v2, f 

Generally the initial velocity of particle 1 is known and we would like to determine v1, i 
 the final velocities and , which requires finding the magnitudes and directions v1, f v2, f 
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of each of these vectors, v1, f , v2, f , θ1, f , and θ2, f . These quantities are related by the two 
equations describing the constancy of momentum, and the one equation describing 
constancy of the kinetic energy. Therefore there is one degree of freedom that we must 
specify in order to determine the outcome of the collision. In what follows we shall 
express our results for v1, f , v2, f , and θ2, f in terms of v1, i and θ1, f . 

The components of the total momentum psys 
i = m1 

v1,i + m2 
v2,i in the initial state are given 

by 
psys 

x ,i = m1v1,i (15.5.1)
sys py ,i = 0. 

The components of the momentum psys 
f = m1 

v1, f + m2 
v2, f in the final state are given by 

sys p v1, f cosθ1, f v2, f cosθ2, fx , f = m1 + m2 (15.5.2) 
psys 

y , f = m1 v1, f sinθ1, f − m2 v2, f sinθ2, f . 

There are no any external forces acting on the system, so each component of the total 
momentum remains constant during the collision, 

sys sys = (15.5.3)px ,i px , f 

sys sys p = p . (15.5.4)y ,i y , f 

Eqs. (15.5.3) and (15.5.4) become 

m1 v1,i = m1 v1, f cosθ1, f + m2 v2, f cosθ2, f , (15.5.5) 

0 = m1 v1, f sinθ1, f − m2 v2, f sinθ2, f . (15.5.6) 

The collision is elastic and therefore the system kinetic energy of is constant 

sys sys . (15.5.7)Ki = K f 

Using the given information, Eq. (15.5.7) becomes 

1 2 1 2 1 2= + . (15.5.8)m1v1,i m1v1, f m2v2, f2 2 2 

Rewrite the expressions in Eqs. (15.5.5) and (15.5.6) as 

m2v2, f cosθ2, f = m1(v1,i − v1, f cosθ1, f ), (15.5.9) 
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.m2v2, f sinθ2, f = m1v1, f sinθ1, f (15.5.10) 

Square each of the expressions in Eqs. (15.5.9) and (15.5.10), add them together and use 
the identity cos2 θ + sin2 θ = 1 yielding 

2 m1
2

2 2= ) . (15.5.11)v2, f 2 (v1,i − 2v1,iv1, f cosθ1, f + v1, fm2 

Substituting Eq. (15.5.11) into Eq. (15.5.8) yields 

1 2 1 2 1 m1
2

2 2
 

2 
m1v1,i = 

2 
m1v1, f + (v1,i − 2v1,i v1, f cosθ1, f + v1, f ) . (15.5.12)


2 m2 

Eq. (15.5.12) simplifies to 

⎛ ⎞ ⎛ ⎞m1 2 m1 m1 20 = 1+ 
⎠⎟ 

v1, f − 2v1,i v1, f cosθ1, f − 1− 
⎠⎟ 

v1,i , (15.5.13)
⎝⎜ ⎝⎜m2 m2 m2 

Let α = m1 / m2 then Eq. (15.5.13) can be written as 

2 20 = (1+ α )v1, f − 2αv1,i v1, f cosθ1, f − (1−α )v1, i , (15.5.14) 

The solution to this quadratic equation is given by 

1/2 
α 2 2 2αv1,i cosθ1, f ± ( v1,i cos2 θ1, f + (1−α )v1,i )= . (15.5.15)v1, f (1+ α ) 

Divide the expressions in Eq. (15.5.9), yielding 

v2, f sinθ2, f v1, f sinθ1, f= . (15.5.16)
v2, f cosθ2, f v1,i − v1, f cosθ1, f 

Eq. (15.5.16) simplifies to 
v1, f sinθ1, ftanθ2, f = . (15.5.17)

v1,i − v1, f cosθ1, f 

The relationship between the scattering angles in Eq. (15.5.17) is independent of the 
masses of the colliding particles. Thus the scattering angle for particle 2 is 
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⎛ sinθ1, f 
⎞v1, f= tan−1 

⎜ ⎟ (15.5.18)θ2, f 
⎝ v1,i − v1, f cosθ1, f ⎠ 

We can now use Eq. (15.5.10) to find an expression for the final velocity of particle 1 

v1, f sinθ1, f= . (15.5.19)v2, f α sinθ2, f 

Example 15.5 Elastic Two-dimensional collision of identical particles 

1 

2 
2 

v2, f 

1, f = 30 

2, f 

î 
ĵ 

Figure 15.10 Momentum flow diagram for two-dimensional elastic collision 

Object 1 with mass is initially moving with a speed = 3.0m ⋅s−1 and collides m1 v1,i 

elastically with object 2 that has the same mass, m2 = m1 , and is initially at rest. After the 
collision, object 1 moves with an unknown speed v1, f 

at an angle θ1, f with respect to its 

initial direction of motion and object 2 moves with an unknown speed , at an v2, f 

unknown angle θ2, f (as shown in the Figure 15.10). Find the final speeds of each of the 

objects and the angle θ2, f . 

Solution: Because the masses are equal, α = 1 . We are given that v1,i = 3.0 m ⋅s−1 and 

θ1, f = 30o . Hence Eq. (15.5.14) reduces to 

v1, f = v1,i cosθ1, f = (3.0 m ⋅s−1)cos30 = 2.6 m ⋅s−1 . (15.5.20) 

Substituting Eq. (15.5.20) in Eq. (15.5.17) yields 
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⎛ sinθ1, f 
⎞v1, f= tan−1θ2, f 	 ⎜ ⎟

⎝ v1,i − v1, f cosθ1, f ⎠ 
⎛ (2.6 m ⋅s−1)sin(30 ) ⎞ 

= tan−1 	 (15.5.21)θ2, f ⎝⎜ 3.0 m ⋅s−1 − (2.6 m ⋅s−1)cos(30 )⎠⎟ 

= 60 . 

The above results for v1, f and θ2 , f may be substituted into either of the expressions in 

Eq. (15.5.9), or Eq. (15.5.11), to find v2 , f = 1.5m ⋅ s−1 . Eq. (15.5.11) also has the solution 

v2, f = 0 , which would correspond to the incident particle missing the target completely. 

Before going on, the fact that θ1, f +θ2, f = 90 , that is, the objects move away from the 
collision point at right angles, is not a coincidence. A vector derivation is presented in 
Example 15.6. We can see this result algebraically from the above result. Substituting 
Eq. (15.5.20) v1, f = v1,i cosθ1, f in Eq. (15.5.17) yields 

cosθ1, f sinθ1, f=	 = tan(90 −θ1, f ) ; (15.5.22)tanθ2, f 2 = cotθ1, f1− cosθ1, f 

showing that θ1, f +θ2, f = 90 , the angles θ1, f and θ2, f are complements. 

Example 15.6 Two-dimensional elastic collision between particles of equal mass 

Show that the equal mass particles emerge from a two-dimensional elastic collision at 
right angles by making explicit use of the fact that momentum is a vector quantity. 

1 

2 
2 

v2, f 

1, f 

2, f 

î 
ĵ 

Figure 15.11 Elastic scattering of identical particles 
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Solution: Choose a reference frame in which particle 2 is initially at rest (Figure 15.11). 
There are no external forces acting on the two objects during the collision (the collision 
forces are all internal), therefore momentum is constant 

 sys sys = p f , (15.5.23)pi 

which becomes 
m1 
v v v (15.5.24)
+ m1 = m1 .
1, i 1, f 2, f 

Eq. (15.5.24) simplifies to
v =
 

v v (15.5.25)
+
 .
1,i 1, f 2, f 

Recall the vector identity that the square of the speed is given by the dot product 
  v ⋅ v = v2 . With this identity in mind, we take the dot product of each side of Eq. 
(15.5.25) with itself, 

v ⋅
v = (
v v v f1, 
v) ⋅(
 )
+
 +
1,i 1,i 1, f 2, f 2, f (15.5.26)


=
 
v v v v v ⋅
v⋅
 + 2
 ⋅
 +
 2, f .1, f 1, f 1, f 2, f 2, f 

This becomes 
2 2 2+ 2 ⋅  . (15.5.27)v1,i = v1, f v1, f v2, f + v2, f 

Recall that kinetic energy is the same before and after an elastic collision, and the masses 
of the two objects are equal, so constancy of energy, (Eq. (15.3.2)) simplifies to 

2 2 2 . (15.5.28)v1,i = v1, f + v2, f 

Comparing Eq. (15.5.27) to Eq. (15.5.28), we see that 

  v1, f ⋅ v2, f = 0 . (15.5.29) 

The dot product of two nonzero vectors is zero when the two vectors are at right angles to 
each other justifying our claim that the collision particles emerge at right angles to each 
other. 

Example 15.7 Two dimensional collision between particles of unequal mass 

Particle 1 of mass m1 , initially moving in the positive x -direction (to the right in the 
figure below) with speed v1,i , collides with particle 2 of mass m = m / 3 , which is 2 1 

initially moving in the opposite direction (Figure 15.12) with an unknown speed v2,i . 
Assume that the total external force acting on the particles is zero. Do not assume the 
collision is elastic. After the collision, particle 1 moves with speed v1, f / 2 in the = v1,i 

negative y -direction. After the collision, particle 2 moves with an unknown speed v2, f , 
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at an angle θ2, f = 45o with respect to the positive x -direction. (i) Determine the initial 

speed v2,i of particle 2 and the final speed v2, f of particle 2 in terms of v1,i . (ii) Is the 
collision elastic? 

î 
ĵ 

before after 

m1 = m 

1 2 

1 

2 

= 45 

m2 = m / 3 

v1,i 

v1, f = v1,i / 2 

v2, f 

v2,i 

Figure 15.12 Two-dimensional collision between particles of unequal mass
 

Solution: We choose as our system the two particles. We are given that v1, f / 2 . We
= v1,i 

apply the two momentum conditions, 

/ 3)v2,i / 3) v2, f ( 2 / 2) (15.5.30)m1 v1,i − (m1 = (m1 

0 = m1 / 3) v2, f ( 2 / 2) . (15.5.31)v1, f − (m1 

Solve Eq. (15.5.31) for v2, f 

= (15.5.32)v2, f = 3 2v1, f 

3 2 v1,i2 

Substitute Eq. (15.5.32) into Eq. (15.5.30) and solve for v2,i 

= (3 / 2)v1,i . (15.5.33)v2,i 

The initial kinetic energy is then 

1 2 1 2 7 2= + / 3)v2,i = . (15.5.34)Ki m1v1,i (m1 m1v1,i2 2 8 
The final kinetic energy is 

1 1 1 3 72 2 2 2 2= m1 + m2 = m1 + m1 = m1 . (15.5.35)K f v1, f v2, f v1,i v1,i v1,i2 2 8 4 8 

Comparing our results, we see that kinetic energy is constant so the collision is elastic. 
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15.7 Two-Dimensional Collisions in Center-of-Mass Reference Frame 

15.7.1 Two-Dimensional Collision in Center-of-Mass Reference Frame 

Consider the elastic collision between two particles in the laboratory reference frame
(Figure 15.9). Particle 1 of mass m1 is initially moving with velocity v1, i and collides 

elastically with a particle 2 of mass m2 that is initially at rest. After the collision the 
 particle 1 moves with velocity v1, f and particle 2 moves with velocity v2, f . In section 

15.7.1 we determined how to find v1, f , v2, f , and θ2, f in terms of v1, i and θ2, f . We shall 
now analyze the collision in the center-of-mass reference frame, which is boosted form 
the laboratory frame by the velocity of center-of-mass given by 

vm1 1, iv =
 cm m1 + m2 

. (15.5.36)
 

Because we assumed that there are no external forces acting on the system, the center-of-
mass velocity remains constant during the interaction. 

1 

1 

2 2 
v2, f 

v1, f 

v1,i 
v2,i 

cm 

Figure 15.13 Two-dimensional elastic collision in center-of-mass reference frame 

Recall the velocities of particles 1 and 2 in the center-of-mass frame are given by 
(Eq.,(15.2.9) and (15.2.10)). In the center-of-mass reference frame the velocities of the 
two incoming particles are in opposite directions, as are the velocities of the two outgoing 
particles after the collision (Figure 15.13). The angle Θ cm between the incoming and 
outgoing velocities is called the center-of-mass scattering angle. 
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15.7.2 Scattering in the Center-of-Mass Reference Frame 

Consider a collision between particle 1 of mass m1 and velocity and particle 2 ofv1,i 

mass m2 at rest in the laboratory frame. Particle 1 is scattered elastically through a 
scattering angle Θ in the center-of-mass frame. The center-of-mass velocity is given by 

 
 m1v1,iv cm = . (15.5.37)

m1 + m2 

In the center-of-mass frame, the momentum of the system of two particles is zero 
    0 = m1 + m2v′ = m1 + m2v′ . (15.5.38)v1, ′ i 2,i v1, ′ f 2, f 

Therefore 
 m2  = − v′ . (15.5.39)v1, ′ i 2,im1 

 m2  = − v′ (15.5.40)v1, ′ f 2, fm1 

The energy condition in the center-of-mass frame is 

1 2 + 
1 2 1 2 1 2= + . (15.5.41)m1v1, ′ i m2v2, ′ i m1v1, ′ f m2v2, ′ f2 2 2 2 

Substituting Eqs. (15.5.39) and (15.5.40) into Eq. (15.5.41) yields 

′ i = ′ f . (15.5.42)v1, v1, 

(we are only considering magnitudes). Therefore 

′ i = . (15.5.43)v2, v2, ′ f 

Because the magnitude of the velocity of a particle in the center-of-mass reference frame 
is proportional to the relative velocity of the two particles, Eqs. (15.5.42) and (15.5.43) 
imply that the magnitude of the relative velocity also does not change 

  , (15.5.44)v′ = v′ 1, 2, i 1, 2, f 

verifying our earlier result that for an elastic collision the relative speed remains the 
same, (Eq. (15.2.20)). However the direction of the relative velocity is rotated by the 
center-of-mass scattering angle Θ cm . This generalizes the energy-momentum principle to 
two dimensions. Recall that the relative velocity is independent of the reference frame, 
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 − 
 − 

 = v′ (15.5.45)v1, i v2, i v1, ′ i 2, i 

  
In the laboratory reference frame = 0 , hence the initial relative velocity isv2,i 
  ′ = = , and the velocities in the center-of-mass frame of the particles are thenv1, 2, i v1, 2, i v1, i 

 µ  = (15.5.46)v1, ′ i v1, im1 

 = − 
µ  v′ . (15.5.47)2, i v1, im2 

Therefore the magnitudes of the final velocities in the center-of-mass frame are 

µ µ µ= = ′ = = (15.5.48)v1, ′ f v1, ′ i v1, 2, i v1, 2, i v1, i . m1 m1 m1 

µ µ µ= = ′ = = (15.5.49)v2, ′ f v2, ′ i v1, 2, i v1, 2, i v1, i . m2 m2 m2 

Example 15.8 Scattering in the Lab and CM Frames 

Particle 1 of mass and velocity by a particle of mass m2 at rest in the laboratory m1 v1,i 

frame is scattered elastically through a scattering angle Θ in the center of mass frame, 
(Figure 15.14). Find (i) the scattering angle of the incoming particle in the laboratory 
frame, (ii) the magnitude of the final velocity of the incoming particle in the laboratory 
reference frame, and (iii) the fractional loss of kinetic energy of the incoming particle. 

v1,i 

v1, f 
ĵ 
î 11 

cm 1, f 

2 1 2 v2,i 22, f cm 

2 v2, f 

v2, f 

Figure 15.14 Scattering in the laboratory and center-of-mass reference frames 
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Solution: 

i) In order to determine the center-of-mass scattering angle we use the transformation law 
for velocities 

  − 
 = v . (15.5.50)v1, ′ f v1, f cm 

In Figure 15.15 we show the collision in the center-of-mass frame along with the 
laboratory frame final velocities and scattering angles. 

î 
1 

v1, f 

v1,i 

1, f 

v cm 

v1, f 

v2,i 

cm 

2 

v cm 

v2, f 
2, f 

cm 

ĵ 

21 

v2, f 
Figure 15.15 Final velocities of colliding particles 

Vector decomposition of Eq. (15.5.50) yields 

v1, f cosθ1, i = v1, ′ f cosΘ cm − v cm , (15.5.51)
 

v1, f sinθ1, i = v1, ′ f sinΘ cm . (15.5.52) 


where we choose as our directions the horizontal and vertical Divide Eq. (15.5.52) by 

(15.5.51) yields 

sinθ1, i sinΘv1, f v1, ′ f cm tanθ1, i = = (15.5.53)
′ f cosΘ − vv1, f cosθ1, i v1, cm cm 

Because ′ i = , we can rewrite Eq. (15.5.53) asv1, v1, ′ f 

v1, ′ i sinΘ cm tanθ1, i = (15.5.54)
′ i cosΘ − vv1, cm cm 

We now substitute Eqs. (15.5.48) and v / (m1 ) into Eq. (15.5.54) yieldingcm = m1v1, i + m2 
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sinΘm2 cm tanθ1, i = . (15.5.55)
cosΘ − m1cm / m2 

Thus in the laboratory frame particle 1 scatters by an angle 

⎛ ⎞m2 cm θ1, i = tan−1 sinΘ 
. (15.5.56)

⎝⎜ cosΘ cm − m1 / m2 ⎠
⎟ 

ii) We can calculate the square of the final velocity in the laboratory frame 

v1, f ⋅

v1, f = (
v1, ′ f +



 v cm ) ⋅(

v1, ′ f +


vcm ) . (15.5.57)
 
which becomes 

2 2 + 2v   2 2v1, f = v1, ′ f 1, ′ f ⋅ v cm + vcm = v1, ′ f 
2 + 2v1, ′ f vcm cosΘ cm + vcm . (15.5.58) 

We use the fact that ′ f = = (µ / m1 = (µ / m1 = (m2 / m1 to rewrite v1, v1, ′ i )v1,2, i )v1, i + m2 )v1, i 

Eq. (15.5.58) as 

⎛ ⎞ 
2 

2 m2 m2m1 m1
2 

2v1, f = 
⎝⎜ + m2 ⎠

⎟ v1, i 
2 + 2 

+ m2 )2 v1, i cosΘ cm + 
)2 v1, i . (15.5.59)

m1 (m1 (m1 + m2 

Thus 
2 + 2m2

2 1/2 
cosΘ(m2 m1 cm + m1 )= . (15.5.60)v1, f v1, im1 + m2 

(iii) The fractional change in the kinetic energy of particle 1 in the laboratory frame is 
given by 

2 + 2m2
2K1, f − K1, i v1, f 

2 − v1, i 
2 m2 m1 cosΘ + m1 2m2m1(cosΘ −1) cm cm = = −1 = .(15.5.61)2 )2 )2K1, i v1, i (m1 + m2 (m1 + m2 

We can also determine the scattering angle Θ cm in the center-of-mass reference frame 
from the scattering angle θ1, i of particle 1 in the laboratory. We now rewrite the 
momentum relations as 

v1, f cosθ1, i + v cm = v1, ′ f cosΘ cm , (15.5.62) 

v1, f sinθ1, i = v1, ′ f sinΘ cm . (15.5.63) 

In a similar fashion to the above argument, we have that 
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v1, f sinθ1, ftanΘ = . (15.5.64)cm v1, f cosθ1, f + v cm 

Recall from our analysis of the collision in the laboratory frame that if we specify one of 
the four parameters v1, f , v2, f , θ1, f , or v1, f , then we can solve for the other three in terms 

of the initial parameters and With that caveat, we can use Eq. (15.5.64) tov1, i v2, i . 

determine Θ . cm 
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Chapter 16 Two Dimensional Rotational Kinematics 

Most galaxies exhibit rising rotational velocities at the largest measured 
velocity; only for the very largest galaxies are the rotation curves flat. Thus 
the smallest SC’s (i.e. lowest luminosity) exhibit the same lack of Keplerian 
velocity decrease at large R as do the high-luminosity spirals. The form for 
the rotation curves implies that the mass is not centrally condensed, but 
that significant mass is located at large R. The integral mass is increasing 
at least as fast as R. The mass is not converging to a limiting mass at the 
edge of the optical image. The conclusion is inescapable than non-
luminous matter exists beyond the optical galaxy. 1 

Vera Rubin 

16.1 Introduction 

The physical objects that we encounter in the world consist of collections of atoms that 
are bound together to form systems of particles. When forces are applied, the shape of 
the body may be stretched or compressed like a spring, or sheared like jello. In some 
systems the constituent particles are very loosely bound to each other as in fluids and 
gasses, and the distances between the constituent particles will vary. We shall begin by 
restricting ourselves to an ideal category of objects, rigid bodies, which do not stretch, 
compress, or shear. 

A body is called a rigid body if the distance between any two points in the body 
does not change in time. Rigid bodies, unlike point masses, can have forces applied at 
different points in the body. Let’s start by considering the simplest example of rigid body 
motion, rotation about a fixed axis. 

16.2 Fixed Axis Rotation: Rotational Kinematics 

16.2.1 Fixed Axis Rotation 

A simple example of rotation about a fixed axis is the motion of a compact disc in 
a CD player, which is driven by a motor inside the player. In a simplified model of this 
motion, the motor produces angular acceleration, causing the disc to spin. As the disc is 
set in motion, resistive forces oppose the motion until the disc no longer has any angular 
acceleration, and the disc now spins at a constant angular velocity. Throughout this 
process, the CD rotates about an axis passing through the center of the disc, and is 
perpendicular to the plane of the disc (see Figure 16.1). This type of motion is called 
fixed-axis rotation. 

1V.C. Rubin, W.K. Jr. Ford, N Thonnard, Rotational properties of 21 SC galaxies with a large range of 
luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/, Astrophysical Journal, Part 
1, vol. 238, June 1, 1980, p. 471-487. 
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Figure 16.1 Rotation of a compact disc about a fixed axis. 

When we ride a bicycle forward, the wheels rotate about an axis passing through 
the center of each wheel and perpendicular to the plane of the wheel (Figure 16.2). As 
long as the bicycle does not turn, this axis keeps pointing in the same direction. This 
motion is more complicated than our spinning CD because the wheel is both moving 

(translating) with some center of mass velocity, vcm , and rotating with an angular speed 
ω . 

Figure 16.2 Fixed axis rotation and center of mass translation for a bicycle wheel. 

When we turn the bicycle’s handlebars, we change the bike’s trajectory and the 
axis of rotation of each wheel changes direction. Other examples of non-fixed axis 
rotation are the motion of a spinning top, or a gyroscope, or even the change in the 
direction of the earth’s rotation axis. This type of motion is much harder to analyze, so 
we will restrict ourselves in this chapter to considering fixed axis rotation, with or 
without translation. 

16.2.2 Angular Velocity and Angular Acceleration 

For a rigid body undergoing fixed-axis rotation, we can divide the body up into small 
volume elements with mass Δmi . Each of these volume elements is moving in a circle of 
radius ri about the axis of rotation (Figure 16.3). 
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Figure 16.3 Coordinate system for fixed-axis rotation. 

We will adopt the notation implied in Figure 16.3, and denote the vector from the axis to 
 rthe point where the mass element is located as , with magnitude r = . Suppose the ri i i 

fixed axis of rotation is the z -axis. Introduce a right-handed coordinate system for an 
angle θ in the plane of rotation and the choice of the positive z -direction perpendicular 
to that plane of rotation. Recall our definition of the angular velocity vector. The angular 
velocity vector is directed along the z -axis with z -component equal to the time 
derivative of the angle θ , 

ω
 
= 

dθ k̂ = ω k̂ . (16.1.1)
dt z 

The angular velocity vector for the mass element undergoing fixed axis rotation with 
ω z > 0 is shown in Figure 16.4. Because the body is rigid, all the mass elements will have 

 the same angular velocity ω and hence the same angular acceleration α . If the bodies 
did not have the same angular velocity, the mass elements would “catch up to” or “pass” 
each other, precluded by the rigid-body assumption. 

Figure 16.4 Angular velocity vector for a mass element for fixed axis rotation 

In a similar fashion, all points in the rigid body have the same angular acceleration, 

 d 2θ
α = k̂ = α z k̂ . (16.1.2)

dt2 
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The angular acceleration vector is shown in Figure 16.5. 

Figure 16.5 Angular acceleration vector for a rigid body rotating about the z -axis 

16.2.3 Sign Convention: Angular Velocity and Angular Acceleration 

For rotational problems we shall always choose a right-handed cylindrical coordinate 
system. If the positive z -axis points up, then we choose θ to be increasing in the 
counterclockwise direction as shown in Figures 16.4 and 16.5. If the rigid body rotates in 
the counterclockwise direction, then the z -component of the angular velocity is positive, 
ω z = dθ / dt > 0 . The angular velocity vector then points in the +k̂ -direction as shown in 
Figure 16.4. If the rigid body rotates in the clockwise direction, then the z -component of 
the angular velocity angular velocity is negative, ω z = dθ / dt < 0 . The angular velocity 

vector then points in the −k̂ -direction. 

If the rigid body increases its rate of rotation in the counterclockwise (positive) 
direction then the z -component of the angular acceleration is positive, 
α z ≡ d 2θ dt2 = dω z / dt > 0 . The angular acceleration vector then points in the +k̂ -
direction as shown in Figure 16.5. If the rigid body decreases its rate of rotation in the 
counterclockwise (positive) direction then the z -component of the angular acceleration is 
negative, α z = d 2θ / dt2 = dω z / dt < 0 . The angular acceleration vector then points in the 

 −k̂ -direction. To phrase this more generally, if α and ω point in the same direction, the 
body is speeding up, if in opposite directions, the body is slowing down. This general 
result is independent of the choice of positive direction of rotation. Note that in Figure 
16.1, the CD has the angular velocity vector points downward (in the −k̂ -direction). 

16.2.4 Tangential Velocity and Tangential Acceleration 

Because the small element of mass, Δmi , is moving in a circle of radius ri with angular 


velocity ω = ω z k̂ , the element has a tangential velocity component 

ω . (16.1.3)vθ , i = ri z 
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If the magnitude of the tangential velocity is changing, the mass element undergoes a 
tangential acceleration given by 

α . (16.1.4)aθ , i = ri z 

Recall that the mass element is always accelerating inward with radial component given 
by 

2vθ , i 2a = − = −r ω . (16.1.5)r , i i z
ri 


Example 16.1 Turntable 

1A turntable is a uniform disc of mass 1.2 kg and a radius 1.3 10 cm . The turntable is × 
spinning initially in a counterclockwise direction when seen from above at a constant rate 
of f0 = 33 cycles min−1 (33 rpm ). The motor is turned off and the turntable slows to a ⋅ 
stop in 8.0 s . Assume that the angular acceleration is constant. (a) What is the initial 
angular velocity of the turntable? (b) What is the angular acceleration of the turntable? 

Solution: (a) Choose a coordinate system shown in Figure 16.6. 

Figure 16.6 Coordinate system for turntable 

Initially, the disc is spinning with a frequency 

⎛ cycles ⎞⎛1min ⎞f0 = ⎜33 ⎟⎜ ⋅ −1 = 0.55 Hz , (16.1.6)⎟ = 0.55 cycles s 
⎝ min ⎠⎝ 60 s ⎠ 

so the initial angular velocity has magnitude 

⎛ radian ⎞⎛ cycles ⎞ω0 = 2π f0 = ⎜ 2π ⎟⎜ 0.55 ⎟ = 3.5 rad s⋅ −1 . (16.1.7)
⎝ cycle ⎠⎝ s ⎠ 

The angular velocity vector points in the +k̂ -direction as shown above. 
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(b) The final angular velocity is zero, so the component of the angular acceleration is 

Δω z 
ω f −ω0 −3.5 rad ⋅ s−1 

−2α z = = = = −4.3 × 10−1 rad ⋅ s . (16.1.8)
Δt t f − t0 8.0 s 

The z -component of the angular acceleration is negative, the disc is slowing down and so 
the angular acceleration vector then points in the − ̂k -direction as shown in Figure 16.7. 

Figure 16.7 Angular acceleration vector for turntable 

16.3 Rotational Kinetic Energy and Moment of Inertia 

16.3.1 Rotational Kinetic Energy and Moment of Inertia 

We have already defined translational kinetic energy for a point object as K = (1 / 2)mv2 ; 
we now define the rotational kinetic energy for a rigid body about its center of mass. 

Figure 16.8 Volume element undergoing fixed-axis rotation about the z -axis that passes 
through the center of mass. 

Choose the z -axis to lie along the axis of rotation passing through the center of mass. As 
in Section 16.2.2, divide the body into volume elements of mass Δmi (Figure 16.8). Each 
individual mass element Δmi undergoes circular motion about the center of mass with z -
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component of angular velocity ω cm in a circle of radius r . Therefore the velocity of cm, i 
each element is given by v = r ω θ̂ . The rotational kinetic energy is thencm, i cm, i cm 

1 2 1 2 2K cm, i = 
2 
Δmi v cm, i = 

2 
Δmir cm, iω cm . (16.2.1) 

We now add up the kinetic energy for all the mass elements, 

i=N i=N ⎛∑ 
1 ⎞

K = lim K = lim Δmir
2 2 

cm ∑ cm, i ∑⎝⎜ cm, i ⎠⎟ 
ω cm i→∞ i→∞ 2i=1 i=1 iΔmi→0 Δmi→0 

(16.2.2)
⎛ ⎞1 2 2= ,dmrdm ⎟ω cm ⎜ 2 ∫⎝ body ⎠ 

where dm is an infinitesimal mass element undergoing a circular orbit of radius rdm 

about the axis passing through the center of mass. 

The quantity 
2I = dmrdm . (16.2.3)cm ∫ 

bo dy 

is called the moment of inertia of the rigid body about a fixed axis passing 
through the center of mass, and is a physical property of the body. The SI units for 
moment of inertia are ⎡kg ⋅ m2 ⎤⎦ .⎣ 

Thus 
⎛ ⎞1 12 2 2K cm = ⎜ 2 ∫ dmrdm ⎟ω cm ≡ Icm ω cm . (16.2.4)

2⎝ bo dy ⎠ 

16.3.2 Moment of Inertia of a Rod of Uniform Mass Density 

Consider a thin uniform rod of length L and mass m . In this problem, we will calculate 
the moment of inertia about an axis perpendicular to the rod that passes through the 
center of mass of the rod. A sketch of the rod, volume element, and axis is shown in 
Figure 16.9. Choose Cartesian coordinates, with the origin at the center of mass of the 
rod, which is midway between the endpoints since the rod is uniform. Choose the x -axis 
to lie along the length of the rod, with the positive x -direction to the right, as in the 
figure. 
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Figure 16.9 Moment of inertia of a uniform rod about center of mass. 

Identify an infinitesimal mass element dm = λ dx , located at a displacement x from the 
center of the rod, where the mass per unit length λ = m / L is a constant, as we have 
assumed the rod to be uniform. When the rod rotates about an axis perpendicular to the 
rod that passes through the center of mass of the rod, the element traces out a circle of 
radius rdm = x . We add together the contributions from each infinitesimal element as we 
go from x = −L 2 to x = L 2 . The integral is then 

L / 2 
L / 2 2I = ∫ r dm = λ∫− 

(x2 ) dx = λ 
x3 

cm dm L / 2 3bo dy − L / 2 (16.2.5) 
m (L / 2)3 m (−L / 2)3 1 

= − = m L2.
L 3 L 3 12 

By using a constant mass per unit length along the rod, we need not consider variations in 
the mass density in any direction other than the x - axis. We also assume that the width is 
the rod is negligible. (Technically we should treat the rod as a cylinder or a rectangle in 
the -x y plane if the axis is along the z - axis. The calculation of the moment of inertia in 
these cases would be more complicated.) 

Example 16.2 Moment of Inertia of a Uniform Disc 

A thin uniform disc of mass M and radius R is mounted on an axle passing through the 
center of the disc, perpendicular to the plane of the disc. Calculate the moment of inertia 
about an axis that passes perpendicular to the disc through the center of mass of the disc 

Solution: As a starting point, consider the contribution to the moment of inertia from the 
mass element dm show in Figure 16.10. Let r denote the distance form the center of 
mass of the disc to the mass element. 

Figure 16.10 Infinitesimal mass element and coordinate system for disc. 
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Choose cylindrical coordinates with the coordinates (r,θ) in the plane and the z -axis 
perpendicular to the plane. The area element 

da = r dr dθ (16.2.6) 

may be thought of as the product of arc length r dθ and the radial width dr . Since the 
disc is uniform, the mass per unit area is a constant, 

dm m Mtotal σ = = = . (16.2.7)
π R2da Area 

Therefore the mass in the infinitesimal area element as given in Equation (16.2.6), a 
distance r from the axis of rotation, is given by 

Mdm = σ r dr dθ = r dr dθ . (16.2.8)
π R2 

When the disc rotates, the mass element traces out a circle of radius rdm = r ; that is, the 
distance from the center is the perpendicular distance from the axis of rotation. The 
moment of inertia integral is now an integral in two dimensions; the angle θ varies from 
θ = 0 to θ = 2π , and the radial coordinate r varies from r = 0 to r = R . Thus the limits 
of the integral are 

2 M r θ = 
I cm = ∫ rdm dm = 

π R2 ∫ 
= R 

∫θ =0

2π 
r3 dθ dr . (16.2.9)

r =0 
bo dy 

The integral can now be explicitly calculated by first integrating the θ -coordinate 

M r = R θ = 2π M r = R 2 M r = R⎞I cm = 
π R2 ∫ ⎛ ∫ dθ⎠ r

3dr = 
π R2 ∫ 2πr3dr = 

R2 ∫ r3dr (16.2.10)
r =0 ⎝ θ =0 r =0 r =0 

and then integrating the r -coordinate, 

r = R 
2 M r = R 2 M r 4 2 M R4 1I = r3dr = = = MR2 . (16.2.11)cm R2 ∫r =0 R2 4 R2 4 2 

r =0 

Remark: Instead of taking the area element as a small patch da = r dr dθ , choose a ring 
of radius r and width dr . Then the area of this ring is given by 

daring = π (r + dr)2 − πr 2 = πr 2 + 2πr dr + π (dr)2 − πr 2 = 2πr dr + π (dr)2 . (16.2.12) 
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In the limit that dr → 0 , the term proportional to (dr)2 can be ignored and the area is 
da = 2πrdr . This equivalent to first integrating the dθ variable 

θ = 2π ⎞daring = r dr ⎛⎝ ∫θ =0 
dθ⎠ = 2πr dr . (16.2.13) 

Then the mass element is 
Mdm = σ da = 2πr dr . (16.2.14)ring ring π R2 

The moment of inertia integral is just an integral in the variable r , 

2π M r = R 1I cm = ∫ (r⊥ 
)2 dm = 

π R2 
r3dr = MR2 . (16.2.15)∫r =0 2body 

16.3.3 Parallel Axis Theorem 

Consider a rigid body of mass m undergoing fixed-axis rotation. Consider two parallel 
axes. The first axis passes through the center of mass of the body, and the moment of 
inertia about this first axis is Icm . The second axis passes through some other point S in 
the body. Let dS ,cm denote the perpendicular distance between the two parallel axes 
(Figure 16.11). 

Figure 16.11 Geometry of the parallel axis theorem. 

Then the moment of inertia IS about an axis passing through a point S is related to Icm 

by 
IS = I + m dS 

2 . (16.2.16)cm ,cm 
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16.3.4 Parallel Axis Theorem Applied to a Uniform Rod 

Let point S be the left end of the rod of Figure 16.9. Then the distance from the center of 
mass to the end of the rod is dS ,cm = L / 2 . The moment of inertia IS = Iend about an axis 
passing through the endpoint is related to the moment of inertia about an axis passing 
through the center of mass, Icm = (1/12) mL2 , according to Equation (16.2.16), 

1 2 1 2 1 2IS = mL + mL = mL . (16.2.17)
12 4 3 

In this case it’s easy and useful to check by direct calculation. Use Equation (16.2.5) but 
with the limits changed to x′ = 0 and x′ = L , where x′ = x + L / 2 , 

Iend = ∫ r⊥ 
2 dm = λ∫

L
x′2 dx′ 

0 
body 

L (16.2.18) 
x′3 m ( )L 3 m (0)3 1 2= λ = − = mL . 
3 

0 
L 3 L 3 3 

Example 16.3 Rotational Kinetic Energy of Disk 

A disk with mass M and radius R is spinning with angular speed ω about an axis that 
passes through the rim of the disk perpendicular to its plane. The moment of inertia about 
cm is Icm = (1/ 2)mR2 . What is the kinetic energy of the disk? 

Solution: The parallel axis theorem states the moment of inertia about an axis passing 
perpendicular to the plane of the disc and passing through a point on the edge of the disc 
is equal to 

I = I + mR2 . (16.2.19)edge cm 

The moment of inertia about an axis passing perpendicular to the plane of the disc and 
passing through the center of mass of the disc is equal to Icm = (1/ 2)mR2 . Therefore 

Iedge = (3 / 2)mR2 . (16.2.20) 
The kinetic energy is then 

K = (1 / 2)Iedgeω 2 = (3 / 4)mR2ω 2 . (16.2.21) 

16-11 



 

        
 

  
 

 
     
 

  
 

 

 
  

  

 
    

 

 
  

  

 
   

 
            

          
        

       
          
          

         
         

       
 

 

   
 

     
 

 

 

       

 

     

    

 

      
  

 

 

 

16.4 Conservation of Energy for Fixed Axis Rotation 

Consider a closed system ( ΔE = 0 ) under action of only conservative internal forces.system 

Then the change in the mechanical energy of the system is zero 

ΔE ) = 0 . (16.3.1)m = ΔU + ΔK = (U f + K f ) − (Ui + Ki 

For fixed axis rotation with a component of angular velocity ω about the fixed axis, the 
change in kinetic energy is given by 

1 ω 2 1ΔK ≡ K f = IS − ISω i 
2 , 	 (16.3.2)− Ki f2 2 

where S is a point that lies on the fixed axis. Then conservation of energy implies that 

1 2 1 2+ IS = + IS	 (16.3.3)U f ω f Ui ω i2 2 

Example 16.4 Energy and Pulley System 

A wheel in the shape of a uniform disk of radius R and mass mp is mounted on a 
frictionless horizontal axis. The wheel has moment of inertia about the center of mass 
I = (1/ 2)m R2 . A massless cord is wrapped around the wheel and one end of the cord is cm p 

attached to an object of mass m2 that can slide up or down a frictionless inclined plane. 
The other end of the cord is attached to a second object of mass m1 that hangs over the 
edge of the inclined plane. The plane is inclined from the horizontal by an angle θ 
(Figure 16.12). Once the objects are released from rest, the cord moves without slipping 
around the disk. Calculate the speed of block 2 as a function of distance that it moves 
down the inclined plane using energy techniques. Assume there are no energy losses due 
to friction and that the rope does not slip around the pulley 

Figure 16.12 Pulley and blocks 	 Figure 16.13 Coordinate system for 
pulley and blocks 
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Solution: Define a coordinate system as shown in Figure 16.13. Choose the zero for the 
gravitational potential energy at a height equal to the center of the pulley. In Figure 16.14 
illustrates the energy diagrams for the initial state and a dynamic state at an arbitrary time 
when the blocks are sliding. 

Figure 16.14 Energy diagrams for initial state and dynamic state at arbitrary time 

Then the initial mechanical energy is 

Ei = Ui = −m1gy1, i − m2 gx2,i sinθ . (16.3.4) 

The mechanical energy, when block 2 has moved a distance 

d = x2 (16.3.5)− x2, i 

is given by 
1 2 + 

1 2 + 
1 ω 2E = U + K = −m1 sinθ + . (16.3.6)gy1 − m2 gx2 m1v1 m2v2 IP2 2 2 

The rope connects the two blocks, and so the blocks move at the same speed 

v ≡ v1 = v2 . (16.3.7) 

The rope does not slip on the pulley; therefore as the rope moves around the pulley the 
tangential speed of the rope is equal to the speed of the blocks 

vtan = Rω = v . (16.3.8) 

Eq. (16.3.6) can now be simplified 

1 ⎛ IP 
⎞ 2E = U + K = −m gy − m gx sinθ + m + m + . (16.3.9)1 1 2 2 1 2 R2 ⎠⎟ 

v 
2 ⎝⎜ 

Because we have assumed that there is no loss of mechanical energy, we can set Ei = E 
and find that 
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1 ⎛ IP ⎞ 2−m1gy1, i − m2 gx2, i sinθ = −m1gy1 − m2 gx2 sinθ + m1 + m2 + 
R2 ⎠⎟ 

v , (16.3.10)
2 ⎝⎜ 

which simplifies to 
1 ⎛ ⎞IP 2−m1g( y1,0 − y1) + m2 g(x2 − x2,0 )sinθ = m1 + m2 + 

R2 ⎠⎟ 
v . (16.3.11)

2 ⎝⎜ 

We finally note that the movement of block 1 and block 2 are constrained by the 
relationship 

d = x2 = − y1 . (16.3.12)− x2, i y1, i 

Then Eq. (16.3.11) becomes 

1 ⎛ IP 
⎞ 2gd(−m1 + m2 sinθ) = m1 + m2 + 

R2 ⎠⎟ 
v . (16.3.13)

2 ⎝⎜ 

We can now solve for the speed as a function of distance d = x2 that block 2 has − x2, i 

traveled down the incline plane 

2gd(−m1 sinθ)
v =

+ m2 . (16.3.14)(m1 + m2 + (IP / R
2 )) 

If we assume that the moment of inertial of the pulley is Icm p = (1/ 2)m R2 , then the speed 
becomes 

(16.3.15) 

Example 16.5 Physical Pendulum 

A physical pendulum consists of a uniform rod of mass m1 pivoted at one end about the 
point S . The rod has length l1 and moment of inertia I1 about the pivot point. A disc of 
mass and radius with moment of inertia I about its center of mass is rigidly m2 r2 cm 

attached a distance l2 from the pivot point. The pendulum is initially displaced to an 
angle θ i and then released from rest. (a) What is the moment of inertia of the physical 
pendulum about the pivot point S ? (b) How far from the pivot point is the center of mass 
of the system? (c) What is the angular speed of the pendulum when the pendulum is at 
the bottom of its swing? 

v = 
2gd(−m1 + m2 sinθ) 
m1 + m2 + (1 / 2)mP( ) . 
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Figure 16.15 Rod and with fixed disc pivoted about the point S 

Solution: a) The moment of inertia about the pivot point is the sum of the moment of 
inertia of the rod, given as I1 , and the moment of inertia of the disc about the pivot point.  
The moment of inertia of the disc about the pivot point is found from the parallel axis 
theorem, 

I = I + m l2 . (16.3.16)disc cm 2 2 

The moment of inertia of the system consisting of the rod and disc about the pivot point 
S is then 

I = I + I = I + I + m l2 . (16.3.17)S 1 disc 1 cm 2 2 

The center of mass of the system is located a distance from the pivot point 

/ 2) + m2m1(l1 l2l cm = . (16.3.18)
m1 + m2 

b) We can use conservation of mechanical energy, to find the angular speed of the 
pendulum at the bottom of its swing. Take the zero point of gravitational potential energy 
to be the point where the bottom of the rod is at its lowest point, that is, θ = 0 . The 
initial state energy diagram for the rod is shown in Figure 16.16a and the initial state 
energy diagram for the disc is shown in Figure 16.16b. 
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(a) (b) 

Figure 16.16 (a) Initial state energy diagram for rod (b) Initial state energy diagram for 
disc 

The initial mechanical energy is then 

l1= − cosθ i cosθ i ) , (16.3.19)Ei Ui = m1 g (l1 ) + m2 g (l1 − l22 

At the bottom of the swing, θ f = 0 , and the system has angular velocity ω f . The 
mechanical energy at the bottom of the swing is 

l1 1 2g − l2 ) + ISω f , (16.3.20)E f = U f + K f = m1 + m2 g(l12 2 

with IS as found in Equation (16.3.17). There are no non-conservative forces acting, so 
the mechanical energy is constant therefore equating the expressions in (16.3.19) and 
(16.3.20) we get that 

l1 l1 1 ω 2− cosθ i cosθ i g ) + (16.3.21)m1 g (l1 ) + m2 g (l1 − l2 ) = m1 + m2 g(l1 − l2 IS f ,2 2 2 

This simplifies to 
⎛ ⎞ 1m1 l1 l2 ⎠⎟ 

g (1− cosθ i ) = 2 (16.3.22)+ m2 ISω f ,⎝⎜ 2 2 

We now solve for ω f (taking the positive square root to insure that we are calculating 
angular speed) 
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⎞
2
⎛ m1 l1 + m2 l2 ⎠⎟ 

g (1− cosθ i )⎝⎜ 2
ω f = , (16.3.23)

IS 

Finally we substitute in Eq.(16.3.17) in to Eq. (16.3.23) and find 

⎞
2
⎛ m1 l1 + m2 l2 ⎠⎟ 

g (1− cosθ i )⎝⎜ 2 
= . (16.3.24)ω f 2+ I + m2I1 cm l2 

Note that we can rewrite Eq. (16.3.22), using Eq. (16.3.18) for the distance between the 
center of mass and the pivot point, to get 

1 2+ m2 )l g (1− cosθ i ) = ISω f , (16.3.25)(m1 cm 2 

We can interpret this equation as follows. Treat the system as a point particle of mass 
located at the center of mass l . Take the zero point of gravitational potentialm1 + m2 cm 

energy to be the point where the center of mass is at its lowest point, that is, θ = 0 . Then 

)l g (1− cosθ i ) , (16.3.26)Ei = (m1 + m2 cm

1 2= . (16.3.27)E f ISω f2 

Thus conservation of energy reproduces Eq. (16.3.25). 
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Appendix 16A: Proof of the Parallel Axis Theorem 

Identify an infinitesimal volume element of mass dm . The vector from the point S to the 
 mass element is , , the vector from the center of mass to the mass element is rdm , and rS dm 

the vector from the point S to the center of mass is rS ,cm . 

r r r 

Figure 16A.1 Geometry of the parallel axis theorem. 

S , dm S , cm dm . 
From Figure 16A.1, we see that 

(16.A.1)
=
 +
 

 The notation gets complicated at this point. The vector r has a component vector rdm  , dm 
parallel to the axis through the center of mass and a component vector r⊥ , dm 

perpendicular to the axis through the center of mass. The magnitude of the perpendicular 
component vector is 

 (16.A.2)r cm, ⊥ , dm = r⊥ , dm . 

 The vector rS dm has a component vector parallel to the axis through the point S , rS , , dm 
and a component vector rS ,⊥ ,dm perpendicular to the axis through the point S . The 

magnitude of the perpendicular component vector is 

 r = rS ,⊥ ,dm . (16.A.3)S ,⊥ ,dm 

 The vector rS ,cm has a component vector rS ,,cm parallel to both axes and a perpendicular 
component vector rS ,⊥,cm that is perpendicular to both axes (the axes are parallel, of 

course). The magnitude of the perpendicular component vector is 

 r = dS ,cm . (16.A.4)S ,⊥,cm 

16-18 



  

 
  

 

 
    

  

 
           
        

          
            
        

       
          

 
 

   
 
 

  
  

   
 

 

    

  

 
  

 
 

    
  

 
        

  
 
 

  
  

 
           

 
 

  
  

 



 





 

 

 

  



 

 
  
 

 


   


 

      
 

 
 

     

  

  

 

Equation (16.A.1) is now expressed as two equations, 

S ,⊥ , dm S ,⊥ , cm ⊥ ,dm 

S ,,dm S ,,cm 

r r 
r r 

r +
=
 
(16.A.5)
r+
=
 ,dm . 

At this point, note that if we had simply decided that the two parallel axes are parallel to 
the z -direction, we could have saved some steps and perhaps spared some of the notation 
with the triple subscripts. However, we want a more general result, one valid for cases 
where the axes are not fixed, or when different objects in the same problem have different 
axes. For example, consider the turning bicycle, for which the two wheel axes will not be 
parallel, or a spinning top that precesses (wobbles). Such cases will be considered in 
later on, and we will show the general case of the parallel axis theorem in anticipation of 
use for more general situations. 

The moment of inertia about the point S is 

r 

= )2 . (16.A.6)IS ∫ dm(rS , ⊥ ,dm 
body 

r 

From (16.A.5) we have 

S , ⊥ ,dm S , ⊥ ,dm 

S , ⊥ ,cm 

)2(rS , ⊥ ,dm ⋅
=
 
r r rS , ⊥ ,cm ⊥ ,dm 

2 )2 + 2= dS , cm + (r⊥ , dm 

= (
 ) ⋅ (
 ) (16.A.7)
+
 +
 
r 
⊥ ,dm 

rS , ⊥ ,cm ⊥ ,dm. 

Thus we have for the moment of inertia about S , 

  = ∫ dm dS 
2 + )2 + 2 ∫ dm(r ⋅ r ) . (16.A.8)IS , cm ∫ dm(r⊥ ,dm S ,⊥ , cm ⊥ ,dm 

bo dy bo dy bo dy 

In the first integral in Equation (16.A.8), rS ,⊥,cm = dS ,cm is the distance between the 
parallel axes and is a constant. Therefore we can rewrite the integral as 

2 dm 2 . (16.A.9)dS ,cm ∫ = m dS ,cm 
body 

The second term in Equation (16.A.8) is the moment of inertia about the axis through the 
center of mass, 

)2I = ∫ dm (r⊥ ,dm . (16.A.10)cm 
bo dy 

⋅
 

r 
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The third integral in Equation (16.A.8) is zero. To see this, note that the term rS ,⊥,cm is a 
constant and may be taken out of the integral, 

S ,⊥ , cm ⊥ ,dm S ,⊥ , cm 
bo dy bo dy 

The integral ∫ dm r⊥ ,dm is the perpendicular component of the position of the center of 
bo dy  

mass with respect to the center of mass, and hence 0 , with the result that 

2 ∫ dm (r  ⋅ r  ) = 0 . (16.A.12)S ,⊥ , cm ⊥ ,dm 
bo dy 

Thus, the moment of inertia about S is just the sum of the first two integrals in 

r 

Equation (16 A 8). .
I = I + md 2 , (16.A.13)S cm S , cm 

r 

proving the parallel axis theorem. 

r r2 ∫ dm ( ⋅
 ) =
 ⋅ 2 ∫ dm (16.A.11)
⊥ ,dm 
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Chapter 17 Two Dimensional Rotational Dynamics 

torque, n. 

a. The twisting or rotary force in a piece of mechanism (as a 
measurable quantity); the moment of a system of forces producing 
rotation. 

Oxford English Dictionary 

17.1 Introduction 

A body is called a rigid body if the distance between any two points in the body 
does not change in time. Rigid bodies, unlike point masses, can have forces applied at 
different points in the body. For most objects, treating as a rigid body is an idealization, 
but a very good one. In addition to forces applied at points, forces may be distributed 
over the entire body. Forces that are distributed over a body are difficult to analyze; 
however, for example, we regularly experience the effect of the gravitational force on 
bodies. Based on our experience observing the effect of the gravitational force on rigid 
bodies, we shall demonstrate that the gravitational force can be concentrated at a point in the rigid body called the center of gravity, which for small bodies (so that g may be 
taken as constant within the body) is identical to the center of mass of the body. 

Let’s consider a rigid rod thrown in the air (Figure 17.1) so that the rod is spinning as its center of mass moves with velocity vcm . We have explored the physics of 
translational motion; now, we wish to investigate the properties of rotational motion 
exhibited in the rod’s motion, beginning with the notion that every particle is rotating 
about the center of mass with the same angular (rotational) velocity. 

Figure 17.1 The center of mass of a thrown rigid rod follows a parabolic trajectory while 
the rod rotates about the center of mass. 

We can use Newton’s Second Law to predict how the center of mass will move. 
Because the only external force on the rod is the gravitational force (neglecting the action 
of air resistance), the center of mass of the body will move in a parabolic trajectory. 
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How was the rod induced to rotate? In order to spin the rod, we applied a torque 
with our fingers and wrist to one end of the rod as the rod was released. The applied 
torque is proportional to the angular acceleration. The constant of proportionality is the 
moment of inertia. When external forces and torques are present, the motion of a rigid 
body can be extremely complicated while it is translating and rotating in space. 

In order to describe the relationship between torque, moment of inertia, and 
angular acceleration, we will introduce a new vector operation called the vector product 
also know as the “cross product” that takes any two vectors and generates a new vector. 
The vector product is a type of “multiplication” law that turns our vector space (law for 
addition of vectors) into a vector algebra (a vector algebra is a vector space with an 
additional rule for multiplication of vectors). 

17.2 Vector Product (Cross Product) 
  

Let A and B be two vectors. Because any two non-parallel vectors form  
a plane, we denote the angle θ to be the angle between the vectors A and    
B as shown in Figure 17.2. The magnitude of the vector product A × B   
of the vectors A and B is defined to be product of the magnitude of the   
vectors A and B with the sine of the angle θ between the two vectors, 

 
A
×
 
 
B
 =
 

 
B
 

 
A
 sin(θ) . (17.2.1) 

The angle θ between the vectors is limited to the values 0 ≤θ ≤π 
ensuring that sin( ) ≥ 0 .θ 

Figure 17.2 Vector product geometry. 

 
The direction of the vector product is defined as follows. The vectors A  
and B form a plane. Consider the direction perpendicular to this plane. 
There are two possibilities: we shall choose one of these two (the one   
shown in Figure 17.2) for the direction of the vector product A × B using 
a convention that is commonly called the “right-hand rule”. 
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17.2.1 Right-hand Rule for the Direction of Vector Product 

  
so that the tails are touching. Then draw  

B 
The first step is to redraw the vectors A and B  
an arc starting from the vector A and finishing on the vector . Curl your right fingers 
the same way as the arc. Your right thumb points in the direction of the vector product   
A × B (Figure 17.3). 

Figure 17.3 Right-Hand Rule. 

  
You should remember that the direction of the vector product A × B is perpendicular to   
the plane formed by A and B . We can give a geometric interpretation to the magnitude 
of the vector product by writing the magnitude as 

 
A
×
 
 
B
 =
 

 
A
(
 B
sinθ ) . (17.2.2) 

  
The vectors A and B form a parallelogram. The area of the parallelogram is equal to the 
height times the base, which is the magnitude of the vector product. In Figure 17.4, two 

 
B 

different representations of the height and base of a parallelogram are illustrated. As 

 
direction perpendicular to the vector B . We could also write the magnitude of the vector 


 
Bdepicted in Figure 17.4a, the term sinθ is the projection of the vector in the 

product as
 
A
×
 
 
B
 =
(
  A
sinθ )  B
 .
 (17.2.3)
 

  
AThe term sinθ is the projection of the vector A in the direction perpendicular to the 

vector 
 
B
 as shown in Figure 17.4(b). The vector product of two vectors that are parallel 

(or anti-parallel) to each other is zero because the angle between the vectors is 0 (or π ) 
and sin(0) = 0 (or sin( ) π = 0 ). Geometrically, two parallel vectors do not have a unique 
component perpendicular to their common direction. 
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(a)	 (b) 

Figure 17.4 Projection of (a) 
 
B
 perpendicular to 

 
A
, (b) of 

 
A
 perpendicular to 

 
B
 

17.2.2 Properties of the Vector Product 

(1)	 The vector product is anti-commutative because changing the order of the vectors 
changes the direction of the vector product by the right hand rule: 

    
A × B = −B × A .	 (17.2.4) 


 
(2) The vector product between a vector c A where c is a scalar and a vector 

 
B
 is 

    
c A × B = c (A × B) . (17.2.5) 

Similarly, 	    
A × c B = c (A × B) .	 (17.2.6) 

 	  
(3)	 The vector product between the sum of two vectors A and B with a vector C is 

	       
(A + B)×C = A ×C + B×C (17.2.7) 

Similarly, 	       
A × (B + C) = A × B + A ×C .	 (17.2.8) 

17.2.3 Vector Decomposition and the Vector Product: Cartesian Coordinates 

We first calculate that the magnitude of vector product of the unit vectors î and ĵ : 

ˆ ˆ ˆ ˆ| i × j | | || |sin( = i j π / 2) = 1,	 (17.2.9) 

ˆ ˆbecause the unit vectors have magnitude | | | |i = j = 1 and sin( π / 2) = 1 . By the right hand 
rule, the direction of î × ̂j is in the +k̂ as shown in Figure 17.5. Thus î × ̂j = k̂ . 
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Figure 17.5 Vector product of î × ̂j 

We note that the same rule applies for the unit vectors in the y and z directions, 

ˆ ˆ ˆ ˆ ˆ ˆj×k = i, k × i = j . (17.2.10) 

By the anti-commutatively property (1) of the vector product, 

ˆ ˆ ˆ ˆ ˆ ˆj× i = −k, i ×k = −j (17.2.11) 

The vector product of the unit vector î with itself is zero because the two unit vectors are 
parallel to each other, (sin(0) = 0 ), 

ˆ ˆ ˆ ˆ| i × i | | || | sin(0) i i = 0 . (17.2.12)= 

The vector product of the unit vector ĵ with itself and the unit vector k̂ with itself are 
also zero for the same reason, 

ˆ ˆ ˆ ˆ = 0 . (17.2.13)×j j = 0, k ×k 

With these properties in mind we can now develop an algebraic expression for the vector 
product in terms of components. Let’s choose a Cartesian coordinate system with the  
vector B pointing along the positive x-axis with positive x-component Bx . Then the 

  
vectors A and B can be written as 

 ˆ ˆ ˆA = A i + A j + A k (17.2.14)x y z 
 ˆB = Bx i , (17.2.15) 

respectively. The vector product in vector components is 

  ˆ ˆ ˆ ˆA × B = ( A i + A j + A k)× B i . (17.2.16)x y z x 
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This becomes,   ˆ ˆ ˆ ˆ ˆ ˆA × B = (A i × B i) + (A j× B i) + (A k × B i)x x y x z x 

ˆ ˆ ˆ ˆ ˆ ˆ= A B (i × i) + A B (j× i) + A B (k × i) . (17.2.17)x x y x z x 

= −A B k̂ + A B ĵy x z x 

The vector component expression for the vector product easily generalizes for arbitrary 
vectors  

A = A î + A ĵ+ A k̂ (17.2.18)x y z 
 ˆ ˆ ˆB = B i + B j + B k , (17.2.19)x y z 

to yield   ˆ ˆ ˆA × B = (A B − A B ) i + (A B − A B ) j + (A B − A B ) k . (17.2.20)y z z y z x x z x y y x 

17.2.4 Vector Decomposition and the Vector Product: Cylindrical Coordinates 

Recall the cylindrical coordinate system, which we show in Figure 17.6. We have chosen 
two directions, radial and tangential in the plane, and a perpendicular direction to the 
plane. 

Figure 17.6 Cylindrical coordinates
 

The unit vectors are at right angles to each other and so using the right hand rule, the
 
vector product of the unit vectors are given by the relations 

r̂ × θ̂ = k̂ (17.2.21) 
θ̂ × k̂ = r̂ (17.2.22) 
k̂ × r̂ = θ̂ . (17.2.23) 

Because the vector product satisfies 
 
A
×
 
 
B
= −
 

 
B
×
 
 
A
, we also have that 

θ̂ × r̂ = −k̂ (17.2.24) 
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k̂ × θ̂ = −r̂ (17.2.25) 
ˆ = −θ̂r̂ × k . (17.2.26) 

Finally  
r̂ × r̂ = θ̂ × θ̂ = k̂ × k̂ = 0 . (17.2.27) 

Example 17.1 Vector Products 

 ˆ ˆ ˆ ˆ ˆ ˆGiven two vectors, A = 2 i + −3 j + 7 k and B = 5i + j + 2k , find 
 
A
×
 
 
B
.
 

Solution:   
A × B = ( A B − A B ) î + ( A B − A B ) ĵ + ( A B − A B ) k̂ 

y z z y z x x z x y y x 

= ((−3)(2) − (7)(1)) ̂i + ((7)(5) − (2)(2)) ̂j+ ((2)(1) − (−3)(5)) k̂ 

= −13 ̂i + 31 ĵ+17 k̂. 

Example 17.2 Law of Sines 

For the triangle 
B 

shown in Figure 17.7a, prove the law of sines,  
A
 / sinα = / sin β = 

 
C
/ sinγ , using the vector product. 

Figure 17.7 (a) Example 17.2 Figure 17.7 (b) Vector analysis 
   

Solution: Consider the area of a triangle formed by three vectors A , B , and C , where 
      
A + B + C = 0 (Figure 17.7b). Because A + B + C = 0 , we have that 
                

0 = A × (A + B + C) = A × B + A ×C . Thus A × B = −A ×C or . FromA × B = A ×C 
       

Figure 17.7b we see that sin β . ThereforeA × B = A B sin γ and A ×C = A C 
     

sin β , and hence / sin γ . A similar argument shows that A B sin γ = A C B / sin β = C 
 
/ sinα proving the law of sines.B / sin β = A 

Example 17.3 Unit Normal 

 ˆ ˆ ˆ ˆ ˆ ˆFind a unit vector perpendicular to A = i + j − k and B = −2i − j + 3k . 
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Solution: The vector product A × B is perpendicular to both A and B . Therefore the      
unit vectors n̂ = ±A × B / are perpendicular to both A and B . We first calculateA × B 

  
A × B = ( A B − A B ) î + ( A B − A B ) ĵ+ ( A B − A B ) k̂ 

y z z y z x x z x y y x 

= ((1)(3) − (−1)(−1)) ̂i + ((−1)(2) − (1)(3)) ̂j + ((1)(−1) − (1)(2)) k̂ 

= 2 î − 5 ĵ− 3 k̂. 

We now calculate the magnitude 

  
= (22 + 52 + 32 )1/2 = (38)1/2 A × B . 

Therefore the perpendicular unit vectors are 

    
n̂ = ±A × B / A × B = ±(2 ̂i − 5 ĵ− 3 k̂) / (38)1/2 . 

Example 17.4 Volume of Parallelepiped 

  
Show that the volume of a parallelepiped with edges formed by the vectors A , B , and 
    
C is given by A ⋅ (B×C) . 

Solution: The volume of a parallelepiped is given by area of the base times height. If the   
base is formed by the vectors B and C , then the area of the base is given by the 

      
magnitude of B ×C . The vector B ×C = n̂ where n̂ is a unit vector perpendicular B×C 

to the base (Figure 17.8). 

Figure 17.8 Example 17.4 

 
The projection of the vector A along the direction n̂ gives the height of the 

 
parallelepiped. This projection is given by taking the dot product of A with a unit vector 

 
⋅ ˆand is equal to A n = height . Therefore 

         
A ⋅ (B × C) = A ⋅ ( B × C )n̂ = ( B × C )A ⋅ n̂ = (area)(height) = (volume) . 
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Example 17.5 Vector Decomposition 
 

Let A be an arbitrary vector and let n̂ be a unit vector in some fixed direction. Show    
that A = (A ⋅ n̂)n̂ + (n̂ × A) × n̂ . 

  
Solution: Let A = A n̂ + A⊥ ê where A is the component A in the direction of n̂ , ê is  

 
the direction of the projection of A in a plane perpendicular to n̂ , and A⊥ 

is the 
  

ˆ ˆ component of A in the direction of ê . Because e n⋅ = 0 , we have that A ⋅ n̂ = A . Note 
that  

n̂ × A = n̂ × ( An̂ + A⊥ 
ê) = n̂ × A⊥ 

ê = A⊥ 
(n̂ × ê) . 

The unit vector n̂ × ê lies in the plane perpendicular to n̂ and is also perpendicular to ê . 
Therefore (n̂ × ê) × n̂ is also a unit vector that is parallel to ê (by the right hand rule. So 

 
(n̂ × A) × n̂ = A⊥ 

ê . Thus 

   
A = An̂ + A⊥ê = (A ⋅ n̂)n̂ + (n̂ × A) × n̂ . 

17.3 Torque 

17.3.1 Definition of Torque about a Point 

In order to understand the dynamics of a rotating rigid body we will introduce a new  quantity, the torque. Let a force FP with magnitude F = act at a point P . Let , FP rS P 

 rbe the vector from the point S to a point P , with magnitude r = . The angle ,S P 
between the vectors , and FP is θ with [0 ≤θ ≤π ] (Figure 17.9).rS P 

Figure 17.9 Torque about a point S due to a force acting at a point P 

 
The torque about a point S due to force FP acting at P , is defined by 

   
× FP . (17.2.28)τS = rS , P 
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The magnitude of the torque about a point S due to force FP acting at P , 
is given by 


≡ = r F sinθ . (17.2.29)τ S τS 

The SI units for torque are [N ⋅ m] . The direction of the torque is perpendicular to the 
plane formed by the vectors , and FP (for [0 < θ < π ] ), and by definition points in rS P 

the direction of the unit normal vector to the plane n̂ RHR as shown in Figure 17.10. 

Figure 17.10 Vector direction for the torque
 

Figure 17.11 shows the two different ways of defining height and base for a
 parallelogram defined by the vectors , and FP .rS P 

Figure 17.11 Area of the torque parallelogram. 

 
Let r = r sinθ and let F = F sinθ be the component of the force F that is ⊥ ⊥ P 

perpendicular to the line passing from the point S to P . (Recall the angle θ has a range 
of values 0 ≤θ ≤π so both r⊥ ≥ 0 and F⊥ ≥ 0 .) Then the area of the parallelogram 

defined by , and FP is given byrS P 

Area = τ = r F = r F = r F sinθ . (17.2.30)S ⊥ ⊥ 
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We can interpret the quantity r⊥ as follows. 

Figure 17.12 The moment arm about the point S and line of action of force passing 
through the point P 

 
We begin by drawing the line of action of the force FP . This is a straight line passing 

 
through P , parallel to the direction of the force FP . Draw a perpendicular to this line of 
action that passes through the point S (Figure 17.12). The length of this perpendicular,  
r⊥ = r sinθ , is called the moment arm about the point S of the force FP . 

You should keep in mind three important properties of torque: 

1. The torque is zero if the vectors , and FP are parallel (θ = 0) or anti-parallelrS P 

(θ = π ) . 

2.	 Torque is a vector whose direction and magnitude depend on the choice of a point 
S about which the torque is calculated. 

3.	 The direction of torque is perpendicular to the plane formed by the two vectors,   rFP and r = (the vector from the point S to a point P ).,S P 

17.3.2 Alternative Approach to Assigning a Sign Convention for Torque 

 In the case where all of the forces Fi and position vectors , are coplanar (or zero), we ri P 

can, instead of referring to the direction of torque, assign a purely algebraic positive or 
negative sign to torque according to the following convention. We note that the arc in 
Figure 17.13a circles in counterclockwise direction. (Figures 17.13a and 17.13b use the 
simplifying assumption, for the purpose of the figure only, that the two vectors in  question, FP and , are perpendicular. The point S about which torques are calculated rS P 

is not shown.) 
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(a)	 (b) 

Figure 17.13 (a) Positive torque out of plane, (b) positive torque into plane 

We can associate with this counterclockwise orientation a unit normal vector n̂ 
according to the right-hand rule: curl your right hand fingers in the counterclockwise 
direction and your right thumb will then point in the n̂1 direction (Figure 17.13a). The 
arc in Figure 17.13b circles in the clockwise direction, and we associate this orientation 
with the unit normal n̂ 2 . 

It’s important to note that the terms “clockwise” and “counterclockwise” might be  different for different observers. For instance, if the plane containing FP and rS P is , 

horizontal, an observer above the plane and an observer below the plane would disagree 
on the two terms. For a vertical plane, the directions that two observers on opposite sides 
of the plane would be mirror images of each other, and so again the observers would 
disagree. 

1.	 Suppose we choose counterclockwise as positive. Then we assign a positive sign 
for the component of the torque when the torque is in the same direction as the 

    runit normal n̂ , i.e. τ = r × F = + n̂1 , (Figure 17.13a).1 S S ,P P S ,P FP 

2.	 Suppose we choose clockwise as positive. Then we assign a negative sign for the 
component of the torque in Figure 17.13b because the torque is directed opposite 

  n̂rto the unit normal n̂ , i.e. τ = r × F
 

= −2 S S ,P P S ,P FP 2 . 

Example 17.6 Torque and Vector Product 

	 ˆ ˆConsider two vectors rP ,F = x̂i with x > 0 and F = F i + F k with F > 0 and F > 0 .x z x z 
  

Calculate the torque rP,F × F . 

Solution: We calculate the vector product noting that in a right handed choice of unit  
vectors, î × î = 0 and î × k̂ = − ̂j , 

  
rP,F × F = xî × (Fx ̂i + Fzk̂) = (xî × Fx ̂i) + (xî × Fzk̂) = −xFz ĵ . 
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Because x > 0 and Fz > 0 , the direction of the vector product is in the negative y -
direction. 

Example 17.7 Calculating Torque 

In Figure 17.14, a force of magnitude F is applied to one end of a lever of length L. What 
is the magnitude and direction of the torque about the point S? 

Figure 17.14 Example 17.7 Figure 17.15 Coordinate system 

Solution: Choose units vectors such that î × ĵ = k̂ , with î pointing to the right and ĵ 
   

pointing up (Figure 17.15). The torque about the point S is given by × F ,τS = rS , F 
  

where rSF = Lcosθ î + Lsinθ ĵ and F = −Fĵ then 


τS = (Lcosθ î + Lsinθ ĵ) × −F ĵ = −FLcosθ k̂ . 

Example 17.8 Torque and the Ankle 

A person of mass m is crouching with their weight evenly distributed on both tiptoes.  
The free-body force diagram on the skeletal part of the foot is shown in Figure 17.16. The  
normal force N acts at the contact point between the foot and the ground. In this position,   

Fthe tibia acts on the foot at the point S with a force F of an unknown magnitude F = 

and makes an unknown angle β with the vertical. This force acts on the ankle a 
horizontal distance s from the point where the foot contacts the floor. The Achilles  

Ttendon also acts on the foot and is under considerable tension with magnitude T ≡ and 
acts at an angle α with the horizontal as shown in the figure. The tendon acts on the 
ankle a horizontal distance b from the point S where the tibia acts on the foot. You may 
ignore the weight of the foot. Let g be the gravitational constant. Compute the torque 
about the point S due to (a) the tendon force on the foot; (b) the force of the tibia on the 
foot; (c) the normal force of the floor on the foot. 
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Figure 17.16 Force diagram and coordinate system for ankle
 

Solution: (a) We shall first calculate the torque due to the force of the Achilles tendon on 
 ˆ ˆthe ankle. The tendon force has the vector decomposition T = T cosα i + T sinα j . 

Figure 17.17 Torque diagram for tendon Figure 17.18 Torque diagram for normal 
force on ankle force on ankle rS ,N 

 ˆThe vector from the point S to the point of action of the force is given by r , = −biS T 
 

(Figure 17.17). Therefore the torque due to the force of the tendon T on the ankle about 
the point S is then 

   
τ S ,T = rS ,T × T = −bî × (T cosα î + T sinα ĵ) = −bT sinα k̂ . 

(b) The torque diagram for the normal force is shown in Figure 17.18. The vector from 
the point S to the point where the normal force acts on the foot is given by 
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 rS ,N = (sî − hĵ) . Because the weight is evenly distributed on the two feet, the normal force 
on one foot is equal to half the weight, or N = (1 / 2)mg . The normal force is therefore 

 
given by N = N ĵ = (1/ 2)mg ̂j . Therefore the torque of the normal force about the point 
S is 

 τ S N, = r , × N ĵ = (sî − hĵ)× N ĵ = s N k̂ = (1/ 2) s mg k̂ .S N 

 
(c) The force F that the tibia exerts on the ankle will make no contribution to the torque 
about this point S since the tibia force acts at the point S and therefore the vector 
 

= 0 
 

.rS F , 

17.4 Torque, Angular Acceleration, and Moment of Inertia 

17.4.1 Torque Equation for Fixed Axis Rotation 

For fixed-axis rotation, there is a direct relation between the component of the torque 
along the axis of rotation and angular acceleration. Consider the forces that act on the 
rotating body. Generally, the forces on different volume elements will be different, and  
so we will denote the force on the volume element of mass Δmi by Fi . Choose the z -
axis to lie along the axis of rotation. Divide the body into volume elements of mass Δmi . 
Let the point S denote a specific point along the axis of rotation (Figure 17.19). Each 
volume element undergoes a tangential acceleration as the volume element moves in a 

 rcircular orbit of radius ri = about the fixed axis.i 

Figure 17.19: Volume element undergoing fixed-axis rotation about the z -axis. 

The vector from the point S to the volume element is given by 

  r = z k̂ + r = z k̂ + r r̂ (17.3.1)S , i i i i i 
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where zi is the distance along the axis of rotation between the point S and the volume 
 

element. The torque about S due to the force Fi acting on the volume element is 
given by 

   
= × Fi . (17.3.2)τS , i rS , i 

Substituting Eq. (17.3.1) into Eq. (17.3.2) gives 


τS , i = (zi k̂ + ri r̂) × Fi . (17.3.3) 

For fixed-axis rotation, we are interested in the z -component of the torque, which must 
be the term 

  
(τS , i )z = (ri r̂ × Fi )z (17.3.4) 

 
because the vector product zi k̂ × Fi must be directed perpendicular to the plane formed 

ˆby the vectors k and Fi , hence perpendicular to the z -axis. The force acting on the 
volume element has components 

 
Fi = F r , i r̂ + Fθ , i θ̂ + F z , i k̂ . (17.3.5) 

The z -component Fz i, of the force cannot contribute a torque in the z -direction, and so 
substituting Eq. (17.3.5) into Eq. (17.3.4) yields 


( ) ˆ × (F ˆ θ)) . (17.3.6)τS , i z = (ri r r ,i r + Fθ ,i 

ˆ 
z 

Figure 17.20 Tangential force acting on a volume element. 

The radial force does not contribute to the torque about the z -axis, since 
 

r̂ × F r̂ = 0 . (17.3.7)ri r , i 
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So, we are interested in the contribution due to torque about the z -axis due to the 
tangential component of the force on the volume element (Figure 17.20). The component 
of the torque about the z -axis is given by 

 ˆ( ) r̂ × Fθ ,i θ) (17.3.8)τS , i z = (ri z = ri Fθ ,i . 

The z -component of the torque is directed upwards in Figure 17.20, where isFθ , i 

positive (the tangential force is directed counterclockwise, as in the figure). Applying 
Newton’s Second Law in the tangential direction, 

(17.3.9)Fθ , i = Δmi aθ , i . 

Using our kinematics result that the tangential acceleration is aθ , i α , where α is= r i z z 

the z -component of angular acceleration, we have that 

α . (17.3.10)Fθ , i = Δmi ri z 

From Eq. (17.3.8), the component of the torque about the z -axis is then given by 


(τS , i )z = r i Fθ , i = Δmi ri 

2α z . (17.3.11) 

The component of the torque about the z -axis is the summation of the torques on all the 
volume elements, 

i=N i=N 
(τS )z = ∑(τS , i )z = ∑r⊥ , i Fθ , i 

i=1 i=1 (17.3.12)
i=N 

= ∑Δmiri 
2α z . 

i=1 

Because each element has the same z -component of angular acceleration, α z , the 
summation becomes 

 ⎛ i= N 
2 ⎞(τS )z = ∑Δmi ri ⎠⎟ 
α z . (17.3.13)

⎝⎜ i=1 

Recalling our definition of the moment of inertia, (Chapter 16.3) the z -component of the 
torque is proportional to the z -component of angular acceleration, 

τ S ,z = IS α z , (17.3.14) 

17-17 



  

         
    

 
      
 

                 
 

 
    

  

 
            

 

 

    

  

 
         

    
 

 

 

    

  

 
          

       
 
 

      
 

   
 
 

      
 

    
               

         
 

 
 

      
 

 


 
 
  
 
 
 

  


 
 


 
 


 


 
   



 
 

 
 
 


 
 
 


 

	 
  

 
 

   
 
  
 

	 
 

 

 

 
 
 

 

 


 
 
 

 

 
 

 

 

 

 
 
 

 
 


 

and the moment of inertia, IS , is the constant of proportionality. The torque about the 
point S is the sum of the external torques and the internal torques 


τ
SS =
 

τ
SS 

ext + 

τ
SS 

int .
 (17.3.15)
 

The external torque about the point S is the sum of the torques due to the net external 
force acting on each element 

i= N i= N    
ext ext extτSS = ∑τS ,i = ∑rS ,i × Fi . (17.3.16) 

i=1 i=1 

The internal torque arise from the torques due to the internal forces acting between pairs 

r 

of elements 

τ τ ∑ τ ∑ S ,i 

 j= N j = NN i= N i= N 
F
∑
 ∑
 ∑
int int int (17.3.17)
×
=
 =
 =
 .
SS SS , j S , j , i j , i 

 
Fr 

i=1 i=1	 j=1 i=1 j =1 
j≠ i j ≠ i 

  

r 

We know by Newton’s Third Law that the internal forces cancel in pairs, Fj ,i = −Fi, j , and 
hence the sum of the internal forces is zero 

 

i= N j = N  
0 = ∑∑ Fj , i . 	 (17.3.18) 

 

i=1	 j=1 
j≠ i 

Does the same statement hold about pairs of internal torques? Consider the sum of 
internal torques arising from the interaction between the ith and jth particles 

τ τ S ,i S , j i, j . 
 
F
int int (17.3.19)
+
 ×
 +
 ×
=
 S , j , i S ,i, j j , i 

By the Newton’s Third Law this sum becomes 

r 
   τ τ S ,i 



int int F
= (
 −
 ) ×
 j , i . (17.3.20)
+
 r ,S jS , j , i S , i, j 

r r 
 

 In the Figure 17.21, the vector r − r points from the jth element to the ith element. IfS ,i S , j 

the internal forces between a pair of particles are directed along the line joining the two 
particles then the torque due to the internal forces cancel in pairs. 

τ τ S ,i S , j 

 
F
 


0
int int = (
 −
 ) ×
 (17.3.21)
+
 =
 .
S , j , i S , i, j j , i 
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Figure 17.21 The internal force is directed along the line connecting the ith and jth
 

particles
 

This is a stronger version of Newton’s Third Law than we have so far since we have 
added the additional requirement regarding the direction of all the internal forces between 
pairs of particles. With this assumption, the torque is just due to the external forces 

  ext . (17.3.22)τSS = τSS 

Thus Eq. (17.3.14) becomes 
ext )(τ S α , (17.3.23)z = IS z 

This is very similar to Newton’s Second Law: the total force is proportional to the 
acceleration,  F = ma . (17.3.24) 

where the mass, m , is the constant of proportionality. 

17.4.2 Torque Acts at the Center of Gravity 

Suppose a rigid body in static equilibrium consists of N particles labeled by the index 
i = 1, 2, 3, ..., N . Choose a coordinate system with a choice of origin O such that mass mi has 

  position ri . Each point particle experiences a gravitational force Fgravity,i = mi g . The total 
torque about the origin is then zero (static equilibrium condition), 

r 

Fr


τ τ i gravity,i i 

i=1 i=1 i=1 

If the gravitational acceleration g is assumed constant, we can rearrange the summation 
 in Eq. (17.3.25) by pulling the constant vector g out of the summation ( g appears in 

each term in the summation), 
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 ∑
 ∑
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i=N 

= ∑
 × mi 
g =
 

⎛ i=N ⎞
 g =
 

0
.
 (17.3.26)
∑
 ⎠⎟ 

×
mi⎝⎜

τO i i 

We now use our definition of the center of the center of mass, Eq. (10.5.3), to rewrite Eq. 
(17.3.26) as 

r r 

τ ri 

 



i=1 i=1 

i=N 

∑


R
 


R
 


0



 g g gMT × MT (17.3.27)
× mi ×
=
 =
 =
 =
 .
O cm cm 
i=1 

Thus the torque due to the gravitational force acting on each point-like particle is 
equivalent to the torque due to the gravitational force acting on a point-like particle of 
mass MT located at a point in the body called the center of gravity, which is equal to the 

center of mass of the body in the typical case in which the gravitational acceleration g is 
constant throughout the body. 

Example 17.9 Turntable 

1The turntable in Example 16.1, of mass 1.2 kg and radius 1.3 10 cm , has a moment of × 

inertia IS = × −2 kg m 2 about an1.01 10 ⋅ axis through the center of the turntable and 
perpendicular to the turntable. The turntable is spinning at an initial constant frequency 

= 33cycles ⋅ min−1 . The motor is turned off and the turntable slows to a stop in 8.0 s fi 

due to frictional torque. Assume that the angular acceleration is constant. What is the 
magnitude of the frictional torque acting on the turntable? 

Solution: We have already calculated the angular acceleration of the turntable in 
Example 16.1, where we found that 

Δω z 
ω f −ω i −3.5 rad ⋅s−1 

−2α z = = = = −4.3×10−1 rad ⋅s (17.3.28)
Δt 8.0 s t f − ti 

and so the magnitude of the frictional torque is 

τ fric −2 )α = (1.01×10−2 kg ⋅ m2 )(4.3×10−1 rad ⋅s= ISz z (17.3.29) 
= 4.3×10−3 N ⋅ m. 

Example 17.10 Pulley and blocks 

A pulley of mass mp , radius R , and moment of inertia about its center of mass Icm , is 
attached to the edge of a table. An inextensible string of negligible mass is wrapped 
around the pulley and attached on one end to block 1 that hangs over the edge of the table 
(Figure 17.22). The other end of the string is attached to block 2 that slides along a table. 
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The coefficient of sliding friction between the table and the block 2 is µk . Block 1 has 
mass m1 and block 2 has mass m2 , with m1 > µkm2 . At time t = 0 , the blocks are 
released from rest and the string does not slip around the pulley. At time t = t1 , block 1 
hits the ground. Let g denote the gravitational constant. (a) Find the magnitude of the 
acceleration of each block. (b) How far did the block 1 fall before hitting the ground? 

Figure 17.22 Example 17.10 Figure 17.23 Torque diagram for pulley 

Solution: The torque diagram for the pulley is shown in the figure below where we 
choose k̂ pointing into the page. Note that the tensions in the string on either side of the 
pulley are not equal. The reason is that the pulley is massive. To understand why, 
remember that the difference in the magnitudes of the torques due to the tension on either 
side of the pulley is equal to the moment of inertia times the magnitude of the angular 



acceleration, which is non -zero for a massive pulley. So the tensions cannot be equal. 
From our torque diagram, the torque about the point O at the center of the pulley is given 

τ 
by


 
 
 
 
)k̂T1 T = R(T − T2 1 2 (17.3.30)
×
 +
 ×
=
 rO ,1 rO ,2 .
O 

Therefore the torque equation (17.3.23) becomes 

− T2 ) = I α . (17.3.31)R(T1 z z 

The free body force diagrams on the two blocks are shown in Figure 17.23. 

(a) (b)
 

Figure 17.23 Free-body force diagrams on (a) block 2, (b) block 1
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Newton’s Second Law on block 1 yields 

m1g − T1 = m1ay1 . (17.3.32) 

Newton’s Second Law on block 2 in the ĵ direction yields 

N − m2 g = 0 . (17.3.33) 

Newton’s Second Law on block 2 in the î direction yields 

= m2ax2 . (17.3.34)T2 − fk 

The kinetic friction force is given by 

N g (17.3.35)fk = µk = µk m2 

Therefore Eq. (17.3.34) becomes 
− µk g = m2ax 2 . (17.3.36)T2 m2 

Block 1 and block 2 are constrained to have the same acceleration so 

a ≡ a x1 = a x2 . (17.3.37) 

We can solve Eqs. (17.3.32) and (17.3.36) for the two tensions yielding 

T = m g − m a , (17.3.38)1 1 1 

g + m2a . (17.3.39)T2 = µk m2 

At point on the rim of the pulley has a tangential acceleration that is equal to the 
acceleration of the blocks so 

a = aθ 
= Rα z . (17.3.40) 

The torque equation (Eq. (17.3.31)) then becomes 

I
T1 − T2 = 

R
z 
2 a . (17.3.41) 

Substituting Eqs. (17.3.38) and (17.3.39) into Eq. (17.3.41) yields 

I 
m1g − m1a − (µk m2 g + m2a) = 

R
z 
2 a , (17.3.42) 

which we can now solve for the accelerations of the blocks 
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m1g − µk gm2a = . (17.3.43)
+ I / R2m1 + m2 z 

Block 1 hits the ground at time t1 , therefore it traveled a distance 

⎛
 ⎞
m1g − µk1
 m g2 t1 
2 .
 (17.3.44)
y = 1 ⎜

⎝

⎟
⎠
/ R22
 + Im1 + m2 z 

Example 17.11 Experimental Method for Determining Moment of Inertia 

A steel washer is mounted on a cylindrical rotor of radius r = 12.7 mm . A massless 
string, with an object of mass m = 0.055 kg attached to the other end, is wrapped around 
the side of the rotor and passes over a massless pulley (Figure 17.24). Assume that there 
is a constant frictional torque about the axis of the rotor. The object is released and falls. 
As the object falls, the rotor undergoes an angular acceleration of magnitude α1 . After 
the string detaches from the rotor, the rotor coasts to a stop with an angular acceleration 

−of magnitude α2 . Let g = 9.8 m s⋅ 2 denote the gravitational constant. Based on the data 
in the Figure 17.25, what is the moment of inertia IR of the rotor assembly (including the 
washer) about the rotation axis? 

Figure 17.24 Steel washer, rotor, pulley, Figure 17.26 Graph of angular speed vs.
and hanging object time for falling object 

Solution: We begin by drawing a force-torque diagram (Figure 17.26a) for the rotor and 
a free-body diagram for hanger (Figure 17.26b). (The choice of positive directions are 


indicated on the figures.) The frictional torque on the rotor is then given by τ f = −τ f k̂ 

where we use τ f as the magnitude of the frictional torque. The torque about the center of 


the rotor due to the tension in the string is given by τT = rT k̂ where r is the radius of 
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the rotor. The angular acceleration of the rotor is given by α1 = α1 k̂ and we expect that 

> 0 because the rotor is speeding up.α1 

(a) (b) 
Figure 17.26 (a) Force-torque diagram on rotor and (b) free-body force diagram on 
hanging object 

While the hanger is falling, the rotor-washer combination has a net torque due to the 
tension in the string and the frictional torque, and using the rotational equation of motion, 

Tr −τ = I α . (17.4.1)f R 1 

We apply Newton’s Second Law to the hanger and find that 

mg −T = ma1 = mα1r , (17.4.2) 

where a1 has been used to express the linear acceleration of the falling hanger to = rα1 

the angular acceleration of the rotor; that is, the string does not stretch. Before 
proceeding, it might be illustrative to multiply Eq. (17.4.2) by r and add to Eq. (17.4.1) 
to obtain 

mgr − τ f = (IR + mr 2 )α1 . (17.4.3) 

Eq. (17.4.3) contains the unknown frictional torque, and this torque is determined by 
considering the slowing of the rotor/washer after the string has detached. 

Figure 17.27 Torque diagram on rotor when string has detached 

17-24 



  

 
   

 
     
 

             

  

     
 

   

 
  

  

 
         

         
        

 

 

  

 
 

 
    

 
   
 

     
 

          
           

      
          
 

 
  

  

 
 

 

 
  

  

 

  

   

  

  

 

 
 

 

 

  

      

 

 
   

     

       

 

The torque on the system is just this frictional torque (Figure 17.27), and so 

= IR (17.4.4)−τ f α2 

Note that in Eq. (17.4.4), τ f > 0 and α2 < 0 . Subtracting Eq. (17.4.4) from Eq. (17.4.3) 

eliminates τ f , 

mgr = mr −α2 ) . (17.4.5)2α1 + IR (α1 

We can now solve for IR yielding 
mr(g − rα1)

= . (17.4.6)IR α1 −α 2 

For a numerical result, we use the data collected during a trial run resulting in the graph 
of angular speed vs. time for the falling object shown in Figure 17.25. The values for α1 

and α2 can be determined by calculating the slope of the two straight lines in Figure 
17.28 yielding 

= (96rad ⋅s−1) / (1.15s) = 83 rad ⋅s−2 ,α1 

= −(89rad ⋅s−1) / (2.85s) = − 31rad ⋅s−2.α 2 

Inserting these values into Eq. (17.4.6) yields 

IR = 5.3 10 × −5 kg ⋅ m2 . (17.4.7) 

17.5 Torque and Rotational Work 

When a constant torque τ s,z is applied to an object, and the object rotates through an 
angle Δθ about a fixed z -axis through the center of mass, then the torque does an 
amount of work ΔW = τ S ,z Δθ on the object. By extension of the linear work-energy 
theorem, the amount of work done is equal to the change in the rotational kinetic energy 
of the object, 

1 ω 2 1 2W = I − I = K − K (17.4.8)rot 2 cm f 2 cm ω i rot, f rot,i . 

The rate of doing this work is the rotational power exerted by the torque, 

dW ΔW dθrot rot Prot ≡ = lim = τ S ,z ω z . (17.4.9)= τ S ,zdt Δt→0 Δt dt 
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17.5.1 Rotational Work 

Consider a rigid body rotating about an axis. Each small element of mass Δmi in the rigid 
body is moving in a circle of radius (rS , i )⊥ about the axis of rotation passing through the 
point S . Each mass element undergoes a small angular displacement Δθ under the  
action of a tangential force, Fθ , i = Fθ , i θ̂ , where θ̂ is the unit vector pointing in the 
tangential direction (Figure 17.20). The element will then have an associated 

displacement vector for this motion, Δr = r Δθ θ̂ and the work done by the tangential S , i i 

force is  
ΔWrot,i = Fθ ,i ⋅ Δr  S ,i = (Fθ ,i θ̂) ⋅(riΔθ θ̂) = ri Fθ ,iΔθ . (17.4.10) 

Recall the result of Eq. (17.3.8) that the component of the torque (in the direction along  
the axis of rotation) about S due to the tangential force, Fθ , i , acting on the mass element 

Δmi is 
(τ S ,i )z = ri Fθ ,i , (17.4.11) 

and so Eq. (17.4.10) becomes 
ΔWrot, i = (τ S ,i )z Δθ . (17.4.12) 

Summing over all the elements yields 

Wrot = ∑ΔWrot, i = ∑((τ S ,i )z )Δθ = τ S ,z Δθ , (17.4.13) 
i i 

the rotational work is the product of the torque and the angular displacement. In the limit 
of small angles, Δθ → dθ , ΔW → dW and the differential rotational work isrot rot 

dWrot = τ S ,zdθ . (17.4.14) 

We can integrate this amount of rotational work as the angle coordinate of the rigid body 
changes from some initial value θ = θ i to some final value θ = θ f , 

Wrot = ∫ dWrot 

θ f τ S ,z dθ . (17.4.15)= ∫θi 

17.5.2 Rotational Work-Kinetic Energy Theorem 

We will now show that the rotational work is equal to the change in rotational kinetic 
energy. We begin by substituting our result from Eq. (17.3.14) into Eq. (17.4.14) for the 
infinitesimal rotational work, 

dW α dθ . (17.4.16)rot = IS z 
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Recall that the rate of change of angular velocity is equal to the angular acceleration, 
α ≡ dω dt and that the angular velocity is ω z ≡ dθ dt . Note that in the limit of small z z 

displacements, 
dω z dθdθ = dω = dω ω . (17.4.17)z z zdt dt 

Therefore the infinitesimal rotational work is 

dω z dθdW α dω dω ω . (17.4.18)rot = IS z dθ = IS dθ = IS z = IS z zdt dt 

We can integrate this amount of rotational work as the angular velocity of the rigid body 
changes from some initial value ω = ω to some final value ω = ω z z ,i z z , f , 

ω z , f 1 2 1 2= ∫ dW = ∫ ω ω ω (17.4.19)Wrot rot IS dω z z = IS z , f − IS z ,i . ω z ,i 2 2 

When a rigid body is rotating about a fixed axis passing through a point S in the body, 
there is both rotation and translation about the center of mass unless S is the center of 
mass. If we choose the point S in the above equation for the rotational work to be the 
center of mass, then 

1 2 1 2W = I ω − I ω = K − K ≡ ΔK . (17.4.20)rot cm cm, f cm cm,i rot, f rot,i rot 2 2 

Note that because the z -component of the angular velocity of the center of mass appears 
as a square, we can just use its magnitude in Eq. (17.4.20). 

17.5.3 Rotational Power 

The rotational power is defined as the rate of doing rotational work, 

dWProt ≡ rot . (17.4.21)
dt 

We can use our result for the infinitesimal work to find that the rotational power is the 
product of the applied torque with the angular velocity of the rigid body, 

dWrot dθProt ≡ = τ S ,z = τ S ,z ω . (17.4.22)
dt dt z 
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Example 17.12 Work Done by Frictional Torque 

A steel washer is mounted on the shaft of a small motor. The moment of inertia of the 
motor and washer is I0 . The washer is set into motion. When it reaches an initial 
angular velocity ω0 , at t = 0 , the power to the motor is shut off, and the washer slows 
down during a time interval Δt1 = t until it reaches an angular velocity of ω at time t . a a a 

At that instant, a second steel washer with a moment of inertia Iw is dropped on top of 
the first washer. Assume that the second washer is only in contact with the first washer.  
The collision takes place over a time Δtint − t after which the two washers and rotor = tb a 

rotate with angular speed ωb . Assume the frictional torque on the axle (magnitude τ f ) is 
independent of speed, and remains the same when the second washer is dropped. (a) 
What angle does the rotor rotate through during the collision? (b) What is the work done 
by the friction torque from the bearings during the collision? (c) Write down an equation 
for conservation of energy. Can you solve this equation for ωb ? (d) What is the average 
rate that work is being done by the friction torque during the collision? 

Solution: We begin by solving for the frictional torque during the first stage of motion 
when the rotor is slowing down. We choose a coordinate system shown in Figure 17.29. 

Figure 17.29 Coordinate system for Example 17.12 

The component of average angular acceleration is given by 

ωa −ω0α1 = < 0 .
ta 

We can use the rotational equation of motion, and find that the frictional torque satisfies 

⎛ ωa −ω0 ⎞−τ f = I0 ⎝⎜ Δt1 ⎠⎟ 
. 
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During the collision, the component of the average angular acceleration of the rotor is 
given by 

ωb −ωaα2 = < 0 .
(Δtint ) 

The angle the rotor rotates through during the collision is (analogous to linear motion 
with constant acceleration) 

1 2 1 ⎛ ωb −ωa ⎞ 2 1
Δθ2 = ωa Δtint + 

2 
α2 Δtint = ωa Δtint + 

⎠⎟ 
Δtint = (ωb + ωa )Δtint > 0 .

2 ⎝⎜ Δtint 2 

The non-conservative work done by the bearing friction during the collision is 

Wf ,b = −τ f Δθrotor = −τ f 
1 (ωa + ωb )Δtint .2 

Using our result for the frictional torque, the work done by the bearing friction during the 
collision is 

1 ⎛ ωa −ω0 ⎞Wf ,b = I0 + ωb )Δtint < 0 .
2 ⎝⎜ Δt1 ⎠⎟ 

(ωa 

The negative work is consistent with the fact that the kinetic energy of the rotor is 
decreasing as the rotor is slowing down. Using the work energy theorem during the 
collision the kinetic energy of the rotor has deceased by 

Wf ,b = 
1 (I0 + Iw )ωb 

2 − 
1 I0ωa 

2 .
2 2 

Using our result for the work, we have that 

1 ⎛ ωa −ω0 ⎞ 1 1 2I0 ⎠⎟ 
(ωa + ωb )Δtint = (I0 + Iw )ωb 

2 − I0ωa .2 ⎝⎜ Δt1 2 2 

This is a quadratic equation for the angular speed ωb of the rotor and washer 
immediately after the collision that we can in principle solve. However remember that we 
assumed that the frictional torque is independent of the speed of the rotor. Hence the best 
practice would be to measure ω0 , ωa , ωb , Δt1 , Δtint , I0 , and Iw and then determine 
how closely our model agrees with conservation of energy. The rate of work done by the 
frictional torque is given by 

Wf ,b 1 ⎛ ωa −ω0 ⎞Pf = = I0 + ωb ) < 0 . 
Δtint 2 ⎝⎜ Δt1 ⎠⎟ 

(ωa 
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Chapter 18 Static Equilibrium
 

The proof of the correctness of a new rule can be attained by the repeated 
application of it, the frequent comparison with experience, the putting of it to the 
test under the most diverse circumstances. This process, would in the natural 
course of events, be carried out in time. The discoverer, however hastens to reach 
his goal more quickly. He compares the results that flow from his rule with all the 
experiences with which he is familiar, with all older rules, repeatedly tested in 
times gone by, and watches to see if he does not light on contradictions. In this 
procedure, the greatest credit is, as it should be, conceded to the oldest and most 
familiar experiences, the most thoroughly tested rules. Our instinctive 
experiences, those generalizations that are made involuntarily, by the irresistible 
force of the innumerable facts that press upon us, enjoy a peculiar authority; and 
this is perfectly warranted by the consideration that it is precisely the elimination 
of subjective caprice and of individual error that is the object aimed at.1 

Ernst Mach 

18.1 Introduction Static Equilibrium 

When the vector sum of the forces acting on a point-like object is zero then the object 
will continue in its state of rest, or of uniform motion in a straight line. If the object is in 
uniform motion we can always change reference frames so that the object will be at rest. 
We showed that for a collection of point-like objects the sum of the external forces may 
be regarded as acting at the center of mass. So if that sum is zero the center of mass will 
continue in its state of rest, or of uniform motion in a straight line. We introduced the 
idea of a rigid body, and again showed that in addition to the fact that the sum of the 
external forces may be regarded as acting at the center of mass, forces like the 
gravitational force that acts at every point in the body may be treated as acting at the 
center of mass. However for an extended rigid body it matters where the force is applied 
because even though the sum of the forces on the body may be zero, a non-zero sum of 
torques on the body may still produce angular acceleration. In particular for fixed axis 
rotation, the torque along the axis of rotation on the object is proportional to the angular 
acceleration. It is possible that sum of the torques may be zero on a body that is not 
constrained to rotate about a fixed axis and the body may still undergo rotation. We will 
restrict ourselves to the special case in which in an inertial reference frame both the 
center of mass of the body is at rest and the body does not undergo any rotation, a 
condition that is called static equilibrium of an extended object. 

The two sufficient and necessary conditions for a rigid body to be in static 
equilibrium are: 

1 Ernst Mach, The Science of Mechanics: A Critical and Historical Account of Its 
Development, translated by Thomas J. McCormack, Sixth Edition with Revisions through 
the Ninth German Edition, Open Court Publishing, Illinois. 
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(1) The sum of the forces acting on the rigid body is zero, 
 
F1 2 

 
F 

 
F
=
 +
 + ⋅⋅⋅=
 


0
.
 (18.1.1)
 

(2) The vector sum of the torques about any point S in a rigid body is zero, 

    
+ + ⋅⋅⋅= 0 . (18.1.2)τS = τS ,1 τS ,2 

18.2 Lever Law 

Let’s consider a uniform rigid beam of mass mb balanced on a pivot near the center of 
mass of the beam. We place two objects 1 and 2 of masses m1 and m2 on the beam, at 
distances d1 and d2 respectively from the pivot, so that the beam is static (that is, the 
beam is not rotating. See Figure 18.1.) We shall neglect the thickness of the beam and 
take the pivot point to be the center of mass. 

Figure 18.1 Pivoted Lever 

Let’s consider the forces acting on the beam. The earth attracts the beam 
downward. This gravitational force acts on every atom in the beam, but we can 

summarize its action by stating that the gravitational force mb g is concentrated at a point 
in the beam called the center of gravity of the beam, which is identical to the center of  
mass of the uniform beam. There is also a contact force Fpivot between the pivot and the 
beam, acting upwards on the beam at the pivot point. The objects 1 and 2 exert normal     
forces downwards on the beam, N1,b ≡ N1 , and N2,b ≡ N2 , with magnitudes N1 , and N2 , 
respectively. Note that the normal forces are not the gravitational forces acting on the 
objects, but contact forces between the beam and the objects. (In this case, they are 
mathematically the same, due to the horizontal configuration of the beam and the fact that 
all objects are in static equilibrium.) The distances d1 and d2 are called the moment arms 

  
with respect to the pivot point for the forces N1 and N2 , respectively. The force diagram 

 
on the beam is shown in Figure 18.2. Note that the pivot force Fpivot and the force of 

gravity mb g each has a zero moment arm about the pivot point. 
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Figure 18.2 Free-body diagram on beam 

Because we assume the beam is not moving, the sum of the forces in the vertical 
direction acting on the beam is therefore zero, 

Fpivot − mb g − N1 − N2 = 0 . (18.2.1) 

The force diagrams on the objects are shown in Figure 18.3. Note the magnitude of the 
normal forces on the objects are also N1 and N2 since these are each part of an action-

    
reaction pair, N1, b = −Nb,1 , and N2, b = −Nb, 2 . 

(a) (b) 

Figure 18.3 Free-body force diagrams for each body. 

The condition that the forces sum to zero is not sufficient to completely predict the 
motion of the beam. All we can deduce is that the center of mass of the system is at rest 
(or moving with a uniform velocity). In order for the beam not to rotate the sum of the 
torques about any point must be zero. In particular the sum of the torques about the pivot 
point must be zero. Because the moment arm of the gravitational force and the pivot force 
is zero, only the two normal forces produce a torque on the beam. If we choose out of the 
page as positive direction for the torque (or equivalently counterclockwise rotations are 
positive) then the condition that the sum of the torques about the pivot point is zero 
becomes 

d N − d N = 0 . (18.2.2)2 2 1 1 

The magnitudes of the two torques about the pivot point are equal, a condition known as 
the lever law. 
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Lever Law: A beam of length l is balanced on a pivot point that is placed 
directly beneath the center of mass of the beam. The beam will not 
undergo rotation if the product of the normal force with the moment arm 
to the pivot is the same for each body, 

d N 1 1 = d N 2 2 . (18.2.3) 

Example 18.1 Lever Law 

Suppose a uniform beam of length l = 1.0 m and mass mB = 2.0 kg is balanced on a pivot 
point, placed directly beneath the center of the beam. We place body 1 with mass 
m1 = 0.3 kg a distance d1 = 0.4 m to the right of the pivot point, and a second body 2 
with m2 = 0.6 kg a distance d2 to the left of the pivot point, such that the beam neither 

 
translates nor rotates. (a) What is the force Fpivot that the pivot exerts on the beam? (b) 
What is the distance d2 that maintains static equilibrium? 

Solution: a) By Newton’s Third Law, the beam exerts equal and opposite normal forces 
of magnitude N1 on body 1, and N2 on body 2. The condition for force equilibrium 
applied separately to the two bodies yields 

− m g = 0 , (18.2.4)N1 1 

N2 2 (18.2.5)− m g = 0 . 

Thus the total force acting on the beam is zero, 

Fpivot − (mb + m1 + m2 )g = 0 , (18.2.6) 
and the pivot force is 

)gFpivot = (mb + m1 + m2 (18.2.7) 
= (2.0 kg+ 0.3 kg+ 0.6 kg)(9.8 m⋅s−2 ) = 2.8 ×101 N. 

b) We can compute the distance d2 from the Lever Law, 

d1 N1 d1 m1g d1 m1 (0.4 m)(0.3 kg) d2 = = = = = 0.2 m . (18.2.8)
g 0.6 kg N2 m2 m2 
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18.3 Generalized Lever Law 
  

We can extend the Lever Law to the case in which two external forces F1 and F2 are 
acting on the pivoted beam at angles θ1 and θ2 with respect to the horizontal as shown in 
the Figure 18.4. Throughout this discussion the angles will be limited to the range 
[0 ≤θ1,θ2 ≤π ] . We shall again neglect the thickness of the beam and take the pivot point 
to be the center of mass. 

Figure 18.4 Forces acting at angles to a pivoted beam. 

  
The forces F1 and F2 can be decomposed into separate vectors components respectively 
      

( , ) and ( , ) , where and are the horizontal vector projections of F1, F1, ⊥ 
F2, F2, ⊥ 

F1, F2, 
 

the two forces with respect to the direction formed by the length of the beam, and F1,⊥ 
 

and F2,⊥ are the perpendicular vector projections respectively to the beam (Figure 18.5), 
with    

F = F + F (18.3.1)1 1, 1,⊥ ,    
F = F + F (18.3.2)2 2, 2,⊥ . 

Figure 18.5 Vector decomposition of forces. 

The horizontal components of the forces are 

F1, = F1 cosθ1 , 
F2, = −F2 cosθ2 , 

(18.3.3) 
(18.3.4) 
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where our choice of positive horizontal direction is to the right. Neither horizontal force 
component contributes to possible rotational motion of the beam. The sum of these 
horizontal forces must be zero, 

F cosθ − F cosθ = 0 . (18.3.5)1 1 2 2 

The perpendicular component forces are 

F1,⊥ = F1 sinθ1 , (18.3.6) 
F2,⊥ = F2 sinθ2 , (18.3.7) 

where the positive vertical direction is upwards. The perpendicular components of the 
forces must also sum to zero, 

Fpivot − mbg + F1 sinθ1 + F2 sinθ2 = 0 . (18.3.8) 

Only the vertical components F1,⊥ and F2,⊥ of the external forces are involved in the 
lever law (but the horizontal components must balance, as in Equation (18.3.5), for 
equilibrium). Then the Lever Law can be extended as follows. 

Generalized Lever Law A beam of length l is balanced on a pivot point 
that is placed directly beneath the center of mass of the beam. Suppose a  
force F1 acts on the beam a distance d1 to the right of the pivot point. A 

 
second force F2 acts on the beam a distance d2 to the left of the pivot 
point. The beam will remain in static equilibrium if the following two 
conditions are satisfied: 

1) The total force on the beam is zero, 

2) The product of the magnitude of the perpendicular component of 
the force with the distance to the pivot is the same for each force, 

F F . (18.3.9)= d2d1 1,⊥ 2,⊥ 

The Generalized Lever Law can be stated in an equivalent form, 

d F sinθ = d F sinθ . (18.3.10)1 1 1 2 2 2 

We shall now show that the generalized lever law can be reinterpreted as the statement 
that the vector sum of the torques about the pivot point S is zero when there are just two   
forces F1 and F2 acting on our beam as shown in Figure 18.6. 
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Figure 18.6 Force and torque diagram. 

Let’s choose the positive z -direction to point out of the plane of the page then torque 
pointing out of the page will have a positive z -component of torque (counterclockwise 
rotations are positive). From our definition of torque about the pivot point, the magnitude  
of torque due to force F1 is given by 

τ = d F sinθ . (18.3.11)S ,1 1 1 1 

From the right hand rule this is out of the page (in the counterclockwise direction) so the 
component of the torque is positive, hence, 

) sinθ1 . (18.3.12)(τ S ,1 z = d1F1 

 
The torque due to F2 about the pivot point is into the page (the clockwise direction) and 
the component of the torque is negative and given by 

) sinθ2 . (18.3.13)(τ S , 2 z = −d2 F2 

The z -component of the torque is the sum of the z -components of the individual torques 
and is zero, 

) ) ) = d1 sinθ1 sinθ2 = 0 , (18.3.14)(τ S , total z = (τ S ,1 z + (τ S , 2 z F1 − d2 F2 

which is equivalent to the Generalized Lever Law, Equation (18.3.10), 

d F1 1 sinθ1 = d F 2 2 sinθ2 . 

18.4 Worked Examples 

Example 18.2 Suspended Rod 

A uniform rod of length l = 2.0 m and mass m = 4.0 kg is hinged to a wall at one end 
and suspended from the wall by a cable that is attached to the other end of the rod at an 
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angle of β = 30o to the rod (see Figure 18.7). Assume the cable has zero mass. There is a 
contact force at the pivot on the rod. The magnitude and direction of this force is 
unknown. One of the most difficult parts of these types of problems is to introduce an 
angle for the pivot force and then solve for that angle if possible. In this problem you will 
solve for the magnitude of the tension in the cable and the direction and magnitude of the 
pivot force. (a) What is the tension in the cable? (b) What angle does the pivot force 
make with the beam? (c) What is the magnitude of the pivot force? 

Figure 18.7 Example 18.2 Figure 18.8 Force and torque diagram. 

Solution: a) The force diagram is shown in Figure 18.8. Take the positive î -direction to 
be to the right in the figure above, and take the positive ĵ -direction to be vertically 

 ˆupward. The forces on the rod are: the gravitational force m g = −m g j , acting at the 
 

center of the rod; the force that the cable exerts on the rod, T = T (−cosβ ̂i + sin β ̂j) , 
 

acting at the right end of the rod; and the pivot force F = F(cosα ̂i + sinα ̂j) , acting at pivot 

the left end of the rod. If 0 < α < π / 2 , the pivot force is directed up and to the right in 
the figure. If 0 > α > −π / 2 , the pivot force is directed down and to the right. We have 
no reason, at this point, to expect that α will be in either of the quadrants, but it must be 
in one or the other. 

For static equilibrium, the sum of the forces must be zero, and hence the sums of the 
components of the forces must be zero, 

0 = −T cosβ + F cosα 
(18.4.1)

0 = −mg + T sinβ + F sinα . 

With respect to the pivot point, and taking positive torques to be counterclockwise, the 
gravitational force exerts a negative torque of magnitude m g(l / 2) and the cable exerts a 
positive torque of magnitude T l sin β . The pivot force exerts no torque about the pivot. 
Setting the sum of the torques equal to zero then gives 

0 = T l sin β − mg(l / 2) 
mg (18.4.2)

T = .
2sinβ 
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This result has many features we would expect; proportional to the weight of the rod and 
inversely proportional to the sine of the angle made by the cable with respect to the 
horizontal. Inserting numerical values gives 

−2 )mg (4.0kg)(9.8m ⋅sT = = = 39.2N. (18.4.3)
2sinβ 2sin30 

There are many ways to find the angle α . Substituting Eq. (18.4.2) for the tension into 
both force equations in Eq. (18.4.1) yields 

F cosα = T cosβ = (mg / 2)cot β 
(18.4.4)

F sinα = mg − T sin β = mg / 2. 

In Eq. (18.4.4), dividing one equation by the other, we see that tanα = tan β , α = β . 

The horizontal forces on the rod must cancel. The tension force and the pivot force act 
with the same angle (but in opposite horizontal directions) and hence must have the same 
magnitude, 

F = T = 39.2N . (18.4.5) 

As an alternative, if we had not done the previous parts, we could find torques about the 
point where the cable is attached to the wall. The cable exerts no torque about this point 
and the y -component of the pivot force exerts no torque as well. The moment arm of the 
x -component of the pivot force is l tan β and the moment arm of the weight is l / 2 . 
Equating the magnitudes of these two torques gives 

lF cosα l tan β = mg ,
2 

equivalent to the first equation in Eq. (18.4.4). Similarly, evaluating torques about the 
right end of the rod, the cable exerts no torques and the x -component of the pivot force 
exerts no torque. The moment arm of the y -component of the pivot force is l and the 
moment arm of the weight is l / 2 . Equating the magnitudes of these two torques gives 

lF sinα l = mg ,
2 

reproducing the second equation in Eq. (18.4.4). The point of this alternative solution is 
to show that choosing a different origin (or even more than one origin) in order to remove 
an unknown force from the torques equations might give a desired result more directly. 
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Example 18.3 Person Standing on a Hill 

A person is standing on a hill that is sloped at an angle of α with respect to the 
horizontal (Figure 18.9). The person’s legs are separated by a distance d , with one foot 
uphill and one downhill. The center of mass of the person is at a distance h above the 
ground, perpendicular to the hillside, midway between the person’s feet. Assume that the 
coefficient of static friction between the person’s feet and the hill is sufficiently large that 
the person will not slip. (a) What is the magnitude of the normal force on each foot? (b) 
How far must the feet be apart so that the normal force on the upper foot is just zero? 
This is the moment when the person starts to rotate and fall over. 

Figure 18.10 Free-body force diagramFigure 18.9 Person standing on hill
 
for person standing on hill
 

Solution: The force diagram on the person is shown in Figure 18.10. Note that the 
contact forces have been decomposed into components perpendicular and parallel to the 
hillside. A choice of unit vectors and positive direction for torque is also shown. 
Applying Newton’s Second Law to the two components of the net force, 

ĵ : N1 + N2 − mg cosα = 0 (18.4.6) 

î : f1 + f2 − mg sinα = 0 . (18.4.7) 
These two equations imply that 

N1 + N2 = mg cosα (18.4.8) 
f1 + f2 = mg sinα . (18.4.9) 

Evaluating torques about the center of mass, 

dh( f1 + f2 ) + (N2 − N1) = 0 . (18.4.10)
2 
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Equation (18.4.10) can be rewritten as 

2h( f1 + f2 )
= . (18.4.11)N1 − N2 d 

Substitution of Equation (18.4.9) into Equation (18.4.11) yields 

2 ( h mg sinα )N1 − N2 = . (18.4.12)
d 

We can solve for N1 by adding Equations (18.4.8) and (18.4.12), and then dividing by 2, 
yielding 

1 h mg sinα ) h ⎞( ⎛ 1N1 = mg cosα + = mg ⎜ cosα + sinα ⎟ . (18.4.13)
2 d ⎝ 2 d ⎠ 

Similarly, we can solve for N2 by subtracting Equation (18.4.12) from Equation (18.4.8) 
and dividing by 2, yielding 

⎛ 1 h ⎞N2 = mg ⎜ cosα − sinα ⎟ . (18.4.14)
⎝ 2 d ⎠ 

The normal force N2 as given in Equation (18.4.14) vanishes when 

1 h 
cosα = sinα , (18.4.15)
2 d 

which can be solved for the minimum distance between the legs, 

d = 2 (tanh α ) . (18.4.16) 

It should be noted that no specific model for the frictional force was used, that is, no 
coefficient of static friction entered the problem. The two frictional forces f1 and f2 
were not determined separately; only their sum entered the above calculations. 

Example 18.4 The Knee 

A man of mass m = 70kg is about to start a race. Assume the runner’s weight is equally 
distributed on both legs. The patellar ligament in the knee is attached to the upper tibia  
and runs over the kneecap. When the knee is bent, a tensile force, T , that the ligament 
exerts on the upper tibia, is directed at an angle of θ = 40° with respect to the horizontal.  
The femur exerts a force F on the upper tibia. The angle, α , that this force makes with 
the vertical will vary and is one of the unknowns to solve for. Assume that the ligament is 
connected a distance, d = 3.8cm , directly below the contact point of the femur on the 
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1 tibia. The contact point between the foot and the ground is a distance s = 3.6 10 cm× 
from the vertical line passing through contact point of the femur on the tibia. The center 
of mass of the lower leg lies a distance x = × 11.8 10 cm from this same vertical line. 
Suppose the mass mL of the lower leg is a 1/10 of the mass of the body (Figure 18.11). (a) 

 
Find the magnitude T of the force T of the patellar ligament on the tibia. (b) Find the  
direction (the angle α ) of the force F of the femur on the tibia. (c) Find the magnitude  
F of the force F of the femur on the tibia. 

Figure 18.11 Example 18.4 Figure 18.12 Torque-force diagram for 
knee 

Solutions: a) Choose the unit vector î to be directed horizontally to the right and ĵ 
directed vertically upwards. The first condition for static equilibrium, Eq. (18.1.1), that 
the sum of the forces is zero becomes 

î : − F sinα + T cosθ = 0. (18.4.17) 
ĵ : N − F cosα + T sinθ − (1 / 10)mg = 0. (18.4.18) 

Because the weight is evenly distributed on the two feet, the normal force on one foot is 
equal to half the weight, or 

N = (1 / 2)mg ; (18.4.19) 
Equation (18.4.18) becomes 

ĵ : (1 / 2)mg − F cosα + T sinθ − (1 / 10)mg = 0 . (18.4.20)
(2 / 5)mg − F cosα + T sinθ = 0. 
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The torque-force diagram on the knee is shown in Figure 18.12. Choose the point of 
action of the ligament on the tibia as the point S about which to compute torques. Note  
that the tensile force, T , that the ligament exerts on the upper tibia will make no 
contribution to the torque about this point S . This may help slightly in doing the 
calculations. Choose counterclockwise as the positive direction for the torque; this is the  
positive k̂ - direction. Then the torque due to the force F of the femur on the tibia is 

   
τ = r × F = d ĵ × (− F sinα ̂i − F cosα ĵ) = d F sinα k̂ . (18.4.21)S ,1 S ,1 

The torque due to the mass of the leg is 

 τ = r × (−mg / 10) ĵ = (−x ̂i − y ĵ) × (−mg / 10) ĵ = (1 / 10)x mg k̂ . (18.4.22)S , 2 S , 2 L 

τ 

The torque due to the normal force of the ground is 

τ

 τ = r × N ĵ = (−s î − y ĵ) × N ĵ = −s N k̂ = −(1 / 2)s mg k̂ . (18.4.23)S S N,3 ,3 

τ

(In Equations (18.4.22) and (18.4.23), yL and yN are the vertical displacements of the 

τ

point where the weight of the leg and the normal force with respect to the point S ; as can 
be seen, these quantities do not enter directly into the calculations.) The condition that the 
sum of the torques about the point S vanishes, Eq. (18.1.2), 

    
 
0 , (18.4.24)
+
 +
=
 =
 S , total S ,1 S , 2 S ,3 

becomes  
d F sinα k̂ + (1 / 10)x mg k̂ − (1 / 2)s mg k̂ = 0 . (18.4.25) 

The three equations in the three unknowns are summarized below: 

− F sinα + T cosθ = 0 
(2 / 5)mg − F cosα + T sinθ = 0 (18.4.26) 

d F sinα + (1 / 10)x mg − (1 / 2)s mg = 0. 

The horizontal force equation, the first in (18.4.26), implies that 

F sinα = T cosθ . (18.4.27) 

Substituting this into the torque equation, the third equation of (18.4.26), yields 

d T cosθ + (1 / 10)x mg − s(1 / 2)mg = 0 . (18.4.28) 
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Note that Equation (18.4.28) is the equation that would have been obtained if we had 
chosen the contact point between the tibia and the femur as the point about which to 
determine torques. Had we chosen this point, we would have saved one minor algebraic  
step. We can solve this Equation (18.4.28) for the magnitude T of the force T of the 
patellar ligament on the tibia, 

s(1 / 2)mg − (1 / 10)x mg 
T = . (18.4.29)

d cosθ 

Inserting numerical values into Equation (18.4.29), 

(3.6× 10−1m)(1/2) − (1/10)(1.8× 10−1m) −2 )T = (70kg)(9.8m ⋅ s 
(3.8× 10−2 m)cos(40°) (18.4.30) 

= 3.8 × 103 N. 

 
b) We can now solve for the direction α of the force F of the femur on the tibia as 
follows. Rewrite the two force equations in (18.4.26) as 

F cosα = (2 / 5)mg + T sinθ 
(18.4.31)

F sinα = T cosθ. 

Dividing these equations yields 

F cosα (2 / 5)mg + T sinθ 
= cotanα = , (18.4.32)

F sinα T cosθ 
And so 

⎛ (2 / 5)mg + T sinθ ⎞α = cotan−1 

⎝⎜ T cosθ ⎠⎟ 
(18.4.33)

⎛ (2 / 5)(70kg)(9.8m ⋅ s−2 ) + (3.4 × 103 N)sin(40°)⎞α = cotan−1 

⎠⎟ 
= 47°. 

⎝⎜ (3.4 × 103 N)cos(40°) 

c) We can now use the horizontal force equation to calculate the magnitude F of the  
force of the femur F on the tibia from Equation (18.4.27), 

(3.8 × 103 N)cos(40°)F = = 4.0 × 103 N . (18.4.34)
sin(47° ) 

Note you can find a symbolic expression for α that did not involve the intermediate 
numerical calculation of the tension. This is rather complicated algebraically; basically, 
the last two equations in (18.4.26) are solved for F and T in terms of α , θ and the 
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other variables (Cramer’s Rule is suggested) and the results substituted into the first of 
(18.4.26). The resulting expression is 

(s / 2 − x / 10)sin(40°) + ((2d / 5)cos(40°)) 
cotα = 

(s / 2 − x / 10)cos(40°) (18.4.35)
2d / 5 

= tan(40°) + 
s / 2 − x / 10 

which leads to the same numerical result, α = 47° . 
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Appendix 18A The Torques About Any Two Points are Equal for a 

Body in Static Equilibrium
 

When the net force on a body is zero, the torques about any two points are equal. To 
show this, consider any two points A and B . Choose a coordinate system with origin O and denote the constant vector from A to B by , . Suppose a force Fi is acting at the rA B 

point rO,i . The vector from the point A to the point where the force acts is denoted by 
 , and the vectors from the point B to the point where the force acts is denoted by rA, i 
 rB, i . 

r r r 

Figure 18A.1 Location of body i with respect to the points A and B . 

In Figure 18A.1, the position vectors satisfy 

A, i A, B B, i . (18.A.1)
+
=
 

The sum of the torques about the point A is given by 

 i= N   
τ A = ∑rA,i × Fi . (18.A.2) 

i=1 

The sum of the torques about the point B is given by 

i= N  τB = ∑rB,i × Fi . (18.A.3) 
i=1 

We can now substitute Equation (18.A.1) into Equation (18.A.2) and find that 


Fr 


Fr 


Fr r 


Fr

τ A, i i A, B B, i i A, B i B, i i 
i=1 i=1 i=1 i=1 

In the next-to-last term in Equation (18.A.4), the vector , is constant and so may be rA B 

taken outside the summation, 

i= N i= N i= N i= N 

∑
 ∑
 ∑
 ∑
(
 ) ×
 (18.A.4)
×
 +
 ×
 +
 ×
=
 =
 =
 .
A 
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i=N  i=N 
∑r  × F = r  , ×∑Fi . (18.A.5)A B, i A B 
i=1 i=1 

We are assuming that there is no net force on the body, and so the sum of the forces on 
the body is zero, 

i= N 
∑Fi = 0 

 
. (18.A.6) 

i=1 

Therefore the torque about point A , Equation (18.A.2), becomes 

 i=N   
τ A = ∑rB,i × Fi = τB . (18.A.7) 

i=1 

For static equilibrium problems, the result of Equation (18.A.7) tells us that it does not 
matter which point we use to determine torques. In fact, note that the position of the 
chosen origin did not affect the result at all. Choosing the point about which to calculate 
torques (variously called “ A ”, “ B ”, “ S ” or sometimes “O ”) so that unknown forces do 
not exert torques about that point may often greatly simplify calculations. 

18-17 



 
    

  
  

  
  

  
  

 
  

  

  
  

  
  

  

  

  
  

  
  

  
  

 
 
  


 


 


 

Chapter 19 Angular Momentum 

19.1 Introduction........................................................................................................... 2
 

19.2 Angular Momentum about a Point for a Particle.............................................. 3
 

19.2.1 Angular Momentum for a Point Particle..................................................... 3
 

19.2.2 Right-Hand-Rule for the Direction of the Angular Momentum ............... 4
 

Example 19.1 Angular Momentum: Constant Velocity ........................................ 5
 

Example 19.2 Angular Momentum and Circular Motion..................................... 6
 

Example 19.3 Angular Momentum About a Point along Central Axis for Circular
 
Motion ........................................................................................................................ 6
 

19.3 Torque and the Time Derivative of Angular Momentum about a Point for a Particle 

........................................................................................................................................ 8
 

19.4 Conservation of Angular Momentum about a Point ......................................... 9
 

Example 19.4 Meteor Flyby of Earth.................................................................... 10
 

19.5 Angular Impulse and Change in Angular Momentum ................................... 12
 

19.6 Angular Momentum of a System of Particles .................................................. 13
 

Example 19.5 Angular Momentum of Two Particles undergoing Circular Motion
 
................................................................................................................................... 14
 

Example 19.6 Angular Momentum of a System of Particles about Different Points
 
................................................................................................................................... 16
 

19.7 Angular Momentum and Torque for Fixed Axis Rotation ............................. 17
 

Example 19.6 Circular Ring................................................................................... 20
 

19.8 Principle of Conservation of Angular Momentum .......................................... 21
 

Example 19.7 Collision Between Pivoted Rod and Object .................................. 21
 

19.9 External Angular Impulse and Change in Angular Momentum ................... 26
 

Example 19.8 Angular Impulse on Steel Washer................................................. 26
 



    
 

       
      

       
        
      

  
 

 
 

 
 

          
 

 
    

  

 
           

           
 

      
 

              
             

   
 

 
   

  

 
  

 
        

            

        
            

        
  

 

                                                   
  

 



 

  
  


 


 


  

 
 

 

 






    

        

  

 

Chapter 19 Angular Momentum 

The situation, in brief, is that newtonian physics is incapable of predicting 
conservation of angular momentum, but no isolated system has yet been 
encountered experimentally for which angular momentum is not conserved. We 
conclude that conservation of angular momentum is an independent physical law, 
and until a contradiction is observed, our physical understanding must be guided 
by it. 1 

Dan Kleppner 

19.1 Introduction 

When we consider a system of objects, we have shown that the external force, acting at the center 
of mass of the system, is equal to the time derivative of the total momentum of the system,

 
(19.1.1)= . 

r

 dp
Fext sys 

dt 

We now introduce the rotational analog of Equation (19.1.1). We will first introduce the concept of angular momentum for a point-like particle of mass m with linear momentum p about a point 

S 

S , defined by the equation  
L


p (19.1.2)
×
=
 ,
S 

where rS is the vector from the point S to the particle. We will show in this chapter that the 
torque about the point S acting on the particle is equal to the rate of change of the angular 
momentum about the point S of the particle, 


τS = 

d 
 
LS 

dt 
. (19.1.3) 

Equation (19.1.3) generalizes to any body undergoing rotation. 


We shall concern ourselves first with the special case of rigid body undergoing fixed axis rotation 



about the z-axis with angular velocity ω = ω z k̂ . We divide up the rigid body into N elements 
labeled by the index i , i = 1,2,…N , the ith element having mass mi and position vector rS i, . The 

rigid body has a moment of inertia IS about some point S on the fixed axis, (often taken to be the 
 

z-axis, but not always) which rotates with angular velocity ω about this axis. The angular 
momentum is then the vector sum of the individual angular momenta, 

1 Kleppner, Daniel, An Introduction to Mechanics (1973), p. 307. 
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L
 

i=N 
L
 

i=N 

×

pi (19.1.4)
∑
 ∑
=
 =
 S S ,i 

i=1 i=1 
S ,i 

When the rotation axis is the z-axis the z-component of the angular momentum, LS ,z , about the 
point S is then given by 

LS ,z = IS ω z . (19.1.5) 

We shall show that the z-component of the torque about the point S , τ S ,z , is then the time 
derivative of the z-component of angular momentum about the point S , 

dLS ,z dω z= α . (19.1.6)τ S ,z = IS = IS zdt dt 

r 

19.2 Angular Momentum about a Point for a Particle 

19.2.1 Angular Momentum for a Point Particle 

Consider a point-like particle of mass m moving with a velocity v (Figure 19.1) with momentum   p = mv . 

.S 
. 

rS 

m 
p 

Figure 19.1 A point-like particle and its angular momentum about S . 

Consider a point S located anywhere in space. Let rS denote the vector from the point S to the 
location of the object. 

 
Define the angular momentum LS about the point S of a point-like particle as the 
vector product of the vector from the point S to the location of the object with the 
momentum of the particle, 

  LS = rS ×p . (19.2.1) 

2 ⋅sThe derived SI units for angular momentum are [kg ⋅ m −1] = [N ⋅m ⋅s] = [J ⋅s] . There is no 
special name for this set of units. 

Because angular momentum is defined as a vector, we begin by studying its magnitude and 
direction. The magnitude of the angular momentum about S is given by 

3



 
   
 

             
          

   
 

   
      

 
 

             
 

 
       
 

            
 

 
     

 
        

        

    

       
 

             
   

 
     

 
 

 
             

           
          

        
 

   
       

      

 

  

 

    

 

  

    

  
  

 

    

 
 

  
  

 

  
 

  

   = r p sinθ , (19.2.2)LS S 

where θ is the angle between the vectors and p , and lies within the range [0 ≤θ ≤π ] Analogous 
to the magnitude of torque, there are two ways to determine the magnitude of the angular 
momentum about S . 

.S .rS 
p 

rS S rS.moment arm . p 
pS 

Figure 19.2 (a) Moment arm. (b) Perpendicular component of momentum. 

Define the moment arm, rS 
⊥ , (Figure 19.2 (a)), as the perpendicular distance from the point S to 

the line defined by the direction of the momentum. Then 

 rS 
⊥ = sinθ . (19.2.3)rS 

Hence the magnitude of the angular momentum is the product of the moment arm with the 
magnitude of the momentum,   p . (19.2.4)LS = rS 

⊥ 

Alternatively, let Error! Objects cannot be created from editing field codes. denote the 
magnitude of the component of the momentum perpendicular to the line defined by the direction 

of the vector rS . From the geometry shown in Figure 19.2 (b), 
 p sinθ . (19.2.5)pS 

⊥ = 

Thus the magnitude of the angular momentum is the product of the distance from S to the 
particle with pS 

⊥ , 
  = ⊥ . (19.2.6)LS rS pS 

19.2.2 Right-Hand-Rule for the Direction of the Angular Momentum 

We shall define the direction of the angular momentum about the point S by a right hand rule. 
 Draw the vectors rS and p so their tails are touching. Then draw an arc starting from the vector 

  rS and finishing on the vector p . (There are two such arcs; choose the shorter one.) This arc is 
either in the clockwise or counterclockwise direction. Curl the fingers of your right hand in the 
same direction as the arc. Your right thumb points in the direction of the angular momentum. 
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pLS = rS 

rS 

p ..S 

Figure 19.3 The right hand rule for determining the direction of angular momentum about S .
 

Remember that, as in all vector products, the direction of the angular momentum about S is 

 perpendicular to the plane formed by rS and p . 

Example 19.1 Angular Momentum: Constant Velocity 

A particle of mass m = 2.0 kg moves as shown in Figure 19.4 with a uniform velocity 
 −1 ˆ −1 ˆv = 3.0 m s i + 3.0 m s j . At time t , the particle passes through the point (2.0 m, 3.0 m) . Find 
the direction and the magnitude of the angular momentum about the point S (the origin) at time 
t . 

.S
. 

rS 

m p 

+ x 

+ y 

î 
ĵ 

k̂

Figure 19.4 Example 19.4 

Solution: Choose Cartesian coordinates with unit vectors shown in the figure above. The vector 
from the point S to the location of the particle is rS = 2.0 m î + 3.0 m ĵ . The angular momentum 

 
vector LO of the particle about the origin S is given by: 

    LS = rS × p = rS × mv 

= (2.0m î + 3.0m ̂j) × (2kg)(3.0m ⋅s−1î + 3.0m ⋅s−1ĵ) 

= 0 +12kg ⋅ m2 ⋅s−1 k̂ −18kg ⋅m2 ⋅s−1(−k̂) + 0 
 

2 ⋅s−1 k= −6kg ⋅ m ˆ. 

           
In the above, the relations i × j = k, j × i = −k, i × i = j × j = 0 were used. 
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Example 19.2 Angular Momentum and Circular Motion 

A particle of mass m moves in a circle of radius R about the z -axis in the x-y plane defined by 
 ˆz = 0 with angular velocity ω = ω z k , ω z > 0 , (Figure 19.5). Find the magnitude and the direction 
 

of the angular momentum LS relative to the point S lying at the center of the circular orbit, (the 
origin). 

. p 

ˆ

ˆk̂

S . 
LS 

+ z = z ̂k 

rS = R r̂ 

r 

Figure 19.5 Example 19.2 

Solution: The velocity of the particle is given by v = Rω z θ̂ . The vector from the center of the 
circle (the point S ) to the object is given by rS = R r̂ . The angular momentum about the center of 

the circle is the vector product 

     
LS = rS × p = rS × mv = Rmv k̂ = RmRω z k̂ = mR2ω z k̂ = ISω . 

 
The magnitude is = mR2ω z , and the direction is in the + k̂ -direction. For the particle, the LS 

moment of inertia about the z -axis is IS = mR2 , therefore the angular momentum about S is 
  

= ISω .LS  
The fact that LS is in the same direction as the angular velocity is due to the fact that the point S 
lies on the plane of motion. 

Example 19.3 Angular Momentum About a Point along Central Axis for Circular Motion 


A particle of mass m moves in a circle of radius R with angular velocity ω = ω z k̂ , ω z > 0 , 
about the z - axis in a plane parallel to but a distance h above the x-y plane (Figure 19.6). Find 

 
the magnitude and the direction of the angular momentum LS relative to the point S (the origin). 
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k̂= 
+ z z 

ˆ

p. ˆ 

k 

r̂ 

h R
 

S + x
 

Figure 19.6 Example 19.3 
 

Solution: The easiest way to calculate LS is to use cylindrical coordinates. We begin by writing 
 the two vectors rS and p in polar coordinates. We start with the vector from point S (the origin) 

to the location of the moving object, rS = R r̂ + hk̂ . The momentum vector is tangent to the 
 circular orbit so p = mv = mRω z θ̂ . Using the fact that r̂ × θ̂ = k̂ and k̂ × θ̂ = −r̂ , the angular 

momentum about point S is 

  LS = rS × p = (R r̂ + hk̂) × mRω z θ̂ = mR2ω z k̂ − hmRω z r̂ 

k̂= z . + z 

+ xS 

rS 

p 

LS 

R 

h 

Figure 19.7 Angular momentum about the point S 
 

The magnitude of LS is given by 

 
)2 )1/2 (h2 + R2 )1/2 = ((mR2ω )2 + (hmRω = mRωLS z z z 

 
The direction of LS is given by (Figure 19.7) 

LS ,z R− = = tanφ
LS ,r h 

7



  

 
       

             

        
              

      
 

     
 

               
             

     

 
     

 
        

            
                 

        
           

 
 

          
   

 
                 

  

 
   

  

 
  

 

 
   

  

 

 

 

 

  
 

 
 

  
 

 

   
 

 

 

 
  

 

   

 
 

 
  

 

 

 


  
  
 
 

We also present a geometric argument. Suppose the particle has coordinates (x, y,h) . The 
rS 

 
L


p . The vectors r  angular momentum about the origin is given by and×
=
 p areS S 

perpendicular to each other so the angular momentum is perpendicular to the plane formed by
those two vectors. Recall that the speed v = Rω z . Suppose the vector rS forms an angle φ 

 
with the z -axis. Then LS forms an angle φ with respect to the x − y plane as shown in the 

 
figure above. The magnitude of LS is 

rS 

 
L


v = (h2 + R2 )1/2 mRω=
 mS z 

 
The magnitude of LS is constant, but its direction is changing as the particle moves in a 
circular orbit about the z -axis, sweeping out a cone as shown in Figure 19.8. We draw the  
vector LS at the origin because it is defined at that point. 

k̂= z+ z 

LS 

S + x 

dt 

rS 

 
L

Figure 19.8 Direction of angular momentum about the point S sweeps out a cone 

The important point to keep in mind regarding this calculation is that for any point along the 
z -axis not at the center of the circular orbit of a single particle, the angular momentum about 
that point does not point along the z -axis but it is has a non-zero component in the x − y 
plane (or in the −r̂ direction if you use polar coordinates). The z -component of the angular 
momentum about any point along the z -axis is independent of the location of that point along 
the axis. 

19.3 Torque and the Time Derivative of Angular Momentum about a Point 
for a Particle 

We will now show that the torque about a point S is equal to the time derivative of the 
angular momentum about S ,  

 dLS= . (19.3.1)τS 

Take the time derivative of the angular momentum about S , 

d S 

dt 
=
 

d 
dt ( ×


p) .
 (19.3.2)
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In this equation we are taking the time derivative of a vector product of two vectors. There are 
two important facts that will help us simplify this expression. First, the time derivative of the 
vector product of two vectors satisfies the product rule, 

d S rS S 
r 

 
L d 

dt S 

rS 
p⎛
 ⎞ ⎛
 ⎞
⎛
 ⎞
 ⎛
 ⎞
d dp p(
 ) =
 (19.3.3)
×
 

⎠⎟ 
×
 ⎟ + 

⎠ 
×
=
 ⎜

⎝ ⎝⎜
 ⎠⎟ 
.
 

⎝⎜
 ⎝⎜
 ⎠⎟
dt dt dt 

Second, the first term on the right hand side vanishes, 

drS     
×p = v × m v = 0 . (19.3.4)

dt 

The rate of angular momentum change about the point S is then 

d 
dt 

 
L pdrS 

rS 

S 

 
L

From Newton’s Second Law, the force on the particle is equal to the derivative of the linear 
momentum, 

 dpF = . (19.3.6)
dt 

Therefore the rate of change in time of angular momentum about the point S is 

d S 

(19.3.5)
×
=
 .

dt 


F
 (19.3.7)
×
=
 .


dt 

 
Recall that the torque about the point S due to the force F acting on the particle is 

   
τS = rS × F . (19.3.8) 

Combining the expressions in (19.3.7) and (19.3.8), it is readily seen that the torque about the 
point S is equal to the rate of change of angular momentum about the point S , 

 
 dLS= . (19.3.9)τS dt 

19.4 Conservation of Angular Momentum about a Point 

19-9 



  

     
      

     
 
     
 

         
 

     
 

 
 

 
    

  

 
          

          
 

 

    

  

 
           

        
     

 

 
   

  

 
           

 
 

      
 

               
 

 
      

 
  

 
         

        

   

    


  
  

 
 


 
   
 
 



 
   
 
 
 


 
 

  


 



 

 

 


 

 

 



 

 

 
 

 


  

  
 

 





So far we have introduced two conservation principles, showing that energy is constant for 
closed systems (no change in energy in the surroundings) and linear momentum is constant 
isolated system. The change in mechanical energy of a closed system is 

Wnc = ΔEm = ΔK + ΔU , (closed system) . (19.3.10) 

If the non-conservative work done in the system is zero, then the mechanical energy is 
constant, 

0 = W = ΔK + ΔU , (closed system) . (19.3.11)nc = ΔEmechanical 

The conservation of linear momentum arises from Newton’s Second Law applied to systems, 


F
ext 

N d= ∑ dt 
p d =
 i dt 

psys (19.3.12)
 
i=1 

Thus if the external force in any direction is zero, then the component of the momentum of the 
system in that direction is a constant. For example, if there are no external forces in the x -
and y -directions then 


0
 

F
ext ) 

d p= (
 (
 )
=
 x dt sys x 

(19.3.13)

0
 

F
ext ) 

d p= (
 (
 )
=
 .
 y dt sys y 

 
L 

We can now use our relation between torque about a point S and the change of the angular 
momentum about S , Eq. (19.3.9), to introduce a new conservation law. Suppose we can find 
a point S such that torque about the point S is zero, 

 
  dLS0 = = , (19.3.14)τS dt 

then the angular momentum about the point S is a constant vector, and so the change in 

Δ 
angular momentum is zero,  

L
 
 
L
 


0
≡
 −
 (19.3.15)
=
 .
S S , f S ,i 

Thus when the torque about a point S is zero, the final angular momentum about S is equal 
to the initial angular momentum,   

LS , f = LS ,i . (19.3.16) 

Example 19.4 Meteor Flyby of Earth 

A meteor of mass m is approaching Earth as shown in the figure. The radius of Earth is RE . 

The mass of Earth is . Assume that the meteor started very far away from Earth with 
M E 

19-10 



  

             
        

             
 

 

 
   

 
       

 
 

             
       

         
 

 

    
 

 
               

 
 

    
 

 
 

 
 

 

     
 

   
 

     

 

 

 

   

    

 
  

    

 
  

 
 

 
    

 
 


 

 


 
    
 


 

 


 
   
 

speed vi and at a perpendicular distance h from the axis of symmetry of the orbit. At some 
later time the meteor just grazes Earth (Figure 19.9). You may ignore all other gravitational 
forces except due to Earth. Find the distance h . Hint: What quantities are constant for this 
orbit? 

. 

. 

h 

v i ( ) 

v f ( ) 

. 
v(RE ) 

E (ME ,RE ) 

Figure 19.9 Meteor flyby of earth 

Solution: In this problem both energy and angular momentum about the center of Earth are 
constant (see below for justification). 

The meteor’s mass is so much small than the mass of Earth that we will assume that the 
earth’s motion is not affected by the meteor. We’ll also need to neglect any air resistance 
when the meteor approaches Earth. Choose the center of Earth, (point S ) to calculate the 
torque and angular momentum. The force on the meteor is 

 
G GmM E= − r̂FE ,m 2r

The vector from the center of Earth to the meteor is = rr̂ . The torque about S is zero rS 

because they two vectors are anti-parallel 

  GmM E 
 G× = rr̂ × − r̂ = 0τS = rS FE ,m 2r 

Therefore the angular momentum about the center of Earth is a constant. 

The initial angular momentum is 

  LS ,i = rS ,i × mv i = (xi ̂i + hĵ) × mvi ̂i = −hmvik̂ 

When the meteor just grazes Earth, the angular momentum is 

  LS , E = rS , E × mv p = RE ̂i × mv p (− ĵ) = −REmv p k̂ 

19-11 



  

 

   
  

 

  
 

          
 

 

  
 

 
             

       
         

  
 

  
 

 
    

 

  
 

 
      

 
               

   
 

 
   

  

 
         

   

 
    

  

 

 

 

 

    

  
    

 

  

 

   

 

 
 

 
      

 

  
 
 

 

 
 
 

where we have used vp for the speed of the meteor at its nearest approach to Earth. The 
constancy of angular momentum requires that 

mvih = mv p RE 

In order to solve for h , we need to find vp . Because we are neglecting all forces on the 
meteor other than Earth’s gravity, mechanical energy is constant, and 

1 2 1 2 − 
GmM E= mv ,mvi p2 2 RE 

where we have taken the meteor to have speed vi at a distance “very far away from Earth” to 
mean that we neglect any gravitational potential energy in the meteor-Earth system, when 
r →∞ , U (r) = −GmM E / r → 0 . From the angular momentum condition, vp = vih / RE and 
therefore the energy condition can be rewritten as 

2 2 ⎛ h ⎞ 
2 

− 
2GM Evi = vi ⎝⎜ RE ⎠

⎟ RE 

which we solve for the impact parameter h 

h = RE 
2 + 

2GM E RE 

vi 
2 . 


L 

 
L 

19.5 Angular Impulse and Change in Angular Momentum 
 

− tiIf there is a total applied torque τS about a point S over an interval of time Δt = t f , then 
the torque applies an angular impulse about a point S , given by 

  
= 

t f dt . (19.4.1)JS ∫ τSti 

 
total /Because τS = d LS dt , the angular impulse about S is equal to the change in angular 

momentum about S , 
d

τS
S = Δ 


J
 


L
 


L


t f∫ti 

t f∫ti 
dt dt −
 (19.4.2)
=
 =
 =
 S ,i .S S S , fdt 
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This result is the rotational analog to linear impulse, which is equal to the change in 
momentum, 

dt = ∫ti 
= Δp 

pdt f∫ti 

t f =
 =
 

I



F
 dt p f −


pi . (19.4.3)

dt 

19.6 Angular Momentum of a System of Particles 

We now calculate the angular momentum about the point S associated with a system of N 

j th point particles. Label each individual particle by the index j , j = 1,2,, N . Let the 
particle have mass mj and velocity v j . The momentum of an individual particle is then 

   p j = mj v j . Let rS , j be the vector from the point S to the j th particle, and let θ j be the angle 
 between the vectors r and p (Figure 19.10).S , j j 

r 

Figure 19.10 System of particles 

 
The angular momentum LS , j of the j th particle is 

S , j 

 
L


p (19.5.1)
×
=
 j .S , j 

r 

L 

The angular momentum for the system of particles is the vector sum of the individual angular 
momenta, 

sys 
S , j 

j=N 

∑ 
j=N 

∑

L


p (19.5.2)
×
=
 =
 .
S S , j j 

 
L 

j=1 j=1 

The change in the angular momentum of the system of particles about a point S is given by 

sys d d d
S S , j j 

r 
dt 

p 
dt 

⎛
 ⎞
j= 

∑ 
N j=N

L

d rS , j 

/ dt , the first term in the parentheses 

p (19.5.3)
×
 +
 ×
=
 = ∑⎜
⎝ 

.⎟
⎠S , j jdt dt j=1 j=1 

 = d rS , jBecause the velocity of the j th particle is vS , j 

vanishes (the cross product of a vector with itself is zero because they are parallel to each 
other) 

19-13 



  

 
    

  

 
  

     
  

 

 
    

  

  

 
    

  

 
          

          
   
       

  

 
    

  

 
   

 
    

  

 
             

 
 

  
 

           

                       
         

     

 
  


 
   
 

 
 

 




 


 



 
 
 

 

 



 


 


 
 




 
 
 

 
 


 

 

 


 
 
 
 
 

 
 

 

 

 

 

       

 
  

 

  

  

   

 

d S , j 

dt 

r 
×

p j =
 
vS , j × mj 

vS , j = 0 . (19.5.4)
 

 Substitute Eq. (19.5.4) and Fj = dp j / dt into Eq. (19.5.3) yielding 

d S 
d j 

S , j S , j 
r 

pr 
 
L ⎛
 ⎞
j=N 

∑
 
j=N

∑


F
 

sys 

dt (
 )
 .
 (19.5.5)
×
 ×
=
 =
⎜
⎝ 

⎟
⎠ jdtj=1 j=1 

Because 
j= 

j=1 
∑ 

N j= 

j=1 
∑ 

N
   
τ 

We have already shown in Chapter 17.4 that when we assume all internal forces are directed 

τ

along the line connecting the two interacting objects then the internal torque about the point 
S is zero, 

τ

∑

  
τ int 

SS = 0 . (19.5.7) 
Eq. (19.5.6) simplifies to 

j= j=rS j,∑ 
j 1= 

(
 )
 intext +Fj (19.5.6)
×
rS , j =
 =
 S , j SS SS 

N N
F



τ



τ
(
 )
 ext . (19.5.8)×
 =
 =
 j SS , j SS 

j=1 

Therefore Eq. (19.5.5) becomes  
 d sys 

ext LS= . (19.5.9)τSS dt 

The external torque about the point S is equal to the time derivative of the angular 
momentum of the system about that point. 

Example 19.5 Angular Momentum of Two Particles undergoing Circular Motion 

Two identical particles of mass m move in a circle of radius R , with angular velocity

ω = ω z k̂ , ω z > 0 , ω about the z -axis in a plane parallel to but a distance h above the x-y 
plane. The particles are located on opposite sides of the circle (Figure 19.11). Find the 
magnitude and the direction of the angular momentum about the point S (the origin). 

k̂= z+ z 

p2 .2 .1 
h R 

S + x 
Figure 19.11 Example 19.5 

p1 
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19.3 

Solution: The angular momentum about the origin is the sum of the contributions from each 
object. The calculation of each contribution will be identical to the calculation in Example 

. k̂ 
+ z 

+ xS 

. 
rS ,1 

p1p2 
12 

r̂1 
ˆ 
1 

k̂

LS ,1 

R 

h 

Figure 19.12 Angular momentum of particle 1 about origin 

k̂
 
k̂ + z
 .2 

ˆ 

1. p1r̂2 p2 
2 

hrS ,2 
LS ,2 

S + x 

R 

Figure 19.13 Angular momentum of particle 2 about origin 

For particle 1 (Figure 19.12), the angular momentum about the point S is 

  LS ,1 = rS ,1 × p1 = (R r̂1 + hk̂) × mRω z θ̂1 = mR2ω z k̂ − hmRω z r̂1 . 

For particle 2, (Figure 19.13), the angular momentum about the point S is 

  LS ,2 = rS ,2 × p2 = (R r̂2 + hk̂) × mRω z θ̂2 = mR2ω z k̂ − hmRω z r̂2 . 

Because the particles are located on opposite sides of the circle, r̂1 = −r̂2 . The vector sum only 
points along the z -axis and is equal to 

   
LS = LS ,1 + LS ,2 = 2mR2ω z k̂ . (19.5.10) 

The two angular momentum vectors are shown in Figure 19.14. 
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k̂ 
+ z .. 12 

LS ,2LS ,1 

LS 

S + x
 

p1p2 

Figure 19.14 Angular momentum about the point S of both particles and their sum 

The moment of inertia of the two particles about the z -axis is given by IS = 2mR2 . Therefore 
  

= ISω . The important point about this example is that the two objects are symmetrically LS 

distributed with respect to the z -axis (opposite sides of the circular orbit). Therefore the  
2angular momentum about any point S along the z -axis has the same value LS = 2mr ωk̂ , 

r 

which is constant in magnitude and points in the + z -direction. This result generalizes to any 
rigid body in which the mass is distributed symmetrically about the axis of rotation. 

Example 19.6 Angular Momentum of a System of Particles about Different Points 

Consider a system of N particles, and two points A and B (Figure 19.15). The angular 
momentum of the jth particle about the point A is given by 

A,j 

 
L


v (19.5.11)
× mj =
 j .A,j 

Figure 19.15 Vector triangle relating position of object and points A and B 

The angular momentum of the system of particles about the point A is given by the sum 


L
 

N 
L
 

N rA,j 
j=1 j=1 

The angular momentum about the point B can be calculated in a similar way and is given by 

v∑
 ∑
 (19.5.12)
× mj =
 =
 A A,j j 
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L
 

N 
L
 

N 

× mj 
v j . (19.5.13)
∑
 ∑
=
 =
 B B,j B, j 

A,j B, j A,B . 

We can substitute Eq. (19.5.14) into Eq. (19.5.12) yielding 

r 

r r r 

j=1 j=1 

From Figure 19.15, the vectors 

(19.5.14)
+
=
 

N N N
L


rB, j + A,B ) × mj B, j × mj A,B × mj 

The first term in Eq. (19.5.15) is the angular momentum about the point B . The vector rA,B is 

r 

a constant and so can be pulled out of the sum in the second term, and Eq. (19 5 15) becomes. . 

rA,B × 

rr v v v∑( 
j=1 

∑
 ∑
 (19.5.15)
+
=
 =
 .
A j j j
j=1 j=1 

∑ 
N

L


L


v (19.5.16)
B + mj = A j
j=1 

The sum in the second term is the momentum of the system 

 = 
N  . (19.5.17)psys ∑mjv j
j=1 

Therefore the angular momentum about the points A and B are related by 

rA,B × 

Thus if the momentum of the system is zero, the angular momentum is the same about any 
point. 


L



L


p (19.5.18)
B += A sys 


L
A =
 


L
B , (
psys =
 


0
) . (19.5.19)
 

In particular, the momentum of a system of particles is zero by definition in the center of mass 
  

reference frame because in that reference frame psys = 0 . Hence the angular momentum is the 
same about any point in the center of mass reference frame. 

19.7 Angular Momentum and Torque for Fixed Axis Rotation 

We have shown that, for fixed axis rotation, the component of torque that causes the angular 
velocity to change is the rotational analog of Newton’s Second Law, 
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τext 

SS α . (19.5.20)= IS 

We shall now see that this is a special case of the more general result 

 d  ext sys= . (19.5.21)τSS LSdt 

Consider a rigid body rotating about a fixed axis passing through the point S and take the 
fixed axis of rotation to be the z -axis. Recall that all the points in the rigid body rotate about 


the z -axis with the same angular velocity ω = (dθ / dt)k̂ = ω z k̂ . In a similar fashion, all 


points in the rigid body have the same angular acceleration, α = (d 2θ / dt2 ) k̂ = α z k̂ . Let the 
point S lie somewhere along the z -axis. 

As before, the body is divided into individual elements. We calculate the contribution of each 
element to the angular momentum about the point S , and then sum over all the elements. The 
summation will become an integral for a continuous body. 

Each individual element has a mass Δmj and is moving in a circle of radius rS 
⊥ 
, j about the axis 

of rotation. Let rS , j be the vector from the point S to the element. The momentum of the 
element, p j , is tangent to this circle (Figure 19.16). 

= zk̂
fixed axis 
of rotation 

+ z 

. 
.mj 

S rS , j 

rS , j. 
rS , j ˆ 

k̂

r̂ 

rigid body 

p j 

Figure 19.16 Geometry of instantaneous rotation. 

The angular momentum of the jth element about the point S is given by rS , j 
vector rS , j can be decomposed into parallel and perpendicular components with respect to the 

     ⊥ ⊥ ⊥axis of rotation r = r + r (Figure 19.16), where = and  = . TheS , j S , j S , j rS , j rS , j rS , j rS , j 
 ⊥momentum is given by p ω θ̂ . Then the angular momentum about the point S isj = Δmj rS , j z 

 
L


p j . The×
=
 S , j 
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   ⊥  ⊥k ω θ̂ )LS , j = rS , j × p j = (rS , jr̂ + rS , j
ˆ ) × (Δmj rS , j z . (19.5.22) 

= Δmj (rS 
⊥ 
, j )

2ω z k̂ − ΔmjrS 
 
, j rS 

⊥ 
, jω z r̂ 

In the last expression in Equation (19.5.22), the second term has a direction that is 
perpendicular to the z -axis. Therefore the z -component of the angular momentum about the 

 point S , (LS , j )z , arises entirely from the second term, rS 
⊥ 
, j ×p j . Therefore the z -component 

of the angular momentum about S is 

⊥ )2ω(LS , j )z = Δmj (rS , j z . (19.5.23) 

The z -component of the angular momentum of the system about S is the summation over all 
the elements, 

sys ⊥LS , z = ∑(LS , j )z =∑Δmj (rS , j )
2ω z . (19.5.24) 

j j 

For a continuous mass distribution the summation becomes an integral over the body, 

sys = dm (rdm )
2ω , (19.5.25)LS , z ∫ z 

body 

where rdm is the distance form the fixed z -axis to the infinitesimal element of mass dm . The 
moment of inertia of a rigid body about a fixed z -axis passing through a point S is given by 
an integral over the body 

)2= . (19.5.26)IS ∫ dm (rdm 
bo dy 

Thus the z -component of the angular momentum about S for a fixed axis that passes through 
S in the z -direction is proportional to the z -component of the angular velocity, ω z , 

Lsys 
S , z ω . (19.5.27)= IS z 

For fixed axis rotation, our result that torque about a point is equal to the time derivative of 
the angular momentum about that point, 

ext d  sys = , (19.5.28)τS LSdt 
can now be resolved in the z -direction, 

dLsys 
S , zext d dω z d 2θ = = ω ) = IS α , (19.5.29)τ S ,z (IS z = IS = IS zdt dt dt dt2 
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in agreement with our earlier result that the z -component of torque about the point S is equal 
to the product of moment of inertia about IS , and the z -component of the angular 
acceleration, α z . 

Example 19.6 Circular Ring 

A circular ring of radius R , and mass M is rotating about the z -axis in a plane parallel to 
but a distance h above the x-y plane. The z -component of the angular velocity is ω z (Figure 

 
19.17). Find the magnitude and the direction of the angular momentum LS along at any point 
S on the central z -axis. 

ˆ 

. R
M 

= zk 
+ z . 

LSh 

S + x
 
Figure 19.17 Example 19.6 

Solution: Use the same symmetry argument as we did in Example 19.5. The ring can be 
thought of as made up of pairs of point like objects on opposite sides of the ring each of mass 
m (Figure 19.18). 

+ z 

+ xS 

R 

h 

= zk̂
M 

LS 

. . 
Figure 19.18 Ring as a sum of pairs of symmetrically distributed particles 

Each pair has a non-zero z-component of the angular momentum taken about any point S    
Lpair 

S 
pair R2ωalong the z -axis, = LS ,1 + LS ,2 = 2mR2ω z k̂ = m z k̂ . The angular momentum of the 

ring about the point S is then the sum over all the pairs 

 
pair R2ω= ∑ m k̂ = MR2ω k̂ . (19.5.30)LS z z 

pairs 
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Recall that the moment of inertia of a ring is given by 

)2 = MR2= dm (rdm . (19.5.31)IS ∫ 
body 

For the symmetric ring, the angular momentum about S points in the direction of the angular 
velocity and is equal to 

= ISω k̂ . (19.5.32)LS z 

19.8 Principle of Conservation of Angular Momentum 

Consider a system of particles. We begin with the result that we derived in Section 19.7 that 
the torque about a point S is equal to the time derivative of the angular momentum about that 
point S ,  

 d sys 

 
L 

ext LS= . (19.5.33)τSS dt 

With this assumption, the torque due to the external forces is equal to the rate of change of the 
angular momentum  

sys 

 
L

ext dLS= . (19.5.34)τSS dt 

Principle of Conservation of Angular Momentum 



 
L 

If the external torque acting on a system is zero, then the angular momentum of 
the system is constant. So for any change of state of the system the change in 
angular momentum is zero 

Δ 

0
− (
 (19.5.35)
=
sys ≡ (S 

sys ) fS 
sys )iS .
 

Equivalently the angular momentum is constant 

  
sys ) f 

sys )i . (19.5.36)(LS = (LS 

So far no isolated system has been encountered such that the angular momentum is not 
constant so our assumption that internal torques cancel is pairs can be taken as an 
experimental observation. 

Example 19.7 Collision Between Pivoted Rod and Object 

A point-like object of mass m1 moving with constant speed vi strikes a rigid uniform rod of 
length l and mass m2 that is hanging by a frictionless pivot from the ceiling. Immediately 
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after striking the rod, the object continues forward but its speed decreases to vi / 2 (Figure 

19.19). The moment of inertia of the rod about its center of mass is Icm = (1/ 12)m2l
2 . Gravity 

acts with acceleration g downward. (a) For what value of vi will the rod just touch the 
ceiling on its first swing? (b) For what ratio m2 / m1 will the collision be elastic? 

frictionless pivot 

l m2g m2 

m1g m1 
vi vi / 2 

Figure 19.19 Example 19.7 

Solution: We begin by identifying our system, which consists of the object and the uniform 
rod. We identify three states; an initial state i : immediately before the collision, state a : 
immediately after the collision, and state f : the instant the rod touches the ceiling when the 
final angular speed is zero. We would like to know if any of our fundamental quantities: 
momentum, energy, and angular momentum, are constant during these state changes, state i 
to state a , state a to state f . 

. 
A 

. 

m1g 

m2g 

Fpivot ,2 

F1,2F2,1 

.S 

A 

cm 

Figure 19.20 Free-body force diagrams on particle and rod 

We start with the transition from state i to state a . The pivot force holding the rod to the 
ceiling is an external force acting at the pivot point S . There is also the gravitational force 
acting at the center of mass of the rod and on the object. There are also internal forces due to 
the collision of the rod and the object at point A (Figure 19.20). 
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The external force means that momentum is not constant. The point of action of the external 
pivot force is fixed and so does no work. However, we do not know whether or not the 
collision is elastic and so we cannot assume that mechanical energy is constant. Choose the 
pivot point S as the point about which to calculate torque, then the torque diagrams are 
shown in Figure 19.21. 

A 

. 

m1g 

m2g 

Fpivot ,2 

F1,2F2,1 

.S.S 
rS ,cm 

cm rS ,A 

A 

rS ,A 

g r r 
 
Fr 

Figure 19.21 Torque diagrams on particle and rod with torque calculated about pivot point S 

 
F 

The torque on the system about the pivot S is then the sum of terms 

rτsys 
S S ,S pivot ,2 S ,A 1,2 S ,A 2,1 S ,cm S , A × m1 

 
Fr 

 g .(19.5.37)
×
 +
 ×
 +
 ×
 +
 × m2 +
=
 

  
The external pivot force does not contribute any torque because rS ,S = 0 . The internal forces 

  
between the rod and the object are equal in magnitude and opposite in direction, F1,2 = −F2,1 

(Newton’s Third Law), and so their contributions to the torque add to zero. If the collision is 
 instantaneous then the gravitational force is parallel to and so the two gravitational rS ,cm rS ,A 

  
sys torques are zero. Therefore the torque on the system about the pivot point is zero, τS = 0 . 

Thus the angular momentum about the pivot point is constant, 

  
sys sys LS ,i = LS ,a . (19.5.38) 

.
l 

S
ĵ 

.

.

.S 
k̂= a aî 

k̂ cm rS ,A 

state i state arS ,A 

vi / 2viA A
 

Figure 19.22 Angular momentum diagram 
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In order to calculate the angular momentum we draw a diagram showing the momentum of 
the object and the angular speed of the rod in (Figure 19.22). The angular momentum about S 
immediately before the collision is 

 Lsys 
S , i = rS ,1 × m1v

 
i = l(− ĵ) × m1vi ̂i = lm1vik̂ . 

The angular momentum about S immediately after the collision is 

   
Lsys 

S , a = rS ,1 × m1v i / 2 + IS ω a = l(− ĵ) × m1(vi / 2)î + ISω a k̂ = (lm1vi / 2) k̂ + ISω a k̂ . 

Therefore the condition that the angular momentum about S is constant during the collision 
becomes 

lm1vik̂ = (lm1vi / 2 + ISω a )k̂ . 

We can solve for the angular speed immediately after the collision 

lm1viω = . a 2IS 

By the parallel axis theorem the moment of inertial of a uniform rod about the pivot point is 

l2 l2(l / 2)2 + I = (1/ 4)m2l
2 + (1/ 12)m2 = (1/ 3)m2 . (19.5.39)IS = m2 cm 

Therefore the angular speed immediately after the collision is 

3m1vi= . (19.5.40)ω 2 2m2l 

..S S 

a = ak̂

. 

. 
state a 

l / 2 % 

U g = 0cm 

state f 

A A 

Figure 19.23 Energy diagram for transition from state a to state f . 

For the transition from state a to state f , we know that the gravitational force is conservative 
and the pivot force does no work so mechanical energy is constant. 
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mech mech E a = E f 

We draw an energy diagram only for the rod because the kinetic energy for the particle is not 
changing between states a and f , (Figure 19.23), with a choice of zero for the potential 
energy at the center of mass. The mechanical energy of the rod and particle immediately after 
the collision is 

mech 1 ω 2 + 
1E = / 2)2 . a IS a m1(vi2 2 

Using our results for the moment of inertia IS (Eq. (19.5.39)) and ω 2 (Eq. (19.5.40)), we 
have that 

2 2 2 
mech 1 l2 ⎛ 3m1vi 

⎞ 1 3m1 vi 1E = (1/ 3)m2 + / 2)2 = + m1(vi / 2)2 . (19.5.41)a m1(vi2 ⎝⎜ 2m2l ⎠
⎟ 2 8m2 2 

The mechanical energy when the rod just reaches the ceiling when the final angular speed is 
zero is then 

mech 1 = m2 g(l / 2) + m1 / 2)2 .E f (vi2 

Then the condition that the mechanical energy is constant becomes 

3m1
2vi 

2 1 1+ / 2)2 g(l / 2) + / 2)2 . (19.5.42)m1(vi = m2 m1(vi8m2 2 2 

We can now solve Eq. (19.5.42) for the initial speed of the object 

m2 4gl . (19.5.43)vi = 
m1 3 

We now return to the transition from state i to state a . and determine the constraint on the 
mass ratio in order for the collision to be elastic. The mechanical energy before the collision is 

mech 1 2= . (19.5.44)Ei m1vi2 

If we impose the condition that the collision is elastic then 

mech mech = E . (19.5.45)Ei a 

Substituting Eqs. (19.5.41) and (19.5.44) into Eq. (19.5.45) yields 
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1 	 2 3m1
2vi 

2 1 m1 = + m1 / 2)2 .vi 	 (vi2 8m2 2 
This simplifies to 

3 2 3m1
2vi 

2 

=m1vi8 8m2 

Hence we can solve for the mass ratio necessary to ensure that the collision is elastic if the 
final speed of the object is half it’s initial speed 

L

m2 = 1 . 	 (19.5.46)
m1 

L 

Notice that this mass ratio is independent of the initial speed of the object. 

L 

19.9 External Angular Impulse and Change in Angular Momentum 

Define the external angular impulse about a point S applied as the integral of 
the external torque about S 

t f ext ≡ ext dt . 	 (19.5.47)JS 	 ∫ τS 
ti 

Then the external angular impulse about S is equal to the change in angular momentum 

 
sys 

sys sys 

t f t f  
d
ext ≡S ∫ ext dt =τS ∫ S dtJ
 −
 (19.5.48)
=
 .
S , f S ,idtti ti 

Notice that this is the rotational analog to our statement about impulse and momentum, 

pd sys 

dt 
dt =
 
psys, f −


psys,i . (19.5.49)
 
t f 

ext ≡S ∫ 

F


t f 

ext dt = ∫ 

I
 

ti ti 

Example 19.8 Angular Impulse on Steel Washer 

A steel washer is mounted on the shaft of a small motor. The moment of inertia of the motor 
and washer is I0 . The washer is set into motion. When it reaches an initial angular speed ω0 , 
at t = 0 , the power to the motor is shut off, and the washer slows down until it reaches an 
angular speed of ω a at time ta . At that instant, a second steel washer with a moment of inertia 

w is dropped on top of the first washer. Assume that the second washer is only in contact 

19-26 

I 



  

            
           
        

            

           

          
   

 
  

 
             

           

        

    
 

       
 

 

 
  

  

 
       

  
 

     
 

         
 

  

   

 

   

 
 

 

 
 

       

with the first washer. The collision takes place over a time − t . Assume the Δtint = tb a 

frictional torque on the axle is independent of speed, and remains the same when the second 
washer is dropped. The two washers continue to slow down during the time interval 

until they stop at time t = t f . (a) What is the angular acceleration while the Δt2 = t f − tb 

washer and motor are slowing down during the interval Δt1 = ta ? (b) Suppose the collision is 
nearly instantaneous, Δtint − t )  0 . What is the angular speed ωb of the two washers = (tb a 

immediately after the collision is finished (when the washers rotate together)? 

washer 
motor 

= zk̂

Figure 19.24 Example 19.8 

Now suppose the collision is not instantaneous but that the frictional torque is independent of 
the speed of the rotor. (c) What is the angular impulse during the collision? (d) What is the 
angular velocity ωb of the two washers immediately after the collision is finished (when the 
washers rotate together)? (e) What is the angular deceleration α2 after the collision? 

Solution: a) The angular acceleration of the motor and washer from the instant when the 
power is shut off until the second washer was dropped is given by 

ω −ω0= a < 0 . (19.5.50)α1 Δt1 

(b) If the collision is nearly instantaneous, then there is no angular impulse and therefore the 
z -component of the angular momentum about the rotation axis of the motor remains constant 

0 = ΔL − I0ω . (19.5.51)z = Lf ,z − L0,z = (I0 + I w )ωb a 

We can solve Eq. (19.5.51) for the angular speed ωb of the two washers immediately after the 
collision is finished 
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I0= ω . (19.5.52)ωb a+ II0 w 

(c) The angular acceleration found in part a) is due to the frictional torque in the motor. 

motor 

f 

washer 

overhead view 

Figure 19.25 Frictional torque in the motor 

Let 

τ f = −τ f k̂ where τ f is the magnitude of the frictional torque (Figure 19.25) then 

−τ f = I0α1 = 
I0 (ω a − ω0 ) 

Δt1 

. (19.5.53) 

During the collision with the second washer, the frictional torque exerts an angular impulse 
(pointing along the z -axis in the figure), 

Δtint Jz = −∫
tb τ f dt = −τ f Δtint = I0 (ω a −ω0 ) . (19.5.54)

ta Δt1 

(d) The z -component of the angular momentum about the rotation axis of the motor changes 
during the collision, 

ΔL + I ω . (19.5.55)z = Lf ,z − L0,z = (I0 w )ω b − I0 a 

The change in the z -component of the angular momentum is equal to the z -component of the 
angular impulse 

Jz = ΔLz . (19.5.56) 

Thus, equating the expressions in Equations (19.5.54) and (19.5.55), yields 

⎛ ⎞Δtint (ω −ω0 ) − (I0 )ω . (19.5.57)I0 a = (I0 + I w )ωb a⎝⎜ Δt1 ⎠
⎟ 
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Solve Equation (19.5.57) for the angular velocity immediately after the collision, 

⎛ ⎛ ⎞ ⎞ 
ωb = 

I0 ⎜ (ω a −ω0 ) 
Δtint 

⎠⎟ 
+ ω a ⎟ . (19.5.58)

(I0 + I w ) ⎝ ⎝⎜ Δt1 ⎠ 

If there were no frictional torque, then the first term in the brackets would vanish, and the 
second term of Eq. (19.5.58) would be the only contribution to the final angular speed. 

(e) The final angular acceleration α2 is given by 

0 −ωb 
⎛ ⎛ ⎞ ⎞I0 Δtint α2 = = − ⎜ (ω a −ω0 ) 

⎠⎟ 
+ ω a ⎟ . (19.5.59)

Δt2 (I0 + I w )Δt2 ⎝ ⎝⎜ Δt1 ⎠ 
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Chapter 20 Rigid Body: Translation and Rotational Motion
 
Kinematics for Fixed Axis Rotation
 

Hence I feel no shame in asserting that this whole region engirdled by the 
moon, and the center of the earth, traverse this grand circle amid the rest 
of the planets in an annual revolution around the sun. Near the sun is the 
center of the universe. Moreover, since the sun remains stationary, 
whatever appears as a motion of the sun is really due rather to the motion 
of the earth.1 

Copernicus 

20.1 Introduction 

The general motion of a rigid body of mass m consists of a translation of the center of  
mass with velocity V cm and a rotation about the center of mass with all elements of the 


rigid body rotating with the same angular velocity ω cm . We prove this result in Appendix 
A. Figure 20.1 shows the center of mass of a thrown rigid rod follows a parabolic 
trajectory while the rod rotates about the center of mass. 

Figure 20.1 The center of mass of a thrown rigid rod follows a parabolic trajectory while 
the rod rotates about the center of mass. 

20.2 Constrained Motion: Translation and Rotation 

We shall encounter many examples of a rolling object whose motion is constrained. For 
example we will study the motion of an object rolling along a level or inclined surface 
and the motion of a yo-yo unwinding and winding along a string. We will examine the 
constraint conditions between the translational quantities that describe the motion of the 
center of mass, displacement, velocity and acceleration, and the rotational quantities that 
describe the motion about the center of mass, angular displacement, angular velocity and 
angular acceleration. We begin with a discussion about the rotation and translation of a 
rolling wheel. 

1Nicolaus Copernicus, De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres), 
Book 1 Chapter 10. 
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Figure 20.2 Rolling Wheel 

Consider a wheel of radius R is rolling in a straight line (Figure 20.2). The center of  
mass of the wheel is moving in a straight line at a constant velocity V cm . Let’s analyze 
the motion of a point P on the rim of the wheel. 

Let v P denote the velocity of a point P on the rim of the wheel with respect to reference 
frame O at rest with respect to the ground (Figure 20.3a). Let v′ P denote the velocity of 

the point P on the rim with respect to the center of mass reference frame Ocm moving 
 

with velocity V cm with respect to at O (Figure 20.3b). (You should review the definition 
of the center of mass reference frame in Chapter 15.2.1.) We can use the law of addition 
of velocities (Eq.15.2.4) to relate these three velocities, 

   
= v′ + V . (20.2.1)v P P cm 

Let’s choose Cartesian coordinates for the translation motion and polar coordinates for 
the motion about the center of mass as shown in Figure 20.3. 

(a) (b) 

Figure 20.3 (a) reference frame fixed to ground, (b) center of mass reference frame 

The center of mass velocity in the reference frame fixed to the ground is given by 


Vcm = Vcm î . (20.2.2) 

20-2 



  

         
 

 
      
 

           
 

 
      
 

             
 

 
    
 

           
           

  
 

 
 

  

 
             

 
    
 

 
 
  

 
          

 
 

 
    

  

 

 

   

    

   

 

     

    

        
   

    

     

         

 
   

      

where Vcm is the speed of the center of mass. The position of the center of mass in the 
reference frame fixed to the ground is given by 


Rcm (t) = (Xcm, 0 + Vcmt)î , (20.2.3) 

where Xcm, 0 is the initial x -component of the center of mass at t = 0 . The angular 
velocity of the wheel in the center of mass reference frame is given by 


ω = ω k̂ . (20.2.4)cm cm 

where ω cm is the angular speed. The point P on the rim is undergoing uniform circular 
motion with the velocity in the center of mass reference frame given by 

 ˆv′ P = Rω cmθ . (20.2.5) 

If we want to use the law of addition of velocities then we should express v′ P = Rω cmθ̂ in 
Cartesian coordinates. Assume that at t = 0 , θ(t = 0) = 0 i.e. the point P is at the top of 
the wheel at t = 0 . Then the unit vectors in polar coordinates satisfy (Figure 20.4) 

r̂ = sinθ î − cosθ ĵ 
. (20.2.6)

θ̂ = cosθ î + sinθ ̂j 

Therefore the velocity of the point P on the rim in the center of mass reference frame is 
given by 

v′ P = Rω cmθ̂ = Rω cm (cosθ î − sinθ ĵ) . (20.2.7) 

Figure 20.4 Unit vectors 

Now substitute Eqs. (20.2.2) and (20.2.7) into Eq. (20.2.1) for the velocity of a point P 
on the rim in the reference frame fixed to the ground 

 v P = Rω cm (cosθ î + sinθ ĵ) +V cm î . (20.2.8) 
= (V + Rω cosθ )î + Rω sinθ ĵcm cm cm 
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The point P is in contact with the ground when θ = π . At that instant the velocity of a 
point P on the rim in the reference frame fixed to the ground is 

 v (θ = π ) = (V − Rω )î . (20.2.9)P cm cm 

What velocity does the observer at rest on the ground measure for the point on the rim 
when that point is in contact with the ground? In order to understand the relationship 
between Vcm and ω cm , we consider the displacement of the center of mass for a small 
time interval Δt (Figure 20.5). 

Figure 20.5 Displacement of center of mass in ground reference frame. 

From Eq. (20.2.3) the x -component of the displacement of the center of mass is 

ΔXcm =Vcm Δt . (20.2.10) 

The point P on the rim in the center of mass reference frame is undergoing circular 
motion (Figure 20.6). 

Figure 20.6: Small displacement of point on rim in center of mass reference frame. 
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In the center of mass reference frame, the magnitude of the tangential displacement is 
given by the arc length subtended by the angular displacement Δθ = ω cm Δt , 

Δs = RΔθ = Rω cm Δt . (20.2.11) 

Case 1: if the x -component of the displacement of the center of mass is equal to the arc 
length subtended by Δθ , then the wheel is rolling without slipping or skidding, rolling 
without slipping for short, along the surface with 

ΔXcm = Δs . (20.2.12) 

Substitute Eq. (20.2.10) and Eq. (20.2.11) into Eq. (20.2.12) and divide through by Δt . 
Then the rolling without slipping condition becomes 

V = Rω , (rolling without slipping) . (20.2.13)cm cm 

Case 2: if the x -component of the displacement of the center of mass is greater than the 
arc length subtended by Δθ , then the wheel is skidding along the surface with 

ΔXcm > Δs . (20.2.14) 

Substitute Eqs. (20.2.10) and (20.2.11) into Eq. (20.2.14) and divide through by Δt , then 

V > Rω , (skidding) . (20.2.15)cm cm 

Case 3: if the x -component of the displacement of the center of mass is less than the arc 
length subtended by Δθ , then the wheel is slipping along the surface with 

ΔXcm < Δs . (20.2.16) 

Arguing as above the slipping condition becomes 

V < Rω , (slipping) . (20.2.17)cm cm 

20.2.1 Rolling without slipping 

When a wheel is rolling without slipping, the velocity of a point P on the rim is zero 
when it is in contact with the ground. In Eq. (20.2.9) set θ = π , 

  
v P (θ = π ) = (V cm − Rω cm )î = (Rω cm − Rω cm )î = 0 . (20.2.18) 

This makes sense because the velocity of the point P on the rim in the center of mass 
reference frame when it is in contact with the ground points in the opposite direction as 
the translational motion of the center of mass of the wheel. The two velocities have the 
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same magnitude so the vector sum is zero. The observer at rest on the ground sees the 
contact point on the rim at rest relative to the ground. 

Thus any frictional force acting between the tire and the ground on the wheel is static 
friction because the two surfaces are instantaneously at rest with respect to each other. 
Recall that the direction of the static frictional force depends on the other forces acting on 
the wheel. 

Example 20.1 Bicycle Wheel Rolling Without Slipping 

Consider a bicycle wheel of radius R that is rolling in a straight line without slipping. 
The velocity of the center of mass in a reference frame fixed to the ground is given by  
velocity Vcm . A bead is fixed to a spoke a distance b from the center of the wheel 
(Figure 20.7). (a) Find the position, velocity, and acceleration of the bead as a function of 
time in the center of mass reference frame. (b) Find the position, velocity, and 
acceleration of the bead as a function of time as seen in a reference frame fixed to the 
ground. 

Figure 20.8 Coordinate system for beadFigure 20.7 Example 20.1 
in center of mass reference frame 

Solution: a) Choose the center of mass reference frame with an origin at the center of the 
wheel, and moving with the wheel. Choose polar coordinates (Figure 20.8). The z -
component of the angular velocity ω cm = dθ / dt > 0 . Then the bead is moving uniformly 
in a circle of radius r = b with the position, velocity, and acceleration given by 

   2rb ′ = b r̂, v′ b = bω cm θ̂ , a′ b = −bω cm r̂ . (20.2.19) 

Because the wheel is rolling without slipping, the velocity of a point on the rim of the 
wheel has speed v′ P = Rω cm . This is equal to the speed of the center of mass of the wheel 
Vcm , thus 

V = Rω . (20.2.20)cm cm 

Note that at t = 0 , the angle θ = θ0 = 0 . So the angle grows in time as 
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θ(t) = ω t = (V / R)t . (20.2.21)cm cm 

The velocity and acceleration of the bead with respect to the center of the wheel are then 

 bV  bV 2 
cm cm v′ b = θ̂ , a′ b = − 

R2 r̂ . (20.2.22)
R 

b) Define a second reference frame fixed to the ground with choice of origin, Cartesian 
coordinates and unit vectors as shown in Figure 20.9. 

Figure 20.9 Coordinates of bead in reference frame fixed to ground 

Then the position vector of the center of mass in the reference frame fixed to the ground 
is given by  

R (t) = X î + R ĵ = V t î + R ĵ . (20.2.23)cm cm cm 

The relative velocity of the two frames is the derivative 

 d 
 

dXcm Rcm Vcm = = î = Vcm î . (20.2.24)
dt dt 

Because the center of the wheel is moving at a uniform speed the relative acceleration of 
the two frames is zero, 


A


d 
 
V
 cm = = 


0
.
 (20.2.25)
cm dt 

Define the position, velocity, and acceleration in this frame (with respect to the ground) 
by 

   rb (t) = xb (t) î + yb (t) ĵ, vb (t) = vb,x (t) î + vb,y (t) ĵ, a(t) = ab,x (t) î + ab,y (t) ĵ . (20.2.26) 

Then the position vectors are related by 
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  (t) = R (t) + rb ′(t) . (20.2.27)rb cm 

In order to add these vectors we need to decompose the position vector in the center of 
mass reference frame into Cartesian components, 

 rb ′(t) = b r̂(t) = bsinθ(t) î + bcosθ(t) ĵ . (20.2.28) 

Then using the relation θ(t) = (V cm / R)t , Eq. (20.2.28) becomes 

   rb (t) = R cm (t) + rb ′(t) = (V cm t î + R ĵ) + (bsinθ(t) î + bcosθ(t) ĵ) 
. (20.2.29) 

= (V t + bsin((V / R)t)) ̂i + ( R + bcos((V / R)t)) ̂jcm cm cm 

Thus the position components of the bead with respect to the reference frame fixed to the 
ground are given by 

(t) = V t + bsin((V / R)t) (20.2.30)xb cm cm 

(t) = R + bcos((V / R)t) . (20.2.31)yb cm 

A plot of the y -component vs. the x -component of the position of the bead in the 
reference frame fixed to the ground is shown in Figure 20.10 below using the values 
V cm = 5 m ⋅ s-1 , R = 0.25 m , and b = 0.125 m . We can differentiate the position vector in 
the reference frame fixed to the ground to find the velocity of the bead 


 vb (t) = 
drb 

dt 
(t) = 

d 
(V t + bsin((V / R)t)) î + 

d 
(R + bcos((V / R)t) ) ĵ ,cm cm cm (20.2.32)


dt dt 
 v (t) = (V + (b / R)V cos((V / R)t)) î − ((b / R)V sin((V / R)t) ) ĵ . (20.2.33)b cm cm cm cm 

Figure 20.10 Plot of the y -component vs. the x -component of the position of the bead 
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Alternatively, we can decompose the velocity of the bead in the center of mass reference 
frame into Cartesian coordinates 

v′ (t) = (b / R)V (cos((V / R)t) î − sin((V / R)t) ĵ) . (20.2.34)b cm cm cm 

The law of addition of velocities is then 

  (t) = V + v′ (t) , (20.2.35)vb cm b 
 v (t) = V î + (b / R)V (cos((V / R)t) î − sin((V / R)t) ĵ) , (20.2.36)b cm cm cm cm 

 v (t) = (V + (b / R)V cos((V / R)t)) î − (b / R)sin((V / R)t) ĵ , (20.2.37)b cm cm cm cm 

in agreement with our previous result. The acceleration is the same in either frame so 

  2(t) = a′ = −(b / R2 )V r̂ = −(b / R2 )V 2 (sin((V / R)t) î + cos((V / R)t) ĵ) . (20.2.38)ab b cm cm cm cm 

When the bead is at the rim of the wheel, b = R , then the position of the bead in the 
reference frame fixed to the ground is given by 

 rb (t) = (V cm t + Rsin((V cm / R)t)) ̂i + R(1+ cos((V cm / R)t))) ̂j . (20.2.39) 

The path traced out by the bead in the reference frame fixed to the ground is called a 
cycloid. 

Example 20.2 Cylinder Rolling Without Slipping Down an Inclined Plane 

A uniform cylinder of outer radius R and mass M with moment of inertia about the 
center of mass I cm = (1 / 2) M R2 starts from rest and rolls without slipping down an 
incline tilted at an angle β from the horizontal. The center of mass of the cylinder has 
dropped a vertical distance h when it reaches the bottom of the incline. Let g denote the 
gravitational constant. What is the relation between the component of the acceleration of 
the center of mass in the direction down the inclined plane and the component of the 
angular acceleration into the page of Figure 20.11? 
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Figure 20.11 Example 20.2 

Solution: We begin by choosing a coordinate system for the translational and rotational 
motion as shown in Figure 20.12. 

Figure 20.12 Coordinate system for rolling cylinder 

For a time interval Δt , the displacement of the center of mass is given by  
ΔR (t) = ΔX î . The arc length due to the angular displacement of a point on the rim cm cm 

during the time interval Δt is given by Δs = RΔθ . The rolling without slipping condition 
is 

ΔX = RΔθ . cm 

If we divide both sides by Δt and take the limit as Δt → 0 then the rolling without 
slipping condition show that the x -component of the center of mass velocity is equal to 
the magnitude of the tangential component of the velocity of a point on the rim 

ΔX cm ΔθV = lim = lim R = Rω . cm cm Δt→0 Δt Δt→0 Δt 

Similarly if we differentiate both sides of the above equation, we find a relation between 
the x -component of the center of mass acceleration is equal to the magnitude of the 
tangential component of the acceleration of a point on the rim 

dV dω cm cm A = = R = Rα . cm cm dt dt 

Example 20.3 Falling Yo-Yo 

A Yo-Yo of mass m has an axle of radius b and a spool of radius R (Figure 20.13a). Its 
moment of inertia about the center of mass can be taken to be I = (1 / 2)mR2 (the 
thickness of the string can be neglected). The Yo-Yo is released from rest. What is the 
relation between the angular acceleration about the center of mass and the linear 
acceleration of the center of mass? 
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Solution: Choose coordinates as shown in Figure 20.13b. 

Figure 20.13a Example 20.3 Figure 20.13b Coordinate system for 
Yo-Yo 

Consider a point on the rim of the axle at a distance r = b from the center of mass. As the 
yo-yo falls, the arc length Δs = bΔθ subtended by the rotation of this point is equal to 
length of string that has unraveled, an amount Δl . In a time interval Δt , bΔθ = Δl . 
Therefore bΔθ / Δt = Δl / Δt . Taking limits, noting that, V = dl / dt , we have that cm, y 

bω = V . Differentiating a second time yields bα = A .cm cm, y cm cm, y 

Example 20.4 Unwinding Drum 

Drum A of mass m and radius R is suspended from a drum B also of mass m and 
radius R , which is free to rotate about its axis. The suspension is in the form of a 
massless metal tape wound around the outside of each drum, and free to unwind (Figure 
20.14). Gravity acts with acceleration g downwards. Both drums are initially at rest. 
Find the initial acceleration of drum A , assuming that it moves straight down. 

Figure 20.14 Example 20.4 
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Solution: The key to solving this problem is to determine the relation between the three 
kinematic quantities α A , α B , and aA , the angular accelerations of the two drums and the 
linear acceleration of drum A . Choose the positive y -axis pointing downward with the 
origin at the center of drum B . After a time interval Δt , the center of drum A has 
undergone a displacement Δy . An amount of tape ΔlA has unraveled from drum = RΔθA 

A , and an amount of tape ΔlB has unraveled from drum B . Therefore the = RΔθB 

displacement of the center of drum A is equal to the total amount of tape that has 
unwound from the two drums, Δy = ΔlA . Dividing through by Δt+ ΔlB = RΔθA + RΔθB 

and taking the limit as Δt → 0 yields 

dy dθA dθB= R + R .
dt dt dt 

Differentiating a second time yields the desired relation between the angular 
accelerations of the two drums and the linear acceleration of drum A , 

d 2 y d 2θA d 2θB= R + R 
dt2 dt2 dt2 

aA, y = Rα A + Rα B . 

20.3 Angular Momentum for a System of Particles Undergoing 
Translational and Rotational 

We shall now show that the angular momentum of a body about a point S can be 
decomposed into two vector parts, the angular momentum of the center of mass (treated 
as a point particle) about the point S , and the angular momentum of the rotational 
motion about the center of mass. 

Consider a system of N particles located at the points labeled i = 1,2,, N . The angular 
momentum about the point S is the sum 

r 

Ltotal 

S , i 
i=1 i=1 

where rS i, is the vector from the point S to the ith particle (Figure 20.15) satisfying 

   r = r + r (20.3.2)S , i S , cm cm,i , 
   v = V + v (20.3.3)S ,i cm cm,i , 

  
where = V . We can now substitute both Eqs. (20.3.2) and (20.3.3) into Eq. vS , cm cm 

(20.3.1) yielding 

N 
L
 

N v∑
 ∑
= (
 ) , (20.3.1)
× mi =
 S S ,i i 
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 N  
Ltotal    = ∑(r + r ) × m (V + v ) . (20.3.4)S S , cm cm,i i cm cm,i 


i=1 


Figure 20.15 Vector Triangle 

r 

When we expand the expression in Equation (20.3.4), we have four terms, 

S ,cm S ,cm 
rtotal = 


LS 


V
 

N Nv∑
 ∑
(
 )
 (
 )
× mi +
 × micm,i cm 
i=1 i=1 (20.3.5)

N N 

V
(

 r cm,i × mi 
v cm,i )
 +



∑
 ∑
(
 ).
 +
 × mir cm,i cm 

th imass and not on the location of the particle. Therefore in the first term in the above 


L r 

i=1 i=1 

r 

The vector is a constant vector that depends only on the location of the center of rS , cm 

 equation, can be taken outside the summation. Similarly, in the second term the rS , cm  
velocity of the center of mass V cm is the same for each term in the summation, and may 
be taken outside the summation, 

total 
S ,cm S ,cm 


V
 

N N⎛
 ⎞
 ⎛
 ⎞
v∑
 ∑
×
 
⎠⎟ 
+
 ×
mi mi =
 

⎝⎜
 ⎝⎜
 ⎠⎟
S cm,i cm 
i=1 i=1 (20.3.6)


N N 
V


⎞
⎛

 
v∑(
 ∑
cm,i )
+
 × mi +
 
⎠⎟ 
×
r cm,i mir cm,i⎝⎜
 

.
 cm 
i=1 i=1 

The first and third terms in Eq. (20.3.6) are both zero due to the fact that 

N ∑mir cm,i = 0 
i=1 (20.3.7)
N ∑miv cm,i = 0. 

i=1 

N We first show that ∑m r is zero. We begin by using Eq. (20.3.2),i cm,i
 
i=1
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N N 

cm,i
 
i=1 i=1
 

r∑
 ∑
(mi )
 ((mi −
 ))
 =
 i S ,cm 

i S ,cm i S ,cm 

Substitute the definition of the center of mass (Eq. 10.5.3) into Eq. (20.3.8) yielding 

r r 

r 

r 

r

r
(20.3.8)


N N N⎛
 ⎞
∑
 ∑(mi ∑
 total −
 ) 
 − mmi mi =
 =
 
⎝⎜
 ⎠⎟
 

.
 
i=1 i=1 i=1 

N 

∑
(mi 


 r cm,i )
 =
 
N 

∑
 
1 N 
 m ri i =
 


0 .
 (20.3.9)

 m ri i − mtotal ∑
total mi=1 i=1 i=1 

N The vanishing of ∑m v = 0 follows directly from the definition of the center of mass i cm,i 

i=1 


frame, that the momentum in the center of mass is zero. Equivalently the derivative of 
Eq. (20.3.9) is zero. We could also simply calculate and find that 


 v 
 
V
∑mi = ∑ (
 −
 )
v micm,i i cm 

i i 
V


v∑
 ∑
−
mi mi =
 i (20.3.10)
cm 
i i

V
 

V
total total −
= m m cm cm 

=
 

0
.
 

r
L


We can now simplify Eq. (20.3.6) for the angular momentum about the point S using the 
N  V 

 
fact that, mT = ∑mi , and psys = mT cm (in reference frame O ): 

i=1 


total  

N  
S , cm 


 
∑(
 ) . (20.3.11)
sys +×
 × mi =
 p r cm,i vS cm,i 
i=1 

  Consider the first term in Equation (20.3.11), × p ; the vector is the vectorrS ,cm sys rS ,cm 

from the point S to the center of mass. If we treat the system as a point-like particle of 
mass mT located at the center of mass, then the momentum of this point-like particle is 
  
p V . Thus the first term is the angular momentum about the point S of this sys = mT cm 

“point-like particle”, which is called the orbital angular momentum about S , 

L


orbital 
S 

 × p . (20.3.12)= rS ,cm sys 

for the system of particles. 
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N 

Consider the second term in Equation (20.3.11), ∑(r  × m v  ) ; the quantity inside cm,i i cm,i 
i=1 

the summation is the angular momentum of the ith particle with respect to the origin in 
the center of mass reference frame Ocm (recall the origin in the center of mass reference 
frame is the center of mass of the system), 

  L = r v (20.3.13)cm,i cm,i × mi cm,i . 

Hence the total angular momentum of the system with respect to the center of mass in the 
center of mass reference frame is given by 

 N  N 
 r cm,i × mi 
v cm,i ) . (20.3.14)
∑
 ∑(
spin L L
=
 =
 cm,icm 

i=1 i=1 

a vector quantity we call the spin angular momentum. Thus we see that the total angular 
momentum about the point S is the sum of these two terms, 

   
Ltotal orbital + Lspin = L . (20.3.15)S S cm 

This decomposition of angular momentum into a piece associated with the translational 
motion of the center of mass and a second piece associated with the rotational motion 
about the center of mass in the center of mass reference frame is the key conceptual 
foundation for what follows. 

Example 20.5 Earth’s Motion Around the Sun 

The earth, of mass me = 5.97×1024 kg and (mean) radius Re = 6.38×106 m , moves in a 

nearly circular orbit of radius r s,e = 1.50 ×1011 m around the sun with a period 

Torbit = 365.25 days , and spins about its axis in a period Tspin = 23 hr 56 min , the axis 
inclined to the normal to the plane of its orbit around the sun by 23.5° (in Figure 20.16, 
the relative size of the earth and sun, and the radius and shape of the orbit are not 
representative of the actual quantities). 

Figure 20.16 Example 20.5 
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If we approximate the earth as a uniform sphere, then the moment of inertia of the earth 
about its center of mass is 

Icm = 
2 m R e

2 . (20.3.16)
5 e 

If we choose the point S to be at the center of the sun, and assume the orbit is circular, 
then the orbital angular momentum is 

 
Lorbital 

S 
  ˆ ˆ× p = r r̂ × m v θ = r m v k . (20.3.17)= rS ,cm sys s,e e cm s,e e cm 

The velocity of the center of mass of the earth about the sun is related to the orbital 
angular velocity by 

vcm = rs,e ωorbit , (20.3.18) 
where the orbital angular speed is 

2π 2π 
= =ωorbit Torbit (365.25 d)(8.640 × 104 s ⋅ d−1) (20.3.19) 
= 1.991× 10−7 rad ⋅ s−1. 

The orbital angular momentum about S is then 


orbital = m r kLS e 

2 ωorbit 
ˆ 

s,e 

= (5.97 × 1024 kg)(1.50 × 1011 m)2(1.991× 10−7 rad ⋅ s−1) k̂ (20.3.20) 
2 ⋅ s= (2.68 × 1040 kg ⋅ m −1) k̂. 

The spin angular momentum is given by 

L


spin  2 = I ω = m R n̂ , (20.3.21)cm cm spin 5 e e
2 ω spin 

where n̂ is a unit normal pointing along the axis of rotation of the earth and 

2π 2π −5 −1ωspin = = × ⋅ . (20.3.22)= 7.293 10 rad s
T 8.616×104 sspin 

The spin angular momentum is then 


spin L cm = 2 

(5.97 × 1024 kg)(6.38 × 106 m)2(7.293 × 10−5 rad ⋅ s−1) n̂ 
5 (20.3.23) 

2 ⋅ s= (7.10 × 1033 kg ⋅ m −1) n̂. 
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The ratio of the magnitudes of the orbital angular momentum about S to the spin angular 
momentum is greater than a million, 

orbital 2 ωm r r 2 TL e s,e orbit 5 s,e spin S = = = 3.77×106 , (20.3.24)spin 2 2L (2 / 5)m R ω 2 R Tcm e e spin e orbit 

as this ratio is proportional to the square of the ratio of the distance to the sun to the 
radius of the earth. The angular momentum about S is then 


total 2 ˆ 2 2L = m r ω k + m R ω n̂ . (20.3.25)S e s,e orbit e e spin 5 

The orbit and spin periods are known to far more precision than the average values used 
for the earth’s orbit radius and mean radius. Two different values have been used for one 
“day;” in converting the orbit period from days to seconds, the value for the solar day, 
T = 86,400s was used. In converting the earth’s spin angular frequency, the siderealsolar 

day, Tsidereal = Tspin = 86,160s was used. The two periods, the solar day from noon to noon 
and the sidereal day from the difference between the times that a fixed star is at the same 
place in the sky, do differ in the third significant figure. 

20.4 Kinetic Energy of a System of Particles 

ith Consider a system of particles. The particle has mass mi and velocity vi with respect 
to a reference frame O . The kinetic energy of the system of particles is given by 

K = ∑ 
1 2 1 ∑mi =mi vi2 2 

v i ⋅
v i 

i i (20.4.1)
 
+
 

V
 +
 


V


1 ∑mi (2 

 ) ⋅(
v ).
 v=
 cm,i cm,icm cm 

i 

where Equation 15.2.6 has been used to express  vi in terms of  v cm,i 

 
and Vcm . Expanding 

the last dot product in Equation (20.4.1), 

!!!1 ∑mi2 
!
 !
 !
V ⋅ V
 V
K =
 (
 ⋅
 + 2
 ⋅
 )
+
v v v cm,i cm,i cm,icm cm cm 

i 

!
!
 !
1
 

2
 

1
 

2
 
!
 !
 !
∑
 ∑mi (
 ) + ∑
V V 
 V (20.4.2)
(
 ⋅
 ) +
 ⋅
 ⋅
mi v v miv=
 cm,i cm,i cm,icm cm cm 

i i i 

1 1 ⎛∑ 2
2 2 
cm,i 

!
 ⎞
 !
∑
 ⎝⎜∑m 
⎠⎟ 
⋅ 

i i 

V
 V
+
 +
=
 miv mi v .
 cm,i2
 cm cm 
i 
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The last term in the third equation in (20.4.2) vanishes as we showed in Eq. (20.3.7). 
Then Equation (20.4.2) reduces to 

1 2 1 2K = ∑ miv cm,i + ∑mi V cm 
i 2 2 i (20.4.3)

1 2 1 total V 2= ∑ miv + m . cm,i cm 
i 2 2 

We interpret the first term as the sum of the individual kinetic energies of the particles of 
the system in the center of mass reference frame O cm and the second term as the kinetic 
energy of the center of mass motion in reference frame O . 

At this point, it’s important to note that no assumption was made regarding the mass 
elements being constituents of a rigid body. Equation (20.4.3) is valid for a rigid body, a 
gas, a firecracker (but K is certainly not the same before and after detonation), and the 
sixteen pool balls after the break, or any collection of objects for which the center of 
mass can be determined. 

20.5 Rotational Kinetic Energy for a Rigid Body Undergoing Fixed Axis 
Rotation 

The rotational kinetic energy for the rigid body, using v = (r ) ω θ̂ , simplifies tocm, i cm, i ⊥ cm 

K = 
1 I ω 2 . (20.5.1)rot cm cm 2 

Therefore the total kinetic energy of a translating and rotating rigid body is 

1 2 1 2= K + K = mV + I ω . (20.5.2)K total trans rot cm cm cm 2 2 
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Appendix 20A Chasles’s Theorem: Rotation and Translation of a Rigid 
Body 

We now return to our description of the translating and rotating rod that we first 
considered when we began our discussion of rigid bodies. We shall now show that the 
motion of any rigid body consists of a translation of the center of mass and rotation about 
the center of mass. 

We shall demonstrate this for a rigid body by dividing up the rigid body into point-like 
constituents. Consider two point-like constituents with masses m1 and m2 . Choose a 

coordinate system with a choice of origin such that body 1 has position r1 and body 2 
has position r2 (Figure 20A.1). The relative position vector is given by 

1,2 1 

r r r .2−
 (20.A.1)
=
 

Figure 20A.1 Two-body coordinate system. 
 

Recall we defined the center of mass vector, R cm , of the two-body system as 

r rm1 1 + m2 2 
cm m1 + m2 

In Figure 20A.2 we show the center of mass coordinate system. 


R
 (20.A.2)
=
 . 


Figure 20A.2 Position coordinates with respect to center of mass 
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The position vector of the object 1 with respect to the center of mass is given by 

m1 1 + m2 2 m2 

m1 + m2 m1 + m2 

r rr1cm 


R
cm,1 1 1 2 1,2 , 

where 

r 

mm µ = 1 2 , (20.A.4) 

r 

m + m1 2 

r 

r 

is the reduced mass. In addition, the relative position vector between the two objects is 

r 

independent of the choice of reference frame, 

r12 1 2 cm,1 cm,2 cm,1 cm,2 cm,1,2 . 
r r r 

r 

r 

r 

r 

µ 

m1 

−
 −
 (
 −
 ) =
 (20.A.3)
=
 =
 =
 


  
R
 

 
R



−
 = (
 ) − (
 ) =
 −
 (20.A.5)
+
 +
=
 =
 cm cm 

Because the center of mass is at the origin in the center of mass reference frame, 

rm + m1 cm,1 2 cm,2 

r 
0
 (20.A.6)
=
 .
 

m1 + m2 

Therefore 
  (20.A.7)m1rcm,1 = −m2rcm,2 
  . (20.A.8)= m2m1 rcm,1 rcm,2 

The displacement of object 1 about the center of mass is given by taking the derivative of 
Eq. (20.A.3), 

d rcm,1 = 
µ 

m1 

d r1,2 . (20.A.9) 

r r r 

A similar calculation for the position of object 2 with respect to the center of mass yields 
for the position and displacement with respect to the center of mass 

µ 
cm,2 1,2 , 


R
−
 = −
 (20.A.10)
=
 2 cm m2 

 µ d = − d (20.A.11)
rcm,2 r1,2 . m2 

Let i = 1,2 . An arbitrary displacement of the ith object is given respectively by 

   
dr = dr + dR , (20.A.12)i cm,i cm 
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which is the sum of a displacement about the center of mass dr cm,i and a displacement of 
 

the center of mass dR cm . The displacement of objects 1 and 2 are constrained by the 
condition that the distance between the objects must remain constant since the body is 
rigid. In particular, the distance between objects 1 and 2 is given by 

1,2 1 2 1 2 

r r r r r 
2 
= (
 −
 ) ⋅ (
 −
 ) .
 (20.A.13)
 

Because this distance is constant we can differentiate Eq. (20.A.13), yielding the rigid 
body condition that 

1 2 1 2 1,2 

r 

20A.1. Translation of the Center of Mass 

r

r 

The condition (Eq. (20.A.14)) can be satisfied if the relative displacement vector between 

r

r 

1,2 1 2 

r 

r 

r r1,2 −
 ) ⋅ (d − d ⋅ d0 = 2(
 ) = 2
 (20.A.14)
 

the two objects is zero, 
0
d = d − d (20.A.15)
=
 .
 

r r 

This implies, using, Eq. (20.A.9) and Eq. (20.A.11), that the displacement with respect to 
the center of mass is zero, 

cm,1 cm,2 


0
d = d (20.A.16)
=
 .
 

Thus by Eq. (20.A.12), the displacement of each object is equal to the displacement of 
the center of mass,  

d = dR , (20.A.17)ri cm 

which means that the body is undergoing pure translation. 

20A.2 Rotation about the Center of Mass 

r r r1,2 1 2 

terms of the center of mass coordinates. Using Eq. (20.A.9), the rigid body condition (Eq. 
(20.A.14)) becomes 

0 = 2 
µ 

m1 

 r1,2 ⋅ d
 rcm,1 . (20.A.18) 

Because the relative position vector between the two objects is independent of the choice 
of reference frame (Eq. (20.A.5)), the rigid body condition Eq. (20.A.14) in the center of 
mass reference frame is then given by 

 0 = 2r ⋅ dr (20.A.19)cm,1,2 cm,1 . 


0
Now suppose that d = d − d ≠
 . The rigid body condition can be expressed in 
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This condition is satisfied if the relative displacement is perpendicular to the line passing 
through the center of mass, 

 ⊥ dr (20.A.20)rcm,1,2 cm,1 . 

 By a similar argument, rcm,1,2 ⊥ drcm,2 . In order for these displacements to correspond to a 
rotation about the center of mass, the displacements must have the same angular 
displacement. 

Figure 20A.3 Infinitesimal angular displacements in the center of mass reference frame 

In Figure 20A.3, the infinitesimal angular displacement of each object is given by 

dr cm,1 dθ1 =  rcm,1 

dr cm,2 dθ2 =  rcm,2 

, (20.A.21)
 

. (20.A.22)
 

From Eq. (20.A.9) and Eq. (20.A.11), we can rewrite Eqs. (20.A.21) and (20.A.22) as 

dθ1 = 
µ 

m1 

d r1,2 
 rcm,1 

, 

dθ2 = 
µ 

m2 

d r1,2 
 rcm,2 

. 

Recall that in the center of mass reference frame m1 

 rcm,1 = m2 

 rcm,2 

and hence the angular displacements are equal, 

(20.A.23) 

(20.A.24) 

(Eq. (20.A.8)) 
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dθ1 = dθ2 = dθ . (20.A.25) 

Therefore the displacement of the ith object dri differs from the displacement of the 
 

center of mass dR cm by a vector that corresponds to an infinitesimal rotation in the center 
of mass reference frame 

  dr = dR + dr (20.A.26)i cm cm,i . 

We have shown that the displacement of a rigid body is the vector sum of the 
displacement of the center of mass (translation of the center of mass) and an infinitesimal 
rotation about the center of mass. 
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Chapter 21 Rigid Body Dynamics: Rotation and Translation 
about a Fixed Axis 

Accordingly, we find Euler and D'Alembert devoting their talent and their 
patience to the establishment of the laws of rotation of the solid bodies. 
Lagrange has incorporated his own analysis of the problem with his 

calculus, in which ideas take the place of symbols, and intelligent 
propositions supersede equations. 1 

James Clerk Maxwell 

21.1 Introduction 

We shall analyze the motion of systems of particles and rigid bodies that are undergoing 

by a translation of the center of mass and a rotation about the center of mass. By choosing 
a reference frame moving with the center of mass, we can analyze the rotational motion 

rotation about the center of mass, our rotational equation of motion is similar to one we  ext spin / dt .have already encountered for fixed axis rotation, τ = dL cm cm 

general treatment of mechanics, and since his time M. Poinsôt has brought 
the subject under the power of a more searching analysis than that of the 

translational and rotational motion about fixed direction Because the body isa . 
slating, the axis of rotation is no longer fixed in space. We shall describe the motion tran 

separately and discover that the torque about the center of mass is equal to the change in 
the angular momentum about the center of mass. For a rigid body undergoing fixed axis 

p 

21.2 Translational Equation of Motion 

We shall think about the system of particles as follows. We treat the whole system as a 
single point-like particle of mass located at the center of mass moving with the mT  
velocity of the center of mass V cm . The external force acting on the system acts at the 
center of mass and from our earlier result (Eq. 10.4.9) we have that 

d sys 
F


d 
V
ext (mT ) . (21.2.1)
=
 =
 

dt dt cm 

21.3 Translational and Rotational Equations of Motion 

For a system of particles, the torque about a point S can be written as 

1 J. C. Maxwell on Louis Poinsôt (1777-1859) in 'On a Dynamical Top' (1857). In W. D. Niven (ed.), The 
Scientific Papers of James Clerk Maxwell (1890), Vol. 1, 248. 
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ext τ = ∑ 
N 

(r × F
 

) . (21.3.1)S i i 
i=1 

where we have assumed that all internal torques cancel in pairs. Let choose the point S 
  

to be the origin of the reference frame O , then r = R (Figure 21.1). (You may want S ,cm cm 

to recall the main properties of the center of mass reference frame by reviewing Chapter 
15.2.1.) 

S 

cm 

Fi 

rS ,cm 

r cm,i 
rS ,i 

ith particle 

Figure 21.1 Torque diagram for center of mass reference frame 

!rS , i S , cm cm,i 
!r !rWe can now apply to Eq. (21.3.1) yielding+
=
 

!
F

!
F!r 

!
F 

!
Fτ i i S ,cm i i 

!r
i=1 i=1 i=1 i=1 

The term 
! ! ! 
τext 

S ,cm Fext × (21.3.3)= rS ,cm 

!

in Eq. (21.3.2) corresponds to the external torque about the point S where all the external 
forces act at the center of mass (Figure 21.2). 

N N N N!
 !
 !
∑
 ∑
 ∑
 ∑
ext (
 )
 ((
 ) ×
 )
 (
 )
 (
 ) . (21.3.2)
×
 +
 ×
 +
 ×
r cm,i r cm,i r cm,i =
 =
 =
 S S i, 

S 

cm 

rS ,cm 

Fext 

S ,cm 
ext 

Figure 21.2 Torque diagram for “point-like” particle located at center of mass 

The term, 
N ext   

τ cm = ∑(r cm,i × Fi ) . (21.3.4) 
i=1 
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is the sum of the torques on the individual particles in the center of mass reference frame. 
If we assume that all internal torques cancel in pairs, then 

ext  ext )τ = ∑ 
N 

(r × F
 

. (21.3.5)cm cm,i i 
i=1 

We conclude that the external torque about the point S can be decomposed into two 
pieces,


τ
ext 

S =
 

τ
ext 

S ,cm 


τ
ext . (21.3.6)+
 cm 

We showed in Chapter 20.3 that 

 Nsys 
S , cm rL 
  
∑(
 cm,i ) , (21.3.7)
sys +×
 × mi =
 p r cm,i vS 

i=1 

r 

where the first term in Eq. (21.3.7) is the orbital angular momentum of the center of mass 

 
Lorbital 

S , cm 

about the point S 
psys , (21.3.8)×
=
 S 

 
L 

 
L 

 
L 

and the second term in Eq. (21.3.7) is the spin angular momentum about the center of 
mass (independent of the point S ) 

N 

L


spin   = ∑(r × m v ) . (21.3.9)S cm,i i cm,i 
i=1 

The angular momentum about the point S can therefore be decomposed into two terms 

sys spin (21.3.10)
=
 .
S 
orbital +S S 

Recall that that we have previously shown that it is always true that 

 
sys ext dLS= . (21.3.11)τS dt 

Therefore we can therefore substitute Eq. (21.3.6) on the LHS of Eq. (21.3.11) and 
substitute Eq. (21.3.10) on the RHS of Eq. (21.3.11) yielding as 

 
orbital spin   d d

τext 
S ,cm 

ext LS LS+ τ cm = + . (21.3.12)
dt dt 
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We shall now show that Eq. (21.3.12) can also be decomposed in two separate 
conditions. We begin by analyzing the first term on the RHS of Eq. (21.3.12). We 
differentiate Eq. (21.3.8) and find that 

 
Ld orbital 

S d
( S , cm 

B + 

r psys ) . (21.3.13)×
=
 
dt dt 

We apply the vector identity 

d 
 
A
 

 
B
d 

dt 
(
 

A
×
 

B
) =
 


A
 


 d 

d 

(21.3.14)
×
 × , 

psys 
S ,cm 

r 

dt dt 
to Eq. (21.3.13) yielding 

d S ,cm 

dt dt 

r 
 
Lorbital 

Sd 
×

p (21.3.15)
+
 ×
=
 .


dtsys 

The first term in Eq. (21.3.21) is zero because 

d S ,cm 

dt 

r 
×

p total 


V
 


0
=
 


V
 (21.3.16)
× m = 
 .
 sys cm cm 

r 
 
L 

Therefore the time derivative of the orbital angular momentum about a point S , Eq. 

orbital d S 
d sys 

S ,cm 

(21.3.15), becomes 
p 
dt 

(21.3.17)
×
=
 .

dt 

r 
L 

In Eq. (21.3.17), the time derivative of the momentum of the system is the external force, 

d p
Fext sys = . (21.3.18)

dt 

The expression in Eq. (21.3.17) then becomes the first of our relations 


orbital 

S , cm 


d 

S ext F
 (21.3.19)
×
=
 τext 
S ,cm = .

dt 

Thus the time derivative of the orbital angular momentum about the point S is equal to 
the external torque about the point S where all the external forces act at the center of 
mass, (we treat the system as a point-like particle located at the center of mass). 

We now consider the second term on the RHS of Eq. (21.3.12), the time derivative of the 
spin angular momentum about the center of mass. We differentiate Eq. (21.3.9), 

21-4 



  

 
    

  

  
          

  
 

 
    

  

 
  

 

 
    

  

 
        

 

 
    

  

 
    

 

 
    

  

  
  

 

 
    

  

 
    

         

         
    

 

 
    

  

  
 

 
 



 
  
 

 

 

 
 
 



 
 
 
 
 

 
 

 


 



 

 
 
  



 
 

 

 


 
 


 
 

 
  

 

 

 
 


 

 

 



 


 


 

 


 
 
 



spin NdLS d ∑   = (r v ) . (21.3.20)cm,i × mi cm,idt dt i=1 

We again use the product rule for taking the time derivatives of a vector product (Eq. 
(21.3.14)). Then Eq. (21.3.20) the becomes 

spin N ⎛
 

dr  ⎞ NdLS cm,i  ⎛  d  ⎞ 
= ∑⎜ × mi v cm,i ⎟ + ∑ r cm,i × (mi v cm,i ) . (21.3.21)

dt i=1 ⎝ dt ⎠ i=1 ⎝⎜ dt ⎠⎟ 

The first term in Eq. (21.3.21) is zero because 

N N⎛ dr cm,i  ⎞   
∑⎜ × miv cm,i ⎟ = ∑(v cm,i × miv cm,i ) = 0 . (21.3.22) 
i=1 ⎝ dt ⎠ i=1 

Therefore the time derivative of the spin angular momentum about the center of mass, 
Eq. (21.3.21), becomes 

spin NdLS ⎛  d  ⎞ 
= ∑ r × (m v ) . (21.3.23)cm,i i cm,idt i=1 ⎝⎜ dt ⎠⎟ 

The force, acting on an element of mass mi , is 

 d F = v ) . (21.3.24)i dt 
(mi cm,i 

The expression in Eq. (21.3.23) then becomes 


spin dL N  
S = ∑(r × F (21.3.25)cm,i i ) .dt i=1 

N  
The term, ∑(r  × F ) , is the sum of the torques on the individual particles in the center cm,i i
 

i=1
 

of mass reference frame. If we again assume that all internal torques cancel in pairs, 
Eq. (21.3.25) may be expressed as 


spin N NdLS   

ext ) 
 ext  ext 

dt 
= ∑(r cm,i × Fi = ∑τ cm,i = τ cm , (21.3.26) 

i=1 i=1 

which is the second of our two relations. 
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21.3.1 Summary 

For a system of particles, there are two conditions that always hold (Eqs. (21.3.19) and 
(21.3.26)) when we calculate the torque about a point S ; we treat the system as a point- 

Fext like particle located at the center of mass of the system. All the external forces act at 
the center of mass. We calculate the orbital angular momentum of the center of mass and 
determine its time derivative and then apply 


orbital 

S , cm 

L 
r 


 d
τ
ext 

S ,cm 

 Sext F
 (21.3.27)
×
=
 =
 .

dt 

In addition, we calculate the torque about the center of mass due to all the forces acting 
on the particles in the center of mass reference frame. We calculate the time derivative of 
the angular momentum of the system with respect to the center of mass in the center of 
mass reference frame and then apply 

 
L

F 
spin 

τ

21.4 Translation and Rotation of a Rigid Body Undergoing Fixed Axis 



Rotation 

For the special case of rigid body of mass m , we showed that with respect to a reference  
frame in which the center of mass of the rigid body is moving with velocity V cm , all 
elements of the rigid body are rotating about the center of mass with the same angular 

   
velocity ω . For the rigid body of mass m and momentum p = mV , the translational cm cm 

equation of motion is still given by Eq. (21.2.1), which we repeat in the form 

  
Fext = mA cm . (21.4.1) 

For fixed axis rotation, choose the z -axis as the axis of rotation that passes through the 
center of mass of the rigid body. We have already seen in our discussion of angular 
momentum of a rigid body that the angular momentum does not necessary point in the 
same direction as the angular velocity. However we can take the z -component of Eq. 
(21.3.28) 

dLspin 
ext cm,zτ cm,z = . (21.4.2)

dt 


For a rigid body rotating about the center of mass with ω = ω k̂ , the z -component of cm cm,z 

angular momentum about the center of mass is 

Lspin = I ω . (21.4.3)cm,z cm cm,z 

N dr icm, 
ext ∑ ext )i(
 cm . (21.3.28)×
=
 =
 

dtcm 
i=1 
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The z -component of the rotational equation of motion about the center of mass is 

dωext cm,zτ = I = I α . (21.4.4)cm,z cm cm cm,zdt 

21.5 Work-Energy Theorem 

For a rigid body, we can also consider the work-energy theorem separately for the 
 

like particle moving with velocity V cm in reference frame O . We can use the same 
technique that we used when treating point particles to show that the work done by the 
external forces is equal to the change in kinetic energy 

d(m ) d( )cm cm 

 
V 

translational motion and the rotational motion. Once again treat the rigid body as a point-

 
V

F
 

R
 


V



f f f

∫i 

ext ⋅ d ∫i ∫i 
W ext 

trans ⋅ d dt⋅
r = m=
 =
 
dt dtcm cm 

(21.5.1)

V
 


V


1
 1 2 1 
cm, f 

f 2 
cm, i∫i 

d( mV mV = ΔK
⋅
 )
 −
= m =
 .
trans 2
 2
 2
cm cm 

For the rotational motion we go to the center of mass reference frame and we determine 
the rotational work done i.e. the integral of the z -component of the torque about the 
center of mass with respect to dθ as we did for fixed axis rotational work. Then 

f  f dω f dθ fext ) cm,z(τ dθ = I dθ = I dω = I dω ω∫ cm z ∫ cm ∫ cm cm,z ∫ cm cm,z cm,zi i i idt dt . (21.5.2)
1 2 1 2= I ω − I ω = ΔK cm cm, f cm cm, i rot 2 2 

In Eq. (21.5.2) we expressed our result in terms of the angular speed ω cm because it 
appears as a square. Therefore we can combine these two separate results, Eqs. (21.5.1) 
and (21.5.2), and determine the work-energy theorem for a rotating and translating rigid 
body that undergoes fixed axis rotation about the center of mass. 

⎛ 1 2 1 2 ⎞ ⎛ 1 2 1 2 ⎞
W = 

⎝⎜ 
mVcm,f + I cm ω cm,f ⎠⎟ 

−
⎝⎜ 

mVcm,f + I cm ω cm,i ⎠⎟2 2 2 2 (21.5.3) 
= ΔK + ΔK = ΔK .trans rot 

Equations (21.4.1), (21.4.4), and (21.5.3) are principles that we shall employ to analyze 
the motion of a rigid bodies undergoing translation and fixed axis rotation about the 
center of mass. 
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21.6 Worked Examples 

Example 21.1 Angular Impulse 

Two point-like objects are located at the points A and B, of respective masses 
= 2 M , and M B = M , as shown in the figure below. The two objects are initially M A 

oriented along the y-axis and connected by a rod of negligible mass of length D , forming  
Fa rigid body. A force of magnitude F = along the x direction is applied to the object at 

B at t = 0 for a short time interval Δt , (Figure 21.3). Neglect gravity. Give all your 
answers in terms of M and D as needed. What is the magnitude of the angular velocity 
of the system after the collision? 

Figure 21.3 Example 21.1 

Solutions: An impulse of magnitude F Δt is applied in the +x direction, and the center 
of mass of the system will move in this direction. The two masses will rotate about the 
center of mass, counterclockwise in the figure. Before the force is applied we can 
calculate the position of the center of mass (Figure 21.4a), 

  M ArA + M BrB 2 M (D / 2) ĵ+ M (D / 2)(− ĵ)R cm = = 
3M 

= (D / 6) ĵ . (21.6.1)
M A + M B 

The center of mass is a distance (2 / 3)D from the object at B and is a distance (1/ 3)D 
from the object at A. 
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(a) (b) 

Figure 21.4 (a) Center of mass of system, (b) Angular momentum about point B 

 
Because FΔtî = 3MV cm , the magnitude of the velocity of the center of mass is then 

FΔt / 3M and the direction is in the positive î -direction. Because the force is applied at 
the point B, there is no torque about the point B, hence the angular momentum is constant 
about the point B. The initial angular momentum about the point B is zero. The angular 
momentum about the point B (Figure 21.4b) after the impulse is applied is the sum of two 
terms, 

     
0 = , = rB, f × 3MV cm + L = (2D / 3) ĵ× FΔt î + L cm LB f

 
cm 

  (21.6.2)
0 = (2 DF Δt / 3)(−k̂) + L cm . 

The angular momentum about the center of mass is given by 

 
. L = I ω k̂ = (2 M (D / 3)2 + M (2D / 3)2 )ω k̂ = (2 / 3) MD2ω k̂ . (21.6.3)cm cm 

Thus the angular about the point B after the impulse is applied is 

 
0 = (2DFΔt / 3)(−k̂) + (2 / 3) MD2ω k̂ (21.6.4) 

We can solve this Eq. (21.6.4) for the angular speed 

FΔtω = . (21.6.5)
MD 

Example 21.2 Person on a railroad car moving in a circle 

A person of mass M is standing on a railroad car, which is rounding an unbanked turn of 
radius R at a speed v . His center of mass is at a height of L above the car midway 
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between his feet, which are separated by a distance of d . The man is facing the direction 
of motion (Figure 21.5). What is the magnitude of the normal force on each foot? 

Figure 21.5 Example 21.2
 

Solution: We begin by choosing a cylindrical coordinate system and drawing a free-body 

force diagram, shown in Figure 21.6. 

Figure 21.6 Coordinate system for Example 21.2 

We decompose the contact force between the inner foot closer to the center of the circular  
motion and the ground into a tangential component corresponding to static friction f1 and 

 
a perpendicular component, N1 . In a similar fashion we decompose the contact force 
between the outer foot further from the center of the circular motion and the ground into a  
tangential component corresponding to static friction f2 and a perpendicular component, 
 
N2 . We do not assume that the static friction has its maximum magnitude nor do we 

    
assume that f1 or N1 . The gravitational force acts at the center of mass.= f2 = N2 

We shall use our two dynamical equations of motion, Eq. (21.4.1) for translational 
motion and Eq. (21.4.4) for rotational motion about the center of mass noting that we are 


considering the special case that α cm = 0 because the object is not rotating about the 
center of mass. In order to apply Eq. (21.4.1), we treat the person as a point-like particle 
located at the center of mass and all the external forces act at this point. The radial 
component of Newton’s Second Law (Eq. (21.4.1) is given by 

2v r̂ : − f1 = −m . (21.6.6)− f2 R 
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The vertical component of Newton’s Second Law is given by 

k̂ : N1 + N2 − mg = 0 . (21.6.7) 

The rotational equation of motion (Eq. (21.4.4) is 

τ
 total 

cm = 0 . (21.6.8) 

We begin our calculation of the torques about the center of mass by noting that the 
gravitational force does not contribute to the torque because it is acting at the center of 
mass. We draw a torque diagram in Figure 21.7a showing the location of the point of 
application of the forces, the point we are computing the torque about (which in this case 

is the center of mass), and the vector from the point we are computing the torque rcm,1 

about to the point of application of the forces. 

(a) (b) 

Figure 21.7 Torque diagram for (a) inner foot, (b) outer foot 

The torque on the inner foot is given by 

    ⎛ d ⎞ ⎛ d ⎞ˆ ˆ ˆτcm,1 = rcm,1 × (f1 + N1) = − r̂ − Lk
⎠⎟ 
× (− f1r̂ + N1k) = N1 + Lf1 θ . (21.6.9)

⎝⎜ 2 ⎝⎜ 2 ⎠⎟ 

We draw a similar torque diagram (Figure 21.7b) for the forces applied to the outer foot. 
The torque on the outer foot is given by 

    ⎛ d ⎞ ⎛ d ⎞
τcm,2 = rcm,2 × (f2 + N2 ) = + r̂ − Lk̂ 

⎠⎟ 
× (− f2r̂ + N2k̂) = − N2 + Lf2 θ̂ . (21.6.10)

⎝⎜ 2 ⎝⎜ 2 ⎠⎟ 

   
Notice that the forces f1 , N1 , and f2 all contribute torques about the center of mass in the 

 
positive θ̂ -direction while N2 contributes a torque about the center of mass in the 
negative θ̂ -direction. According to Eq. (21.6.8) the sum of these torques about the center 
of mass must be zero. Therefore 
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 ext   ⎛ d ⎞ ⎛ d ⎞ˆ ˆτ cm = τcm,1 + τcm,2 = 
⎝⎜ 

N1 + Lf1⎠⎟ 
θ + 

⎝⎜ 
− N2 + Lf2 ⎠⎟ 

θ
2 2 

(21.6.11)
⎛ d ⎞  

= ) + L( f1 + f2 ) θ = 0.(N1 − N2⎝⎜ 2 ⎠⎟ 
ˆ 

Notice that the magnitudes of the two frictional forces appear together as a sum in Eqs. 
(21.6.11) and (21.6.6). We now can solve Eq. (21.6.6) for f1 and substitute the result + f2 

into Eq. (21.6.11) yielding the condition that 

d v2 

) + Lm = 0 . (21.6.12)(N1 − N22 R 
We can rewrite this Eq. as 

2Lmv2 

= . (21.6.13)N2 − N1 Rd 

We also rewrite Eq. (21.6.7) in the form 

= mg . (21.6.14)N2 + N1 

We now can solve for N2 by adding together Eqs. (21.6.13) and (21.6.14), and then 
divide by two, 

1 ⎛ 2Lmv2 ⎞
N2 = Mg + 

⎠⎟ 
. (21.6.15)

2 ⎝⎜ Rd 

We now can solve for N1 by subtracting Eqs. (21.6.13) from (21.6.14), and then divide 
by two, 

1 ⎛ 2Lmv2 ⎞
N1 = mg − 

⎠⎟ 
. (21.6.16)

2 ⎝⎜ Rd 

Check the result: we see that the normal force acting on the outer foot is greater in 
magnitude than the normal force acting on the inner foot. We expect this result because 
as we increase the speed v , we find that at a maximum speed v max , the normal force on 

the inner foot goes to zero and we start to rotate in the positive θ̂ -direction, tipping 
outward. We can find this maximum speed by setting N1 = 0 in Eq. (21.6.16) resulting in 

gRd v = . (21.6.17)max 2L 
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Example 21.3 Torque, Rotation and Translation: Yo-Yo 

A Yo-Yo of mass m has an axle of radius b and a spool of radius R . Its moment of 
inertia about the center can be taken to be Icm = (1 / 2)mR2 and the thickness of the string 
can be neglected (Figure 21.8). The Yo-Yo is released from rest. You will need to 
assume that the center of mass of the Yo-Yo descends vertically, and that the string is 
vertical as it unwinds. (a) What is the tension in the cord as the Yo-Yo descends? (b) 
What is the magnitude of the angular acceleration as the yo-yo descends and the 
magnitude of the linear acceleration? (c) Find the magnitude of the angular velocity of 
the Yo-Yo when it reaches the bottom of the string, when a length l of the string has 
unwound. 

Figure 21.8 Example 21.3 Figure 21.9 Torque diagram for Yo-Yo 

Solutions: a) as the Yo-Yo descends it rotates clockwise in Figure 21.9. The torque about 
the center of mass of the Yo-Yo is due to the tension and increases the magnitude of the 
angular velocity. The direction of the torque is into the page in Figure 21.9 (positive z -
direction). Use the right-hand rule to check this, or use the vector product definition of 
torque, 

   
τcm = rcm,T × T . (21.6.18) 

  
About the center of mass, rcm,T = −b î and T = −T ĵ , so the torque is 

   
τ = r T = (−b ̂i) × (−T ĵ) = bT k̂ . (21.6.19)cm cm,T × 

Apply Newton’s Second Law in the ĵ -direction, 

mg − T = may . (21.6.20) 

Apply the rotational equation of motion for the Yo-Yo, 
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bT = I α , (21.6.21)cm z 

where α is the z -component of the angular acceleration. The z -component of the z 
angular acceleration and the y -component of the linear acceleration are related by the 
constraint condition 

ay = bα z , (21.6.22) 

where b is the axle radius of the Yo-Yo. Substitute Eq. (21.6.22) into (21.6.20) yielding 

mg − T = mbα . (21.6.23)z 

Now solve Eq. (21.6.21) for α and substitute the result into Eq.(21.6.23),z 

mb2T mg − T = . (21.6.24)
Icm 

Solve Eq. (21.6.24) for the tension T , 

mg mg mg T = = = . (21.6.25)
⎛
 ⎛
⎞
 ⎛
⎞
 ⎞
mb2 mb2 2b2 
1+
 1+
 1+
⎜
⎝


⎜
⎝


⎟
⎠


⎜
⎝


⎟
⎠


⎟
⎠
(1 / 2)mR2 R2Icm 

b) Substitute Eq. (21.6.25) into Eq. (21.6.21) to determine the z -component of the 
angular acceleration, 

bT 2bgα = = . (21.6.26)z I (R2 + 2b2 )cm 

Using the constraint condition Eq. (21.6.22), we determine the y -component of linear 
acceleration 

2b2g gay = bα z = = (21.6.27)
(R2 + 2b2 ) 1+ R2 / 2b2 . 

Note that both quantities a > 0 and α > 0 , so Eqs. (21.6.26) and (21.6.27) are the z z 
magnitudes of the respective quantities. For a typical Yo-Yo, the acceleration is much 
less than that of an object in free fall. 

c) Use conservation of energy to determine the magnitude of the angular velocity of the 
Yo-Yo when it reaches the bottom of the string. As in Figure 21.9, choose the downward 
vertical direction as the positive ĵ -direction and let y = 0 designate the location of the 
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center of mass of the Yo-Yo when the string is completely wound. Choose U ( y = 0) = 0 
for the zero reference potential energy. This choice of direction and reference means that 
the gravitational potential energy will be negative and decreasing while the Yo-Yo 
descends. For this case, the gravitational potential energy is 

U = −mg y . (21.6.28) 

The Yo-Yo is not yet moving downward or rotating, and the center of mass is located at 
y = 0 so the mechanical energy in the initial state, when the Yo-Yo is completely wound, 

is zero 
= U ( y = 0) = 0 . (21.6.29)Ei 

Denote the linear speed of the Yo-Yo as v f and its angular speed as ω f (at the point 

y = l ). The constraint condition between v f and ω f is given by 

(21.6.30)v f = bω f , 

consistent with Eq. (21.6.22). The kinetic energy is the sum of translational and rotational 
kinetic energy, where we have used I = (1 / 2)mR2 , and so mechanical energy in the cm 

final state, when the Yo-Yo is completely unwound, is 

1 2 1 ω 2= mv I f − mgl E f = K f +U f f + cm 2 2 (21.6.31) 
= 

1 mb2ω 2 
f + 

1 mR2ω 2 
f − mgl.

2 4 

There are no external forces doing work on the system (neglect air resistance), so 

0 = E f = Ei . (21.6.32) 
Thus 

⎛ ⎞ 2 

⎝⎜ 
1 
2 

mb2 + 
1 mR2 

⎠⎟ 
ω f = mgl . (21.6.33)

4 

Solving for ω f , 

ω f = 
4gl 

(2b2 + R2 ) 
. (21.6.34)
 

We may also use kinematics to determine the final angular velocity by solving for the 
time interval Δt that it takes for the Yo-Yo to travel a distance l at the constant 
acceleration found in Eq. (21.6.27)), 
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Δt = 2l / ay = 
l(R2 + 2b2 ) 

b2g 
(21.6.35)
 

The final angular velocity of the Yo-Yo is then (using Eq. (21.6.26) for the z -component 
of the angular acceleration), 

4gl
= α Δt = ,	 (21.6.36)ω f z (R2 + 2b2 ) 

in agreement with Eq. (21.6.34). 

Example 21.4 Cylinder Rolling Down Inclined Plane 

A uniform cylinder of outer radius R and mass M with moment of inertia about the 
center of mass, Icm = (1/ 2)M R2 , starts from rest and rolls without slipping down an 
incline tilted at an angle β from the horizontal. The center of mass of the cylinder has 
dropped a vertical distance h when it reaches the bottom of the incline Figure 21.10. Let 
g denote the gravitational constant. The coefficient of static friction between the cylinder 
and the surface is µs . What is the magnitude of the velocity of the center of mass of the 
cylinder when it reaches the bottom of the incline? 

Figure 21.10 Example 21.4 

Solution: We shall solve this problem three different ways. 

1.	 Apply the torque condition about the center of mass and the force law for the 
center of mass motion. 

2.	 Apply the energy methods. 
3.	 Use torque about a fixed point that lies along the line of contact between the 

cylinder and the surface, 

First Approach: Rotation about center of mass and translation of center of mass 
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We shall apply the torque condition (Eq. (21.4.4)) about the center of mass and the force 
law (Eq. (21.4.1)) for the center of mass motion. We will first find the acceleration and 
hence the speed at the bottom of the incline using kinematics. The forces are shown in 
Figure 21.11. 

Figure 21.11 Torque diagram about center of mass 

Choose x = 0 at the point where the cylinder just starts to roll. Newton’s Second Law, 
applied in the x - and y -directions in turn, yields 

Mg sin β − fs = Ma x , (21.6.37) 
−N + Mg cosβ = 0 . (21.6.38) 

Choose the center of the cylinder to compute the torque about (Figure 21.10). Then, the 
only force exerting a torque about the center of mass is the friction force, therefore the 
rotational equation of motion is 

f R = I α . (21.6.39)s cm z 

Use Icm = (1/ 2)M R2 and the kinematic constraint for the no-slipping condition 
α z = ax / R in Eq. (21.6.39) to solve for the magnitude of the static friction force yielding 

fs = (1/ 2)Max . (21.6.40) 

Substituting Eq. (21.6.40) into Eq. (21.6.37) yields 

Mg sinθ − (1 / 2) Ma x = Ma x , (21.6.41) 

which we can solve for the acceleration 

2 
ax = 

3 
g sin β . (21.6.42) 
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In the time t f it takes to reach the bottom, the displacement of the cylinder is 
x f = h / sin β . The x -component of the velocity v at the bottom is v = a t . Thusx x, f x f 

x f = (1/ 2)a t 2 . After eliminating t f , we have x f = v 2 / 2a , so the x -component ofx f x, f x 

the velocity when the cylinder reaches the bottom of the inclined plane is 

v x , f = 2a x x f = 2((2 / 3)g sin β)(h / sin β) = (4 / 3)gh . (21.6.43) 

Note that if we substitute Eq. (21.6.42) into Eq. (21.6.40) the magnitude of the frictional 
force is 

f s = (1 / 3) Mg sin β . (21.6.44) 

In order for the cylinder to roll without slipping 

f s ≤ µs Mg cosβ . (21.6.45) 

Combining Eq. (21.6.44) and Eq. (21.6.45) we have the condition that 

(1 / 3) Mg sin β ≤ µs Mg cosβ (21.6.46) 

Thus in order to roll without slipping, the coefficient of static friction must satisfy 

1 µ ≥ tan β . (21.6.47)s 3 

Second Approach: Energy Methods 

We shall use the fact that the energy of the cylinder-earth system is constant since the 
static friction force does no work. 

Figure 21.12 Energy diagram for cylinder 
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Choose a zero reference point for potential energy at the center of mass when the cylinder 
reaches the bottom of the incline plane (Figure 21.12). Then the initial potential energy is 

= Mgh . (21.6.48)Ui 

For the given moment of inertia, the final kinetic energy is 

1 2 + 
1 2Kf = 

2 
M v x , f 2 

I cm ω z , f 

1 2 + 
1 = M v (1/ 2) MR2(v / R)2 (21.6.49)x , f x , f2 2 

3 2= M v . x , f4 

Setting the final kinetic energy equal to the initial gravitational potential energy leads to 

3 2Mgh = M vx, f . (21.6.50)
4 

The magnitude of the velocity of the center of mass of the cylinder when it reaches the 
bottom of the incline is 

vx , f = (4 / 3)gh , (21.6.51) 
in agreement with Eq. (21.6.43). 

Third Approach: Torque about a fixed point that lies along the line of contact 
between the cylinder and the surface 

Choose a fixed point P that lies along the line of contact between the cylinder and the 
surface. Then the torque diagram is shown in Figure 21.13. 

Figure 21.13 Torque about a point along the line of contact 
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The gravitational force Mg = Mg sin β î + Mg cosβ ĵ acts at the center of mass. The 
vector from the point P to the center of mass is given by r = d î − R ĵ , so the torque P,mg P 

due to the gravitational force about the point P is given by 

  τP,Mg = rP,Mg × Mg = (dP î − R ĵ) × ( Mg sinβ î + Mg cosβ ĵ) 
(21.6.52) 

= (dP Mg cosβ + RMg sin β )k̂. 

The normal force acts at the point of contact between the cylinder and the surface and is  
given by N = −N ĵ . The vector from the point P to the point of contact between the 

cylinder and the surface is r = d î . Therefore the torque due to the normal force P, N P 

about the point P is given by 

   
τ = r × N = (d î) × (−N ĵ) = −d N k̂ . (21.6.53)P, N P, N P P 

Substituting Eq. (21.6.38) for the normal force into Eq. (21.6.53) yields 


τ = −d Mg cosβk̂ . (21.6.54)P, N P 

Therefore the sum of the torques about the point P is 

  
τP = τP, Mg + τP, N = (dP Mg cosβ + RMg sin β)k̂ − dP Mg cos βk̂ = Rmg sin βk̂ . (21.6.55) 

The angular momentum about the point P is given by 

   
LP = Lcm + rP,cm × MVcm = Icmω zk̂ + (dP î − R ĵ) × (Mvx ) î . (21.6.56) 

= (Icmω z + RMvx ) k̂ 

The time derivative of the angular momentum about the point P is then 


dLP 

dt 
= (Icmα z + RMax ) k̂ . (21.6.57) 

Therefore the torque law about the point P , becomes 

RMgsin βk̂ = (Icmα z + RMax )k̂ . (21.6.58) 

Using the fact that Icm = (1 / 2)MR2 and α = a / R , the z -component of Eq. (21.6.58)x x 

is then 
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RMg sin β = (1/ 2)MRa + Rma = (3 / 2)MRa . (21.6.59)x x x 

We can now solve Eq. (21.6.59) for the x -component of the acceleration 

ax = (2 / 3)g sin β , (21.6.60) 

in agreement with Eq. (21.6.42). 

Example 21.5 Bowling Ball 

A bowling ball of mass m and radius R is initially thrown down an alley with an initial 
speed vi , and it slides without rolling but due to friction it begins to roll (Figure 21.14). 

The moment of inertia of the ball about its center of mass is I cm = (2 5)mR2 . Using 
conservation of angular momentum about a point (you need to find that point), find the 
speed v f and the angular speed ω f of the bowling ball when it just starts to roll without 
slipping? 

Figure 21.14 Example 21.5 

Solution: We begin introducing coordinates for the angular and linear motion. Choose 
an angular coordinate θ increasing in the clockwise direction. Choose the positive k̂ 
unit vector pointing into the page in Figure 21.15. 

Figure 21.15 Coordinate system for ball 

 ˆThen the angular velocity vector is ω = ω z k = dθ / dt k̂ , and the angular acceleration 


vector is α = α z k̂ = d 2θ / dt2 k̂ . Choose the positive î unit vector pointing to the right in 
Figure 21.15. Then the velocity of the center of mass is given by v = v î = dx / dt î ,cm cm,x cm 
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and the acceleration of the center of mass is given by a = a î = d 2 x / dt2 î . The cm cm,x cm 

free-body force diagram is shown in Figure 21.16. 

Figure 21.16 Free-body force diagram for ball 

 
At t = 0 , when the ball is released, v = v î and ω0 = 0 , so the ball is skidding and cm,0 0 

hence the frictional force on the ball due to the sliding of the ball on the surface is kinetic 
friction, hence acts in the negative î -direction. Because there is kinetic friction and non-
conservative work, mechanical energy is not constant. The rotational equation of motion 
  

is τS / dt . In order for angular momentum about some point to remain constant = dLS 

throughout the motion, the torque about that point must also be zero throughout the 
motion. As the ball moves down the alley, the contact point will move, but the frictional 
force will always be directed along the line of contact between the bowling bowl and the 
surface. Choose any fixed point S along the line of contact then 

r 
 τS , fk S , fk 

 
 
f =
0
 (21.6.61)
×
=
 k 

because , and are anti-parallel. The gravitation force acts at the center of mass rS f fkk 

hence the torque due to gravity about S is 
  τS ,mg = rS ,mg × mg = dmg k̂ , (21.6.62) 

where d is the distance from S to the contact point between the ball and the ground. The 
torque due to the normal force about S is 

  τS ,N = rS ,N × mg = −dNk̂ , (21.6.63) 

with the same moment arm d . Because the ball is not accelerating in the ĵ -direction, 
from Newton’s Second Law, we note that mg − N = 0 . Therefore 

 
τS ,N + τS ,mg = d(mg − N )k̂ = 0 . (21.6.64) 
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There is no torque about any fixed point S along the line of contact between the bowling 
bowl and the surface; therefore the angular momentum about that point S is constant, 

  
LS ,i = LS , f . (21.6.65) 

Choose one fixed point S along the line of contact (Figure 21.17). 

(a) (b) 

Figure 21.17 Angular momentum about S : (a) initial, (b) final 

The initial angular momentum about S is only due to the translation of the center of 
mass (Figure 21.17a),  

L

 

S ,cm,i × mv 
 cm,i = m Rv cm,ik̂ . (21.6.66)=
 rS ,i 

In Figure 21.17b, the ball is rolling without slipping. The final angular momentum about 
S has both a translational and rotational contribution 

   
LS , f = rS ,cm, f × mv cm, f + Icm ω f = m Rv cm, f k̂ + I cm ω z , f k̂ . (21.6.67) 

When the ball is rolling without slipping, v = Rω and also I = (2 / 5)m R2 . cm, f z , f cm 

Therefore the final angular momentum about S is 

 
LS , f = (m R + (2 / 5)m R)v cm, f k̂ = (7 / 5)m Rv cm, f k̂ . (21.6.68) 

Equating the z -components in Eqs. (21.6.66) and (21.6.68) yields 

m Rv = (7 / 5)m Rv (21.6.69)cm,i cm, f , 
which we can solve for 

v = (5 / 7)v (21.6.70)cm, f cm,i . 

The final angular velocity vector is 
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v 5vcm, f cm,iω
 
= ω z , f k̂ = k̂ = k̂ . (21.6.71)

R 7R 

We could also solve this problem by analyzing the translational motion and the rotational 
motion about the center of mass. Gravity exerts no torque about the center of mass, and 
the normal component of the contact force has a zero moment arm; the only force that 
exerts a torque is the frictional force, with a moment arm of R (the force vector and the 
radius vector are perpendicular). The frictional force should be in the negative x -
direction. From the right-hand rule, the direction of the torque is into the page, and hence 
in the positive z -direction. Equating the z -component of the torque to the rate of change 
of angular momentum about the center of mass yields 

τ cm = R fk = I cm α z , (21.6.72) 

where is the magnitude of the kinetic frictional force and α is the z -component of fk z 

the angular acceleration of the bowling ball. Note that Eq. (21.6.72) results in a positive 
z -component of the angular acceleration, which is consistent with the ball tending to 
rotate as indicated Figure 21.15. The frictional force is also the only force in the 
horizontal direction, and will cause an acceleration of the center of mass, 

a / m . (21.6.73)cm,x = − fk 

Note that the x -component of the acceleration will be negative, as expected. Now we 
need to consider the kinematics. The bowling ball will increase its z -component of the 
angular velocity as given in Eq. (21.6.72) and decrease its x -component of the velocity 
as given in Eq. (21.6.73), 

Rfkω z (t) = α z t = t
I cm (21.6.74)
fkv cm,x (t) = v cm,i − t. 
m 

As soon as the ball stops slipping, the kinetic friction no longer acts, static friction is 
zero, and the ball moves with constant angular and linear velocity. Denote the time when 
this happens as . At this time the rolling without slipping condition,t f 

ω z (t f ) = v cm,x (t f ) / R , holds and the relations in Eq. (21.6.74) become 

R2 fk = vt f cm,x , fI cm (21.6.75)
fk = vv − t f cm,x , f .cm,x ,i m 
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We can now solve the first equation in Eq. (21.6.75) for t f and find that 

I cm t f = 
R2 v cm,x , f . (21.6.76)

fk 

We now substitute Eq. (21.6.76) into the second equation in Eq. (21.6.75) and find that 

Ifk cm v = v − v cm,x , f cm,x ,i cm,x , fm R2fk (21.6.77)
I 

v = v − cm v cm,x , f cm,x ,i cm,x , f .m R2 

The second equation in (21.6.77) is easily solved for 

v0 5 
v = = v (21.6.78)cm,x , f cm,x ,i ,1+ I cm / mR2 7 

agreeing with Eq. (21.6.70) where we have used I cm = (2 / 5)m R2 for a uniform sphere. 

Example 21.6 Rotation and Translation Object and Stick Collision 

A long narrow uniform stick of length l and mass m lies motionless on ice (assume the 
ice provides a frictionless surface). The center of mass of the stick is the same as the 
geometric center (at the midpoint of the stick). The moment of inertia of the stick about 
its center of mass is I cm . A puck (with putty on one side) has the same mass m as the 

stick. The puck slides without spinning on the ice with a velocity of v i toward the stick, 
hits one end of the stick, and attaches to it (Figure 21.18). You may assume that the 
radius of the puck is much less than the length of the stick so that the moment of inertia 
of the puck about its center of mass is negligible compared to I cm . (a) How far from the 
midpoint of the stick is the center of mass of the stick-puck combination after the 

collision? (b) What is the linear velocity v of the stick plus puck after the collision? cm, f 

(c) Is mechanical energy conserved during the collision? Explain your reasoning. (d)


What is the angular velocity ω of the stick plus puck after the collision? (e) How far cm, f 

does the stick's center of mass move during one rotation of the stick? 
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Figure 21.18 Example 21.6 

Solution: In this problem we will calculate the center of mass of the puck-stick system 
after the collision. There are no external forces or torques acting on this system so the 
momentum of the center of mass is constant before and after the collision and the angular 
momentum about the center of mass of the puck-stick system is constant before and after 
the collision. We shall use these relations to compute the final angular velocity of the 
puck-stick about the center of mass. 

Figure 21.19 Center of mass of the system 

a) With respect to the center of the stick, the center of mass of the stick-puck combination 
is 

mstickdstick + mpuck dpuck m(l / 2) ld cm = = = . (21.6.79)
m + m 4mstick + mpuck 

where we are neglecting the radius of the puck (Figure 21.19). 

b) During the collision, the only net forces on the system (the stick-puck combination) 
are the internal forces between the stick and the puck (transmitted through the putty).  
Hence, the linear momentum is constant. Initially only the puck had linear momentum 
  pi = mv i = mvi ̂i . After the collision, the center of mass of the system is moving with 

velocity v = v î . Equating initial and final linear momenta,cm, f cm, f 
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vimvi = (2m)v cm, f ⇒ v = . (21.6.80)cm, f 2 

The direction of the velocity is the same as the initial direction of the puck’s velocity. 

c) The forces that deform the putty do negative work (the putty is compressed 
somewhat), and so mechanical energy is not conserved; the collision is totally inelastic. 

d) Choose the center of mass of the stick-puck combination, as found in part a), as the 
point S about which to find angular momentum. This choice means that after the 
collision there is no angular momentum due to the translation of the center of mass.  
Before the collision, the angular momentum was entirely due to the motion of the puck, 

  LS ,i = rpuck × pi = (l / 4)(mvi )k̂ , (21.6.81) 

ˆwhere k is directed out of the page in Figure 21.19. After the collision, the angular 
momentum is  

LS , f = I cm, f ω cm, f k̂ , (21.6.82) 

where I is the moment of inertia about the center of mass of the stick-puckcm, f 

combination. This moment of inertia of the stick about the new center of mass is found 
from the parallel axis theorem and the moment of inertia of the puck, which is m(l / 4)2 . 
Therefore 

I cm, f = Icm, stick + Icm, puck = (I cm + m(l / 4)2 ) + m(l / 4)2 = I cm + 
ml2 

. (21.6.83)
8 
  

Inserting this expression into Eq. (21.6.82), equating the expressions for LS , i and LS , f 

and solving for ω yieldscm, f 

m(l / 4) ω = (21.6.84)cm, f vi . I cm + ml2 / 8 

If the stick is uniform, I cm = ml2 / 12 and Eq. (21.6.84) reduces to 

6 viω = . (21.6.85)cm, f 5 l 

It may be tempting to try to calculate angular momentum about the contact point C , 
where the putty hits the stick. If this is done, there is no initial angular momentum, and 
after the collision the angular momentum will be the sum of two parts, the angular 
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momentum of the center of mass of the stick and the angular moment about the center of 
the stick, 

ω
 

L
 =
 C , f 
r ×


p + I
 cm cm cm, f . (21.6.86)
cm 

There are two crucial things to note: First, the speed of the center of mass is not the 
speed found in part b); the rotation must be included, so that v / 2 −ω (l / 4) . cm = vi cm, f 

 
Second, the direction of r ×p with respect to the contact point C is, from the right-cm cm 


hand rule, into the page, or the −k̂ -direction, opposite the direction of ω cm, f . This is to 

be expected, as the sum in Eq. (21.6.86) must be zero. Adding the k̂ -components (the 
only components) in Eq. (21.6.86), 

−(l / 2)m(vi / 2 −ω (l / 4)) + I ω = 0 . (21.6.87)cm, f cm cm, f 

Solving Eq. (21.6.87) for ω yields Eq. (21.6.84). cm, f 

This alternative derivation should serve two purposes. One is that it doesn’t matter which 
point we use to find angular momentum. The second is that use of foresight, in this case 
choosing the center of mass of the system so that the final velocity does not contribute to 
the angular momentum, can prevent extra calculation. It’s often a matter of trial and 
error (“learning by misadventure”) to find the “best” way to solve a problem. 

e) The time of one rotation will be the same for all observers, independent of choice of 
origin. This fact is crucial in solving problems, in that the angular velocity will be the 
same (this was used in the alternate derivation for part d) above). The time for one 
rotation is the period T = 2π / ω f and the distance the center of mass moves is 

v cm x = v T = 2π cm cm ω cm, f 

/ 2 vi= 2π (21.6.88)
⎛ m(l / 4) ⎞ 

⎝⎜ I cm + ml2 / 8 ⎠⎟ 
vi 

I cm + ml2 / 8 
= 2π . 

m(l / 2) 

Using I cm = ml2 / 12 for a uniform stick gives 

5 
x = π l . (21.6.89)cm 6 
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Chapter 22 Three Dimensional Rotations and Gyroscopes 

Hypothesis: The earth, having once received a rotational movement around an 
axis, which agrees with its axis on the figure or only differs from it slightly, will 
always conserve this uniform movement, and its axis of rotation will always 
remain the same and will be directed toward the same points of the sky, unless the 
earth should be subjected to external forces which might cause some change 
either in the speed of rotational movement or in the position of the axis of 
rotation.1 

Leonhard Euler 

22.1 Introduction to Three Dimensional Rotations 

Most of the examples and applications we have considered concerned the rotation of rigid bodies 
about a fixed axis. However, there are many examples of rigid bodies that rotate about an axis 
that is changing its direction. A turning bicycle wheel, a gyroscope, the earth’s precession about 
its axis, a spinning top, and a coin rolling on a table are all examples of this type of motion. 
These motions can be very complex and difficult to analyze. However, for each of these motions 
we know that if there a non-zero torque about a point S , then the angular momentum about S 
must change in time, according to the rotational equation of motion, 

 
 dLS= . (22.1.1)τS dt 

We also know that the angular momentum about S of a rotating body is the sum of the orbital 
angular momentum about S and the spin angular momentum about the center of mass. 

  
orbital + spin L = L L . (22.1.2)S S cm 

For fixed axis rotation the spin angular momentum about the center of mass is just 

 
Lspin  

= I ω . (22.1.3)cm cm cm 


where ω cm is the angular velocity about the center of mass and is directed along the fixed axis of 
rotation. 

22.1.1 Angular Velocity for Three Dimensional Rotations 

1 L. Euler, Recherches sur la precession des equinoxes et sur la nutation de l'axe de la terre 
(Research concerning the precession of the equinoxes and of the nutation of the earth's axis), Memoires de 
l'academie des sciences de Berlin 5, 1751, pp. 289-325 
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When the axis of rotation is no longer fixed, the angular velocity will no longer point in a fixed 
direction. 

For an object that is rotating with angular coordinates (θ ,θ ,θ ) about each x y z 

respective Cartesian axis, the angular velocity of an object that is rotating about 
each axis is defined to be 

 dθ dθ dθ x y z ˆω = î + ĵ+ k
dt dt dt (22.1.4) 

= ω î + ω ĵ + ω k̂ 
x y z 

This definition is the result of a property of very small (infinitesimal) angular rotations in which 
the order of rotations does matter. For example, consider an object that undergoes a rotation 

 
about the x -axis, ω = ω î , and then a second rotation about the y -axis, ω = ω ĵ . Now x x y y 

consider a different sequence of rotations. The object first undergoes a rotation about the y -axis, 
 
ω = ω ĵ , and then undergoes a second rotation about the x -axis, ω = ω î . In both cases the y y x x 

object will end up in the same position indicated that

ω
 +
 


ω
 =
 


ω
 +
 


ω
 x y y x , a necessary condition 

that must be satisfied in order for a physical quantity to be a vector quantity. 

Example 22.1 Angular Velocity of a Rolling Bicycle Wheel 

A bicycle wheel of mass m and radius R rolls without slipping about the z -axis. An axle of 
length b passes through its center. The bicycle wheel undergoes two simultaneous rotations. The  
wheel circles around the z -axis with angular speed Ω and associated angular velocity Ω = Ω z k̂ 

(Figure 22.1). Because the wheel is rotating without slipping, it is spinning about its center of 
 

mass with angular speed ω spin and associated angular velocity ω spin = −ω spin r̂ . 

b 

M 

R 

S ˆ 

r̂ 

k̂ 

Figure 22.1 Example 22.1 

The angular velocity of the wheel is the sum of these two vector contributions 
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ω

= Ω k̂ −ω spin r̂ . (22.1.5) 

Because the wheel is rolling without slipping, v cm = bΩ = ω spin R and so ω spin = bΩ / R . The 
angular velocity is then 


ω = Ω (k̂ − (b / R)r̂) . (22.1.6) 

The orbital angular momentum about the point S where the axle meets the axis of rotation 
(Figure 22.1), is then 

orbital ˆLS = bmv cm k = mb2Ω k̂ . (22.1.7) 

The spin angular momentum about the center of mass is more complicated. The wheel is rotating 
about both the z -axis and the radial axis. Therefore 


spin Ω ˆL cm = Iz k + Ir ω spin (−r̂) . (22.1.8) 

Therefore the angular momentum about S is the sum of these two contributions 

 
LS = mb2Ω k̂ + Iz Ω k̂ + Ir ω spin (−r̂) 

(22.1.9) 
= (mb2Ω + Iz Ω) k̂ − Ir (b Ω / R)r̂. 

Comparing Eqs. (22.1.6) and (22.1.9), we note that the angular momentum about S is not 
proportional to the angular velocity. 

22.2 Gyroscope 

A toy gyroscope of mass m consists of a spinning flywheel mounted in a suspension frame that 
allows the flywheel’s axle to point in any direction. One end of the axle is supported on a pylon a 
distance d from the center of mass of the gyroscope. 

s 

Figure 22.2a Toy Gyroscope 
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Choose polar coordinates so that the axle of the gyroscope flywheel is aligned along the r -axis 
and the vertical axis is the z -axis (Figure 22.2 shows a schematic representation of the 
gyroscope). 

.cm 

d 

S 

g 

r̂ k̂ 

ˆ .cm 

d 

S 

g 

r̂ k̂ 

ˆ 

Figure 22.2 A toy gyroscope. Figure 22.3 Angular rotations 

The flywheel is spinning about its axis with a spin angular velocity, 


ω s = ω s r̂ , (22.2.1) 

where ω s is the radial component and ω s > 0 for the case illustrated in Figure 22.2. 

When we release the gyroscope it undergoes a very surprising motion. Instead of falling 
downward, the center of mass rotates about a vertical axis that passes through the contact point 
S of the axle with the pylon with a precessional angular velocity 

 ˆΩ = Ω z k = 
dθ k̂ , (22.2.2)
dt 

where Ω z = dθ / dt is the z -component and Ω z > 0 for the case illustrated in Figure 22.3. 
Therefore the angular velocity of the flywheel is the sum of these two contributions 

   
ˆω = ω + Ω = ω r + Ω k̂ . (22.2.3)s s z 

We shall study the special case where the magnitude of the precession component Ω z of the 

ωangular velocity is much less than the magnitude of the spin component of the spin angular s 

ω


Ω << ω  ωvelocity, , so that the magnitude of the angular velocity and Ω and ω are z s s z s 

nearly constant. These assumptions are collectively called the gyroscopic approximation. 

The force diagram for the gyroscope is shown in Figure 22.4. The gravitational force acts at the   
center of the mass and is directed downward, Fg = −mg k̂ . There is also a contact force, Fc , 

 
between the end of the axle and the pylon. It may seem that the contact force, Fc , has only an  
upward component, Fv = Fz k̂ , but as we shall soon see there must also be a radial inward 
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component to the contact force, Fr = Fr r̂ , with Fr < 0 , because the center of mass undergoes 
circular motion. 

.cm 

d 

S r̂ k̂ 

ˆ 

Fpivot 

mg 

rS ,cm 

S 

F z 

F r 

Figure 22.4 Force and torque diagram for the gyroscope 

The reason that the gyroscope does not fall down is that the vertical component of the contact 
force exactly balances the gravitational force 

Fz − mg = 0 . (22.2.4) 

What about the torque about the contact point S ? The contact force acts at S so it does not 
contribute to the torque about S ; only the gravitational force contributes to the torque about S 
(Figure 22.5b). The direction of the torque about S is given by 

   
τ = r × F = d r̂ × mg(−k̂) = d mg θ̂ , (22.2.5)S S , cm gravity 

and is in the positive θ̂ -direction. However we know that if there a non-zero torque about S , 
then the angular momentum about S must change in time, according to 

 
 dLS= . (22.2.6)τS dt 

The angular momentum about the point S of the gyroscope is given by 

  
orbital + spin L = L L . (22.2.7)S S cm 

The orbital angular momentum about the point S is 

 
Lorbital   ˆ= r × mv = d r̂ × mdΩ θ = md 2Ω k̂ . (22.2.8)S S ,cm cm z z 

The magnitude of the orbital angular momentum about S is nearly constant and the direction 
does not change. Therefore 
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d   
Lorbital 

S = 0 . (22.2.9)
dt 

The spin angular momentum includes two terms. Recall that the flywheel undergoes two separate 
rotations about different axes. It is spinning about the flywheel axis with spin angular velocity 

ω s . As the flywheel precesses around the pivot point, the flywheel rotates about the z -axis with 

 
precessional angular velocity Ω (Figure 22.5). The spin angular momentum therefore is given 
by  

Lspin ˆ= I ω r̂ + I Ω k , (22.2.10)cm r s z z 

where Ir is the moment of inertia with respect to the flywheel axis and Iz is the moment of 
inertia with respect to the z -axis. If we assume the axle is massless and the flywheel is uniform 
with radius R , then I = (1 / 2)mR2 . By the perpendicular axis theorem I = I + I = 2I , hence r r z y z 

Iz = (1/ 4)mR2 . 

Figure 22.5: Rotations about center of mass Figure 22.6 Spin angular momentum. 
of flywheel 

Ω << ωRecall that the gyroscopic approximation holds when , which implies that z s 

I Ω << I ω , and therefore we can ignore the contribution to the spin angular momentum from z z r s 

the rotation about the vertical axis, and so 


spin  IL ω r̂ . (22.2.11)cm cm s 

(The contribution to the spin angular momentum due to the rotation about the z -axis, Iz Ω z k̂ , is 
nearly constant in both magnitude and direction so it does not change in time,  
d(Iz Ω z k̂) / dt  0 .) Therefore the angular momentum about S is approximately 

 
spin L  L = I ω r̂ . (22.2.12)S cm cm s 

Our initial expectation that the gyroscope should fall downward due to the torque that the 
gravitational force exerts about the contact point S leads to a violation of the torque law. If the 

22-6 



  

         
           

   
             

   
 

       
        

 
         

         
 

 

 
    

  

 
       
 

  
 

 
 

 
        

  
 

 
    

  

 
 

 

   

  

 

 

 

 
 

  
 

  
   

  
  

 
    

 
 

 
  

 
center of mass did start to fall then the change in the spin angular momentum, ΔLspin , would cm 

point in the negative z -direction and that would contradict the vector aspect of Eq. (22.2.6).  
Instead of falling down, the angular momentum about the center of mass, Lspin , must change cm  
direction such that the direction of ΔLspin is in the same direction as torque about S (Eq.cm 

(22.2.5)), the positive θ̂ -direction. 

Recall that in our study of circular motion, we have already encountered several examples in 
which the direction of a constant magnitude vector changes. We considered a point object of 
mass m moving in a circle of radius r . When we choose a coordinate system with an origin at the center of the circle, the position vector r is directed radially outward. As the mass moves in 
a circle, the position vector has a constant magnitude but changes in direction. The velocity 
vector is given by 

d r d dθ v = = (r r̂) = r θ̂ = rω θ̂ (22.2.13)
dt dt dt z 

and has direction that is perpendicular to the position vector (tangent to the circle), (Figure 
22.7a)). 

Figure 22.7 (a) Rotating position and velocity vector; (b) velocity and acceleration vector for 
uniform circular motion 

For uniform circular motion, the magnitude of the velocity is constant but the direction 
constantly changes and we found that the acceleration is given by (Figure 22.7b) 

d v d dθ a = = (vθθ̂) = vθ 
(−r̂) = rω ω (−r̂) = −rω 2r̂ . (22.2.14)z z zdt dt dt 

Note that we used the facts that 
dr̂ dθ ˆ= θ,
dt dt , (22.2.15)ˆdθ dθ 

= − r̂ 
dt dt 
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in Eqs. (22.2.13) and (22.2.14). We can apply the same reasoning to how the spin angular 
changes in time (Figure 22.8). 

The time derivative of the spin angular momentum is given by 

 dLspin  dLS cm, ω dθ ˆspin spin s ˆ ˆ= = L θ = L Ω θ = I ω Ω θ . (22.2.16)cm, ω cm, ω z r s zs sdt dt dt 

where Ω z = dθ / dt is the z -component and Ω z > 0 . The center of mass of the flywheel rotates 
about a vertical axis that passes through the contact point S of the axle with the pylon with a 
precessional angular velocity 

 ˆΩ = Ω z k = 
dθ k̂ , (22.2.17)
dt 

Substitute Eqs. (22.2.16) and (22.2.5) into Eq. (22.2.6) yielding 


spin ˆd mg θ̂ = L Ω z θ . (22.2.18)cm 

Solving Equation (22.2.18) for the z -component of the precessional angular velocity of the 
gyroscope yields 

d mg d mg 
Ω z = 

spin 
= . (22.2.19)

I ωL cm scm 

dL dL cm 

. 

.

..

. 

. 

L cm 

Lcm 

cm 

L cm 

L

L cm L cm 

dtdt

dL 

cm 

dL cm 

dt 
dL cm 

dt 

dLcm cm 

dt dt 
view from above 

Figure 22.8 Time changing direction of the spin angular momentum 
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22.3 Why Does a Gyroscope Precess? 

Why does a gyroscope precess? We now understand that the torque is causing the spin angular 
momentum to change but the motion still seems mysterious. We shall try to understand why the 
angular momentum changes direction by first examining the role of force and impulse on a 
single rotating particle and then generalize to a rotating disk. 

22.3.1 Deflection of a Particle by a Small Impulse 

p 

I = F t 

p1 

p2 

+ x 

+ y 
+ z 
S 

rS 

+ z 

+ z 

. p 

I = F t 

p1 

p2 

+ x 

+ y 

+ z 

L1 

L 

L2 

S 
rS 

p p 

(a) (b) 

Figure 22.9 (a) Deflection of a particle by a small impulse, (b) change in angular momentum 
about origin 

We begin by first considering how a particle with momentum p1 undergoes a deflection due to a 
 I << small impulse (Figure 22.9a). If the impulse , the primary effect is to rotate thep1 

momentum p1 1 + Δ 


 p I
about the x -axis by a small angle θ , with The application of =
 .
2  

causes a change in the angular momentum LO ,1 about the origin S , according to the torque 
!
 !

τ 
! !
 !rS S 

! 
Lpr 

! 
L 

Lequation, Δ = Δ Δt , we have that Δ 
! 

a result, ΔLS rotates about the x -axis by a small angle θ , to a new angular momentum 
+ Δ 


I
 

 
F
 

!
I
F
Δt = ( )Δt . Because . As×
 ×
=
 =
 =
 S ave, S Save ave 

! 
L
 

! 
L
 

! !
 
Note that although LS is in the z -direction, ΔLS is in the negative y -=
 .
S ,2 S ,1 S 

direction (Figure 22.9b). 
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22.3.2 Effect of Small Impulse on Tethered Object 

. 
L1 

+ z 

+ x 

+ y 
S 

rS 
F t 

p1 

L 

p1 

. 
L1 

+ z 

+ x 

+ yrS 
SF t 

L2 

(b)(a) 

Figure 22.10a Small impulse on object undergoing circular motion, (b) change in angular 
momentum 

Now consider an object that is attached to a string and is rotating about a fixed point S with 
  ! momentum p1 . The object is given an impulse I perpendicular to rS and to p1 . Neglect gravity. 
! 

As a result ΔLS rotates about the x -axis by a small angle θ (Figure 22.10a). Note that although 
 ! 
I is in the z -direction, ΔLS is in the negative y - direction (Figure 22.10b). Note that although 
 
I is in the z -direction, the plane in which the ball moves also rotates about the x -axis by the 
same angle (Figure 22.11). 

L2 

L 

L1 

F t 

p1 
p 

p2 

+ x 

+ z 

+ y 

Figure 22.11 Plane of object rotates about x -axis 
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Example 22.2 Effect of Large Impulse on Tethered Object 

. 
L1 

+z 

+ x 

+ y 

p1 

SL2 

p21 
2 

3 

4 
5 

6 

7 

8 

Figure 22.12 Example 22.2 
 

What impulse, I , must be given to the ball in order to rotate its orbit by 90 degrees as shown 
without changing its speed (Figure 21.12)? 

Solution: h. The impulse 
 
I must halt the momentum  p1 and provide a momentum  p2 of equal 

magnitude along the z -direction such that 
 
I = Δ p . 

+z 

+ x 

+ y 
S 

L2 
I = F t 

L1 

rS 

L 

+z 

+ y 

S t = rS I 

. 

!p !r !r 
! 

Figure 22.13 Impulse and torque about S 

The angular impulse about S must be equal to the change in angular momentum about S 

× Δ ) = ΔτS S S 

!
I


! 
L
Δt = = (
 (22.3.1)
×
 S 
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! 
The change in angular momentum, ΔLS , due to the torque about S , cancels the z -component of 
! 

and adds a component of the same magnitude in the negative y -direction (Figure 22.13).LS 

22.3.3 Effect of Small Impulse Couple on Baton 

+ zL 

L1L2 

+ y 

p 

. 
L1 

+z 

+ x 

+ y
S 

. 
I 

I

p1 

p1 + x p1 
(a) (b) 

Figure 22.14 (a) and (b) 

Now consider two equal masses at the ends of a massless rod, which spins about its center. We 
apply an impulse couple to insure no motion of the center of mass. Again note that the impulse 
couple is applied in the z -direction (Figure 22.14a). The resulting torque about S lies along the 
negative y -direction and the plane of rotation tilts about the x -axis (Figure 22.14b). 

22.3.4 Effect of Small Impulse Couple on Massless Shaft of Baton 

+z +z 

+ x 

+ y 

p1 

S 

p1 

. 
Ib . 

Ib 
. 

. 

+ x 

+ y
S 

.p1 

.aI I a 

p1 (b) 

(a) 
Figure 22.15 Apply impulse couple to (a) objects and (b) shaft 

! 
Instead of applying the impulse couple I a to the masses (Figure 21.15a), one could apply the 

! ! 
same impulse couple = I to the vertical massless shaft that is connected to the baton (FigureIb a 

22.15b) to achieve the same result. 

p2 

. 
. I 
I 

p2 
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+ x 

+ z 

+ y 

A 

S 

. 

Ib 

Ib 

. L1 
L2 

L 

. 
. 

p1 

p1 

Figure 22.16 Twisting shaft causes shaft and plane to rotate about x -axis 

Twisting the shaft around the y -axis causes the shaft and the plane in which the baton moves to 
rotate about the x -axis. 

22.3.5 Effect of a Small Impulse Couple on a Rotating Disk 

+z 
L 

L2 L1. 
Ib 

+ y 

Figure 22.17 Impulse couple causes a disk to rotate about the x -axis. 

Now let’s consider a rotating disk. The plane of a rotating disk and its shaft behave just like the 
plane of the rotating baton and its shaft when one attempts to twist the shaft about the y -axis. 
The plane of the disk rotates about the x -axis (Figure 22.17). This unexpected result is due to ! 
the large pre-existing angular momentum about S , L1 , due to the spinning disk. It does not 
matter where along the shaft the impulse couple is applied, as long as it creates the same torque 
about S . 

22.3.6 Effect of a Force Couple on a Rotating Disk 

. 
+ x 

Ib 
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. 

+ y 

Ib 

Ib 

+ z 

. 

.. 
I b 

Ib 

+ x 

+zL s 

L s (t + t) 

+ y 

L s (t) 

Figure 22.18 A series of small impulse couples causes the tip of the shaft to execute 
circular motion about the x -axis 

A series of small impulse couples, or equivalently a continuous force couple (with force  
F ), causes the tip of the shaft to execute circular motion about the x -axis (Figure 22.18). 
The magnitude of the angular momentum about S changes according to ! ! 

= Ω dt = Iω Ω dt . Recall that torque and changing angular momentum about SdLS LS 
!! ! ! 

=are related by τS / dt . Therefore Ω = Iω Ω . The precession rate of the τS LS = dLS 

shaft is the ratio of the magnitude of the torque to the angular momentum !! !
Ω = / = / Iω .τS LS τS 

Figure 22.19 Precessing gyroscope with hanging object 

Thus we can explain the motion of a precessing gyroscope in which the torque about the 
center of mass is provided by the force of gravity on the hanging object (Figure 22.19). 
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22.3.7 Effect of a Small Impulse Couple on a Non-Rotating Disc 

Figure 22.20 Impulse couple on non-rotating disk causes shaft to rotate about negative y 
-axis. 
! ! 

If the disk is not rotating to begin with, ΔLS is also the final LS . The shaft moves in the 
direction it is pushed (Figure 22.20). 

22.4 Worked Examples 

Example 22.3 Tilted Toy Gyroscope 

A wheel is at one end of an axle of length d . The axle is pivoted at an angle φ with 
respect to the vertical. The wheel is set into motion so that it executes uniform 
precession; that is, the wheel’s center of mass moves with uniform circular motion with z 
-component of precessional angular velocity Ω z . The wheel has mass m and moment of 


inertia I about its center of mass. Its spin angular velocity ω has magnitude ω and is cm s s 

directed as shown in Figure 22.21. Assume that the gyroscope approximation holds, 
Ω << ω s . Neglect the mass of the axle. What is the z -component of the precessionalz 

angular velocity Ω z ? Does the gyroscope rotate clockwise or counterclockwise about the 
vertical axis (as seen from above)? 

.d 

S g 

r̂ k̂ 

ˆ 

L cm 
spin 

s 
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Figure 22.21 Example 22.3 

Solution: The gravitational force acts at the center of mass and is directed downward,  
Fg = −mg k̂ . Let S denote the contact point between the pylon and the axle. The contact 
force between the pylon and the axle is acting at S so it does not contribute to the torque 
about S . Only the gravitational force contributes to the torque. Let’s choose cylindrical 
coordinates. The torque about S is 

   
τS = rS ,cm × Fg = (d sinφ r̂ + d cosφ k̂) × mg(−k̂) = mgd sinφ θ̂ , (22.4.1) 

which is into the page in Figure 22.21. Because we are assuming that Ω z << ω s , we only 
consider contribution from the spinning about the flywheel axle to the spin angular 
momentum, 


ω = −ω sinφ r̂ −ω cosφ k̂ (22.4.2)s s s 

The spin angular momentum has a vertical and radial component, 

! 
Lspin = − I ω sinφ r̂ − I ω cosφ k̂ . (22.4.3)cm cm s cm s 

We assume that the spin angular velocity ω s is constant. As the wheel precesses, the 
time derivative of the spin angular momentum arises from the change in the direction of 
the radial component of the spin angular momentum, 

d spin dr̂ dθ ˆL = − I ω sinφ = − I ω sinφ θ . (22.4.4)cm cm s cm sdt dt dt 

where we used the fact that 
dr̂ dθ ˆ= θ . (22.4.5)
dt dt 

The z -component of the angular velocity of the flywheel about the vertical axis is 
defined to be 

dθΩ ≡ . (22.4.6)z dt 

Therefore the rate of change of the spin angular momentum is then 

d spin ˆL = − I ω sinφ Ω θ . (22.4.7)cm cm s zdt 

The torque about S induces the spin angular momentum about S to change, 
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spin  dL 

= cm . (22.4.8)τS dt 

Now substitute Equation (22.4.1) for the torque about S , and Equation (22.4.7) for the 
rate of change of the spin angular momentum into Equation (22.4.8), yielding 

mgd sinφ θ̂ = − I ω sinφ Ω θ̂ . (22.4.9)cm s z 

Solving Equation (22.2.18) for the z -component of the precessional angular velocity of 
the gyroscope yields 

d mg Ω = − . (22.4.10)z I ω cm s 

The z -component of the precessional angular velocity is independent of the angle φ . 
! 

Because Ω z < 0 , the direction of the precessional angular velocity, Ω = Ω z k̂ , is in the 
negative z -direction. That means that the gyroscope precesses in the clockwise direction 
when seen from above (Figure 21.22). 

. 

. 

. 

L cm 

L cm 

L cm 

dL cm 

dt 

dL cm 

dt 

dL cm 

view from 
above 

dt 

Figure 21.22 Precessional angular velocity of tilted gyroscope as seen from above 

Both the torque and the time derivative of the spin angular momentum point in the θ̂ -
direction indicating that the gyroscope will precess clockwise when seen from above in 
agreement with the calculation that Ω z < 0 . 

Example 22.4 Gyroscope on Rotating Platform 

A gyroscope consists of an axle of negligible mass and a disk of mass M and radius R 
mounted on a platform that rotates with angular speed Ω . The gyroscope is spinning 
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with angular speed ω . Forces Fa and Fb act on the gyroscopic mounts. What are the 
magnitudes of the forces Fa and Fb (Figure 22.22)? You may assume that the moment of 
inertia of the gyroscope about an axis passing through the center of mass normal to the 
plane of the disk is given by I cm . 

d d 

A B 

FA 
FB 

Figure 22.22 Example 22.4 

Solution: Figure 22.23 shows a choice of coordinate system and force diagram on the 
gyroscope. 

Figure 22.23 Free-body force diagram 

The vertical forces sum to zero since there is no vertical motion 

F − Mg = 0 (22.4.11)a + Fb 
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Using the coordinate system depicted in the Figure 22.23, torque about the center of mass 
is 

 ˆτ = d(F )θ (22.4.12)cm a − Fb 

The spin angular momentum is (gyroscopic approximation) 


spin  IL ω r̂ (22.4.13)cm cm 

Looking down on the gyroscope from above (Figure 2.23), the radial component of the 
angular momentum about the center of mass is rotating counterclockwise. 

Figure 22.24 Change in angular momentum
 

During a very short time interval Δt , the change in the spin angular momentum is 

spin ΔL = I ωΔθ θ̂ , (Figure 22.24). Taking limits we have thatcm cm 

 
spin spin dL ΔL Δθ dθcm cm ˆ ˆ= lim = lim I ω θ = I ω θ (22.4.14)cm cm dt Δt→0 Δt Δt→0 Δt dt 

We can now apply the torque law 
spin  dL cm τ cm = . (22.4.15)

dt 

Substitute Eqs. (22.4.12) and (22.4.14) into Eq. (22.4.15) and just taking the component 
of the resulting vector equation yields 

d(F − Fb ) = I ω Ω . (22.4.16)a cm z 

We can divide Eq. (22.4.16) by the quantity d yielding 

I cm ω Ω zF = . (22.4.17)a − Fb d 

We can now use Eqs. (22.4.17) and (22.4.11) to solve for the forces Fa and Fb , 
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⎞1 ⎛ I cm ω Ω zFa = Mg + (22.4.18)
2 ⎝⎜ d ⎠⎟ 

= 
1 ⎛ Mg − 

I cm ω Ω z ⎞
⎠⎟ 

. (22.4.19)Fb 2 ⎝⎜ d 

Note that if Ω z = Mgd / I cm ω then Fb = 0 and one could remove the right hand support 
in the Figure 22.22. The simple pivoted gyroscope that we already analyzed Section 22.2 
satisfied this condition. The forces we just found are the forces that the mounts must exert 
on the gyroscope in order to cause it to move in the desired direction. It is important to 
understand that the gyroscope is exerting equal and opposite forces on the mounts, i.e. the 
structure that is holding it. This is a manifestation of Newton’s Third Law. 

Example 22.5 Grain Mill 

In a mill, grain is ground by a massive wheel that rolls without slipping in a circle on a 
flat horizontal millstone driven by a vertical shaft. The rolling wheel has mass M , radius 
b and is constrained to roll in a horizontal circle of radius R at angular speed Ω (Figure 
22.25). The wheel pushes down on the lower millstone with a force equal to twice its 
weight (normal force). The mass of the axle of the wheel can be neglected. What is the 
precessional angular frequency Ω ? 

g 

R 

b 

P. r̂ 
ˆ 

k̂

M 

Figure 22.25 Example 22.5 

Solution: Figure 22.5 shows the pivot point along with some convenient coordinate axes.  
For rolling without slipping, the speed of the center of mass of the wheel is related to the 
angular spin speed by 

vcm = bω . (22.4.20) 
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Also the speed of the center of mass is related to the angular speed about the vertical axis 
associated with the circular motion of the center of mass by 

vcm = RΩ . (22.4.21) 

Therefore equating Eqs. (22.4.20) and (22.4.21) we have that 

ω = ΩR / b . (22.4.22) 

Assuming a uniform millwheel, I cm = (1/ 2) Mb2 , the magnitude of the horizontal 
component of the spin angular momentum about the center of mass is 

Lspin 1 1 = I ω = Mb2ω = Ω MRb . (22.4.23)cm cm 2 2 

 
The horizontal component of Lspin is directed inward, and in vector form is given bycm 


spin Ω MRb L cm = − r̂ . (22.4.24)

2 

The axle exerts both a force and torque on the wheel, and this force and torque would be 
quite complicated. That’s why we consider the forces and torques on the axle/wheel 
combination. The normal force of the wheel on the ground is equal in magnitude to 
NW,G = 2mg so the third-law counterpart; the normal force of the ground on the wheel 

has the same magnitude NG,W = 2mg . The joint (or hinge) at point P therefore must 
  

exert a force FH,A on the end of the axle that has two components, an inward force F2 to 
 

maintain the circular motion and a downward force F1 to reflect that the upward normal 
force is larger in magnitude than the weight (Figure 22.26). 

P 
. r̂ 

ˆ 

k̂

F1 

F2 

N 

Mg 

Figure 22.26 Free-body force diagram on wheel 
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About point P , FH,A exerts no torque. The normal force exerts a torque of magnitude 

 ˆNG,W R = 2mgR , directed out of the page, or, in vector form, τ P,N = −2mgRθ . The 
weight exerts a toque of magnitude mgR , directed into the page, or, in vector form, 
 ˆτ P,mg = mgR θ . The torque about P is then 

   ˆτ P = τ P,N + τ P,mg = −2mgRθ̂ + mgR θ̂ = −mgR θ . (22.4.25) 

As the wheel rolls, the horizontal component of the angular momentum about the center 
ˆof mass will rotate, and the inward-directed vector will change in the negative θ -

direction. The angular momentum about the point P has orbital and spin decomposition 

 
Lspin 

 
L 

 
L
 =
 (22.4.26)
P 

orbital +P .
 cm 

The orbital angular momentum about the point P is 

 
Lorbital 

P 
  = rP,cm × mv cm = R r̂ × mbΩ θ̂ = mRbΩ z k̂ . (22.4.27) 

The magnitude of the orbital angular momentum about P is nearly constant and the 
direction does not change. Therefore 

orbital dLP 
 

= 0 . (22.4.28)
dt 

Therefore the change in angular momentum about the point P is 

  
dLspin dLP cm d ⎛ Ω mRb ⎞ 1 = = (−r̂) Ω mRbΩ(− θ̂) , (22.4.29)

⎠⎟ 
= 

dt dt dt ⎝⎜ 2 2 

where we used Eq. (22.4.24) for the magnitude of the horizontal component of the 
angular momentum about the center of mass. This is consistent with the torque about P 
pointing out of the plane of Figure 22.26. We can now apply the rotational equation of 
motion,  

 dLP= . (22.4.30)τP dt 

Substitute Eqs.(22.4.25) and (22.4.29) into Eq. (22.4.30) yielding 

mgR(− θ̂) = 
1 Ω2mRb(− θ̂). (22.4.31)
2 
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We can now solve Eq. (22.4.31) for the angular speed about the vertical axis 

2gΩ = . (22.4.32)
b 
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Chapter 23 Simple Harmonic Motion 

…Indeed it is not in the nature of a simple pendulum to provide equal and 
reliable measurements of time, since the wide lateral excursions often 
made may be observed to be slower than more narrow ones; however, we 
have been led in a different direction by geometry, from which we have 
found a means of suspending the pendulum, with which we were 
previously unacquainted, and by giving close attention to a line with a 
certain curvature, the time of the swing can be chosen equal to some 
calculated value and is seen clearly in practice to be in wonderful 
agreement with that ratio. As we have checked the lapses of time 
measured by these clocks after making repeated land and sea trials, the 
effects of motion are seen to have been avoided, so sure and reliable are 
the measurements; now it can be seen that both astronomical studies and 
the art of navigation will be greatly helped by them… 1 

Christian Huygens 

23.1 Introduction: Periodic Motion 

There are two basic ways to measure time: by duration or periodic motion. Early clocks 
measured duration by calibrating the burning of incense or wax, or the flow of water or 
sand from a container. Our calendar consists of years determined by the motion of the 
sun; months determined by the motion of the moon; days by the rotation of the earth; 
hours by the motion of cyclic motion of gear trains; and seconds by the oscillations of 
springs or pendulums. In modern times a second is defined by a specific number of 
vibrations of radiation, corresponding to the transition between the two hyperfine levels 
of the ground state of the cesium 133 atom. 

Sundials calibrate the motion of the sun through the sky, including seasonal 
corrections. A clock escapement is a device that can transform continuous movement into 
discrete movements of a gear train. The early escapements used oscillatory motion to stop 
and start the turning of a weight-driven rotating drum. Soon, complicated escapements 
were regulated by pendulums, the theory of which was first developed by the physicist 
Christian Huygens in the mid 17th century. The accuracy of clocks was increased and the 
size reduced by the discovery of the oscillatory properties of springs by Robert Hooke.  
By the middle of the 18th century, the technology of timekeeping advanced to the point 
that William Harrison developed timekeeping devices that were accurate to one second in 
a century. 

23.1.1 Simple Harmonic Motion: Quantitative 

1 Christian Huygens, The Pendulum Clock or The Motion of Pendulums Adapted to Clocks By Geometrical 
Demonstrations, tr. Ian Bruce, p. 1. 
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One of the most important examples of periodic motion is simple harmonic 
motion (SHM), in which some physical quantity varies sinusoidally. Suppose a function 
of time has the form of a sine wave function, 

y(t) = Asin(2π t / T ) (23.1.1) 

where A > 0 is the amplitude (maximum value). The function y(t) varies between A 
and − A , because a sine function varies between +1 and −1. A plot of y t( ) vs. time is 
shown in Figure 23.1. 

Figure 23.1 Sinusoidal function of time 

The sine function is periodic in time. This means that the value of the function at 
time t will be exactly the same at a later time t′ = t + T , where T is the period. That the 
sine function satisfies the periodic condition can be seen from 

⎡ 2π ⎤ ⎡ 2π ⎤ ⎡ 2π ⎤y t( + T ) = Asin (t + T ) = Asin t + 2π = Asin t = y t( ) . (23.1.2)⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ T ⎦ ⎣ T ⎦ ⎣ T ⎦ 

The frequency, f , is defined to be 
f ≡ 1/T . (23.1.3) 

⎡ −1The SI unit of frequency is inverse seconds, s ⎦⎤ , or hertz [Hz] . The angular frequency⎣ 
of oscillation is defined to be 

≡ 2π / T = 2π f , (23.1.4)ω0 

and is measured in radians per second. (The angular frequency of oscillation is denoted 
by ω0 to distinguish from the angular speed ω = dθ / dt .) One oscillation per second, 
1 Hz , corresponds to an angular frequency of 2π rad s⋅ −1 . (Unfortunately, the same 
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symbol ω is used for angular speed in circular motion. For uniform circular motion the 
angular speed is equal to the angular frequency but for non-uniform motion the angular 
speed is not constant. The angular frequency for simple harmonic motion is a constant by 
definition.) We therefore have several different mathematical representations for 
sinusoidal motion 

y(t) = Asin(2π t / T ) = Asin(2π f t) = Asin(ω0t) . (23.1.5) 

23.2 Simple Harmonic Motion: Analytic 

Our first example of a system that demonstrates simple harmonic motion is a spring-
object system on a frictionless surface, shown in Figure 23.2 

Figure 23.2 Spring-object system 

The object is attached to one end of a spring. The other end of the spring is attached to a 
wall at the left in Figure 23.2. Assume that the object undergoes one-dimensional motion. 
The spring has a spring constant k and equilibrium length leq . Choose the origin at the 
equilibrium position and choose the positive x -direction to the right in the Figure 23.2. 
In the figure, x > 0 corresponds to an extended spring, and x < 0 to a compressed spring. 
Define x t( ) to be the position of the object with respect to the equilibrium position. The 
force acting on the spring is a linear restoring force, Fx = −k x (Figure 23.3). The initial 
conditions are as follows. The spring is initially stretched a distance l0 and given some 
initial speed v0 to the right away from the equilibrium position. The initial position of the 
stretched spring from the equilibrium position (our choice of origin) is x0 = (l0 − leq ) > 0 

and its initial x -component of the velocity is v > 0 . x ,0 = v0 
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Figure 23.3 Free-body force diagram for spring-object system 

Newton’s Second law in the x -direction becomes 

2d x −k x = m 2 . (23.2.1)
dt 

This equation of motion, Eq. (23.2.1), is called the simple harmonic oscillator equation 
(SHO). Because the spring force depends on the distance x , the acceleration is not 
constant. Eq. (23.2.1) is a second order linear differential equation, in which the second 
derivative of the dependent variable is proportional to the negative of the dependent 
variable, 

2d x k 
2 = − x . (23.2.2)

dt m 

In this case, the constant of proportionality is k / m , 

Eq. (23.2.2) can be solved from energy considerations or other advanced techniques but 
instead we shall first guess the solution and then verify that the guess satisfies the SHO 
differential equation (see Appendix 22.3.A for a derivation of the solution). 

We are looking for a position function x(t) such that the second time derivative position 
function is proportional to the negative of the position function. Since the sine and cosine 
functions both satisfy this property, we make a preliminary ansatz (educated guess) that 
our position function is given by 

x(t) = Acos((2π / T )t) = Acos(ω0 t) , (23.2.3) 

where ω0 is the angular frequency (as of yet, undetermined). 

We shall now find the condition that the angular frequency ω0 must satisfy in order to 
insure that the function in Eq. (23.2.3) solves the simple harmonic oscillator equation, Eq. 
(23.2.1). The first and second derivatives of the position function are given by 
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dx 
Asin(ω0t)= −ω0dt (23.2.4)

d 2 x 
= −ω0

2 Acos(ω0 t) = −ω0
2 x. 

dt2 

Substitute the second derivative, the second expression in Eq. (23.2.4), and the position 
function, Equation (23.2.3), into the SHO Equation (23.2.1), yielding 

−ω0
2 Acos(ω0 t) = − 

k Acos(ω0 t) . (23.2.5)
m 

Eq. (23.2.5) is valid for all times provided that 

ω0 = 
k 
m 

. (23.2.6) 

The period of oscillation is then 

T = 
2π 

ω0 

= 2π 
m 
k 

. (23.2.7) 

One possible solution for the position of the block is 

⎛
 ⎞
k 
x(t) = Acos (23.2.8)
t⎜

⎝
 
⎟
⎠
 

,
 
m 

and therefore by differentiation, the x -component of the velocity of the block is 

⎛
 ⎞
k k 
v x (t) = − Asin (23.2.9)
t⎜

⎝
 
⎟
⎠
 

.
 
m m 

Note that at t = 0 , the position of the object is x0 ≡ x t( = 0) = A since cos(0) = 1 and the 
velocity is v ≡ v (t = 0) = 0 since sin(0) = 0 . The solution in (23.2.8) describes an x ,0 x 

object that is released from rest at an initial position A = x0 but does not satisfy the initial 
velocity condition, v (t = 0) = v ≠ 0 . We can try a sine function as another possiblex x ,0 

solution, 

⎛ k ⎞ 
x t( ) = Bsin t . (23.2.10)⎜⎜ ⎟⎟m⎝ ⎠ 

This function also satisfies the simple harmonic oscillator equation because 
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d 2 ⎛ ⎞x k k 2= − Bsin x , (23.2.11)⎜ t⎟ = −ω0dt2 m ⎝ m ⎠ 

where ω0 = k / m . The x -component of the velocity associated with Eq. (23.2.10) is 

dx k ⎛
 ⎞
k 
v x (t) = Bcos .
 (23.2.12)
t⎜

⎝
 
⎟
⎠
 

=
 
dt m m 

The proposed solution in Eq. (23.2.10) has initial conditions x0 ≡ x t( = 0) = 0 and 

v ≡ v (t = 0) = ( k / m)B , thus B = vx ,0 / k / m . This solution describes an object that x ,0 x 

is initially at the equilibrium position but has an initial non-zero x -component of the 
velocity, vx ,0 ≠ 0 . 

23.2.1 General Solution of Simple Harmonic Oscillator Equation 

Suppose x1( )t and x2 ( )t are both solutions of the simple harmonic oscillator equation, 

d 2 k 
x1(t) = − x1(t)dt2 m (23.2.13)

d 2 k 
x2(t) = − x2(t). 

dt2 m 

Then the sum x t( ) = x1( )t + x2 ( )t of the two solutions is also a solution. To see this, 
consider 

d 2 d 2 d 2 d 2x(t) x1(t) x2(t)
= (x1(t) + x2(t)) = + . (23.2.14)

dt2 dt2 dt2 dt2 

Using the fact that x1( )t and x2 ( )t both solve the simple harmonic oscillator equation 
(23.2.13), we see that 

d 2 k k k
x t( ) = − x ( )t + − x ( )t = − (x ( )t + x ( )t )2 1 2 1 2dt m m m (23.2.15)

k = − x t( ). 
m 

Thus the linear combination x t( ) = x1( )t + x2 ( )t is also a solution of the SHO equation, 
Eq. (23.2.1). Therefore the sum of the sine and cosine solutions is the general solution, 

x(t) = C cos(ω0 t) + Dsin(ω0 t) , (23.2.16) 
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where the constant coefficients C and D depend on a given set of initial conditions 
x ≡ x t( = 0) and v ≡ v (t = 0) where and v are constants. For this general 0 x ,0 x x0 x ,0 

solution, the x -component of the velocity of the object at time t is then obtained by 
differentiating the position function, 

dx 
v (t) = = −ω0C sin(ω0 D cos(ω0 t) . (23.2.17)x t) + ω0dt 

To find the constants C and D , substitute t = 0 into the Eqs. (23.2.16) and (23.2.17). 
Because cos(0) = 1 and sin(0) = 0 , the initial position at time t = 0 is 

≡ x(t = 0) = C . (23.2.18)x0 

The x -component of the velocity at time t = 0 is 

v = v (t = 0) = −ω0C sin(0) + ω0 Dcos(0) = ω0 D . (23.2.19)x ,0 x 

Thus 
v 

C = x0 and D = x ,0 . (23.2.20)
ω0 

The position of the object-spring system is then given by 

⎛
 ⎞
 ⎛
 ⎞
k kv x ,0 

k / m 
x(t) = x0 cos sin (23.2.21)
t +
 t⎜

⎝
 
⎟
⎠
 

⎜
⎝
 

⎟
⎠
m m 

and the x -component of the velocity of the object-spring system is 

⎛
 ⎛⎞ ⎞
k k k 
v x (t) = − x0 sin (23.2.22)
t⎟

⎠
 
+ v x ,0 cos ⎜

⎝
 
t⎜

⎝
 
⎟
⎠
 

.
 
m m m 

Although we had previously specified x > 0 and v > 0 , Eq. (23.2.21) is seen to be a 0 x ,0 

valid solution of the SHO equation for any values of x0 and v x ,0 . 

Example 23.1: Phase and Amplitude 

Show that x(t) = C cosω0t + Dsinω0t = Acos(ω0t +φ) , where A = (C 2 + D2 )1 2 > 0 , and 

φ = tan−1(−D / C) . 
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Solution: Use the identity Acos(ω0t + φ) = Acos(ω0t)cos(φ) − Asin(ω0t)sin(φ) . Thus 
C cos(ω0t) + Dsin(ω0t) = Acos(ω0t)cos(φ) − Asin(ω0t)sin(φ) . Comparing coefficients 
we see that C = Acosφ and D = − Asinφ . Therefore 

(C 2 + D2 )1 2 A2= A2(cos2 φ + sin2 φ) = . 

We choose the positive square root to ensure that A > 0 , and thus 

A = (C 2 + D2 )1 2 (23.2.23) 
sinφ − D / A D 

tanφ = = = − , 
cosφ C / A C 

φ = tan−1(−D / C) . (23.2.24) 

Thus the position as a function of time can be written as 

x(t) = Acos(ω0t +φ) . (23.2.25) 

In Eq. (23.2.25) the quantity ω0t +φ is called the phase, and φ is called the phase 
constant. Because cos(ω0t + φ) varies between +1 and −1 , and A > 0 , A is the 
amplitude defined earlier. We now substitute Eq. (23.2.20) into Eq. (23.2.23) and find 
that the amplitude of the motion described in Equation (23.2.21), that is, the maximum 
value of x t( ) , and the phase are given by 

A = x0 
2 + (v x ,0 / ω0 )

2 . (23.2.26)
 

φ = tan−1(−v / ω x ) . (23.2.27)x ,0 0 0 

A plot of x t( ) vs. t is shown in Figure 23.4a with the values A = 3 , T = π , and 
φ = π / 4 . Note that x(t) = Acos(ω0t + φ) takes on its maximum value when 
cos(ω0t + φ) = 1 . This occurs when ω0t + φ = 2π n where n = 0, ± 1, ± 2,⋅ ⋅ ⋅ . The 
maximum value associated with n = 0 occurs when ω0t + φ = 0 or t = −φ / ω0 . For the 
case shown in Figure 23.4a where φ = π / 4 , this maximum occurs at the instant 
t = −T / 8 . Let’s plot x(t) = Acos(ω0t + φ) vs. t for φ = 0 (Figure 23.4b). For φ > 0 , 
Figure 23.4a shows the plot x(t) = Acos(ω0t + φ) vs. t . Notice that when φ > 0 , x(t) is 
shifted to the left compared with the case φ = 0 (compare Figures 23.4a with 23.4b). The 
function x(t) = Acos(ω0t + φ) with φ > 0 reaches its maximum value at an earlier time 
than the function x(t) = Acos(ω0t) . The difference in phases for these two cases is 
(ω0t +φ) −ω0t = φ and φ is sometimes referred to as the phase shift. When φ < 0 , the 

23-8 



 
 

 

             

      

 
  

 
  

 
 

 
      

    
 

   

 

     
     

function x(t) = Acos(ω0t + φ) reaches its maximum value at a later time t = T / 8 than 
the function x(t) = Acos(ω0t) as shown in Figure 23.4c. 

(a) 

(b) 

(c) 

Figure 23.4 Phase shift of x(t) = Acos(ω0t + φ) (a) to the left by φ = π / 4 , (b) no shift 
φ = 0 , (c) to the right φ = −π / 4 
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Example 23.2: Block-Spring System 

A block of mass m is attached to a spring with spring constant k and is free to slide 
along a horizontal frictionless surface. At t = 0 , the block-spring system is stretched an 
amount x > 0 from the equilibrium position and is released from rest, v = 0 . What is0 x ,0 

the period of oscillation of the block? What is the velocity of the block when it first 
comes back to the equilibrium position? 

Solution: The position of the block can be determined from Eq. (23.2.21) by substituting 
the initial conditions x > 0 , and v = 0 yielding0 x ,0 

⎛ k ⎞ 
x t( ) = x0 cos⎜⎜ t , (23.2.28)⎟⎟m⎝ ⎠ 

and the x -component of its velocity is given by Eq. (23.2.22), 

−
k ⎛
 ⎞
k 

v x (t) = x0 sin .
 (23.2.29)
t⎜
⎝
 

⎟
⎠
m m 

The angular frequency of oscillation is ω0 = k / m and the period is given by 
Eq. (23.2.7), 

2π mT = = 2π . (23.2.30)
kω0 

The block first reaches equilibrium when the position function first reaches zero. This 
occurs at time t1 satisfying 

k π π m Tt1 = , t1 = = . (23.2.31)
m 2 2 k 4 

The x -component of the velocity at time t1 is then 

⎛ ⎞k k k k 
vx (t1) = − sin⎜ sin(π / 2) = − (23.2.32)t1⎟ = −x0 x0 x0 = −ω0 x0m m m m⎝ ⎠ 

Note that the block is moving in the negative x -direction at time t1 ; the block has moved 
from a positive initial position to the equilibrium position (Figure 23.4(b)). 
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23.3 Energy and the Simple Harmonic Oscillator 

Let’s consider the block-spring system of Example 23.2 in which the block is initially 
stretched an amount x0 > 0 from the equilibrium position and is released from rest, 

x ,0 = 0 . We shall consider three states: state 1, the initial state; state 2, at an arbitrary 
time in which the position and velocity are non-zero; and state 3, when the object first 
comes back to the equilibrium position. We shall show that the mechanical energy has 
the same value for each of these states and is constant throughout the motion. Choose the 
equilibrium position for the zero point of the potential energy. 

State 1: all the energy is stored in the object-spring potential energy, U1 = (1/ 2) k x0
2 . The 

object is released from rest so the kinetic energy is zero, K1 = 0 . The total mechanical 
energy is then 

E1 = U1 = 
1 

k x0
2 . (23.3.1)

2 

State 2: at some time t , the position and x -component of the velocity of the object are 
given by 

x(t) = x0 cos 
k 
m 

t 
⎛ 

⎝
⎜

⎞ 

⎠
⎟

k 
m 

x0 sin 
k 
m 

t 
⎛ 

⎝
⎜

(23.3.2)

⎞
 

(t) = − ⎟
⎠
 

v .
 x 

The kinetic energy is 
1 2 1 2 2 ⎛ k ⎞

K2 = mv = k x0 sin t , (23.3.3)⎜⎜ ⎟⎟2 2 m⎝ ⎠ 
and the potential energy is 

1 2 1 2 2 ⎛ k ⎞
U2 = k x = k x0 cos t . (23.3.4)⎜⎜ ⎟⎟2 2 m⎝ ⎠ 

The mechanical energy is the sum of the kinetic and potential energies 

1 2 + 
1 = mv k x2E2 = K2 +U2 x2 2 

⎛
 ⎞
k k⎛
 ⎛
⎞
 ⎞
1 
k x0

2 2
⎟
⎠
 
+ sin2

⎜
⎝


(23.3.5)
t t⎜
⎝
 

⎟
⎠
 

⎜
⎝


⎟
⎠
 

=
 cos
2
 m m 

1 2= k x0 ,
2 
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2 ω0where we used the identity that cos t + sin2 ω0t = 1 , and that ω0 = k / m (Eq. 
(23.2.6)). 

The mechanical energy in state 2 is equal to the initial potential energy in state 1, so the 
mechanical energy is constant. This should come as no surprise; we isolated the object-
spring system so that there is no external work performed on the system and no internal 
non-conservative forces doing work. 

Figure 23.5 State 3 at equilibrium and in motion 

State 3: now the object is at the equilibrium position so the potential energy is zero, 
U3 = 0 , and the mechanical energy is in the form of kinetic energy (Figure 23.5). 

1 2E3 = K3 = mveq . (23.3.6)
2 

Because the system is closed, mechanical energy is constant, 

= E3 . (23.3.7)E1 

Therefore the initial stored potential energy is released as kinetic energy, 

1 2 1 2k x0 = mveq , (23.3.8)
2 2 

and the x -component of velocity at the equilibrium position is given by 

k 
v = ± x0 . (23.3.9)x,eq m 

Note that the plus-minus sign indicates that when the block is at equilibrium, there are 
two possible motions: in the positive x -direction or the negative x -direction. If we take 
x0 > 0 , then the block starts moving towards the origin, and v x,eq will be negative the first 
time the block moves through the equilibrium position. 
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We can show more generally that the mechanical energy is constant at all times as 
follows. The mechanical energy at an arbitrary time is given by 

1 2 + 
1

E = K +U = mv k x2 . (23.3.10)
2 x 2 

Differentiate Eq. (23.3.10) 

d 2dE dvx dx ⎛ x ⎞ 
= mv x + k x = vx m + k x . (23.3.11)

dt dt dt ⎝⎜ dt2 ⎠⎟ 

Now substitute the simple harmonic oscillator equation of motion, (Eq. (23.2.1) ) into Eq. 
(23.3.11) yielding 

dE = 0 , (23.3.12)
dt 

demonstrating that the mechanical energy is a constant of the motion. 

23.3.1 Simple Pendulum: Force Approach 

A pendulum consists of an object hanging from the end of a string or rigid rod pivoted 
about the point P . The object is pulled to one side and allowed to oscillate. If the object 
has negligible size and the string or rod is massless, then the pendulum is called a simple 
pendulum. Consider a simple pendulum consisting of a massless string of length l and a 
point-like object of mass m attached to one end, called the bob. Suppose the string is 
fixed at the other end and is initially pulled out at an angle θ0 from the vertical and 
released from rest (Figure 23.6). Neglect any dissipation due to air resistance or frictional 
forces acting at the pivot. 

Figure 23.6 Simple pendulum 

Let’s choose polar coordinates for the pendulum as shown in Figure 23.7a along with the 
free-body force diagram for the suspended object (Figure 23.7b). The angle θ is defined 
with respect to the equilibrium position. When θ > 0 , the bob is has moved to the right, 
and when θ < 0 , the bob has moved to the left. The object will move in a circular arc 
centered at the pivot point. The forces on the object are the tension in the string 
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 T = −T r̂ and gravity mg . The gravitation force on the object has r̂ - and θ̂ -
components given by 

 mg = mg(cosθ r̂ − sinθ θ̂) . (23.3.13) 

Figure 23.7 (a) Coordinate system Figure 23.7 (b) free-body force diagram 

Our concern is with the tangential component of the gravitational force, 

Fθ = −mgsinθ . (23.3.14) 

The sign in Eq. (23.3.14) is crucial; the tangential force tends to restore the pendulum to 
the equilibrium value θ = 0 . If θ > 0 , Fθ < 0 and if θ < 0 , Fθ > 0 , where we are that 
because the string is flexible, the angle θ is restricted to the range −π / 2 < θ < π / 2 . (For 
angles θ > π / 2 , the string would go slack.) In both instances the tangential component 
of the force is directed towards the equilibrium position. The tangential component of 
acceleration is 

aθ = lα = l d
2θ 

. (23.3.15)
dt 2 

Newton’s Second Law, Fθ = maθ , yields 

−mgl sinθ = ml2 d 2θ . (23.3.16)
dt 2 

We can rewrite this equation is the form 

d 2θ g= − sinθ . (23.3.17)
dt 2 l 

This is not the simple harmonic oscillator equation although it still describes periodic 
motion. In the limit of small oscillations, sinθ ≅θ , Eq. (23.3.17) becomes 
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d 2θ g
≅ − θ. (23.3.18)

dt 2 l 

This equation is similar to the object-spring simple harmonic oscillator differential 
equation 

d 2 x k 
= − x . (23.3.19)

dt 2 m 

By comparison with Eq. (23.2.6) the angular frequency of oscillation for the pendulum is 
approximately 

ω 0  
g
l 

, (23.3.20) 

with period 
2π l . (23.3.21)T =  2π
ω 0 g 

The solutions to Eq. (23.3.18) can be modeled after Eq. (23.2.21). With the initial 

conditions that the pendulum is released from rest, dθ (t = 0) = 0 , at a small angle 
dt 

θ(t = 0) = θ0 , the angle the string makes with the vertical as a function of time is given by 

⎛ 2π ⎞ ⎛ g ⎞θ(t) = θ0 cos(ω 0 t) = θ0 cos t⎠⎟ = θ0 cos t (23.3.22)
⎠⎟ 

.⎝⎜ T ⎝⎜ l 

The z -component of the angular velocity of the bob is 

⎛ ⎞dθ g gω (t) = (t) = − sin ⎜ t⎟ . (23.3.23)z θ0dt l l⎝ ⎠ 

Keep in mind that the component of the angular velocity ω z = dθ / dt changes with time 
in an oscillatory manner (sinusoidally in the limit of small oscillations). The angular 
frequency ω 0 is a parameter that describes the system. The z -component of the angular 
velocity ω z (t) , besides being time-dependent, depends on the amplitude of oscillation θ0 . 
In the limit of small oscillations, ω0 does not depend on the amplitude of oscillation. 

The fact that the period is independent of the mass of the object follows algebraically 
from the fact that the mass appears on both sides of Newton’s Second Law and hence 
cancels. Consider also the argument that is attributed to Galileo: if a pendulum, 
consisting of two identical masses joined together, were set to oscillate, the two halves 
would not exert forces on each other. So, if the pendulum were split into two pieces, the 
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pieces would oscillate the same as if they were one piece. This argument can be 
extended to simple pendula of arbitrary masses. 

23.3.2 Simple Pendulum: Energy Approach 

We can use energy methods to find the differential equation describing the time evolution 
of the angle θ . When the string is at an angle θ with respect to the vertical, the 
gravitational potential energy (relative to a choice of zero potential energy at the bottom 
of the swing where θ = 0 as shown in Figure 23.8) is given by 

U = mgl(1− cosθ ) (23.3.24) 

The θ -component of the velocity of the object is given by vθ = l(dθ / dt) so the kinetic 
energy is 

K =
 
1
2

mv2 =
 

1
2

m ⎞

⎟⎠ 
⎛ 
dt
dθl⎜⎝

2 

.
 (23.3.25)
 

Figure 23.8 Energy diagram for simple pendulum 

The mechanical energy of the system is then 

1 ⎛ l dθ ⎞ 
2 

E = K + U = + mgl (1 − cosθ ) . (23.3.26)
2 
m
⎝⎜ dt ⎠⎟ 

Because we assumed that there is no non-conservative work (i.e. no air resistance or 
frictional forces acting at the pivot), the energy is constant, hence 

dE 1 d 2θ dθ0 = = 
2 
m 2l2 dθ + mgl sinθ

dt dt dt 2 dt 
(23.3.27)

⎛ d 2θ g ⎞ 
= ml2 dθ + sinθ

⎠⎟ 
.

dt ⎝⎜ dt 2 l 
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There are two solutions to this equation; the first one dθ / dt = 0 is the equilibrium 
solution. That the z -component of the angular velocity is zero means the suspended 
object is not moving. The second solution is the one we are interested in 

d 2θ g
+ sinθ = 0 , (23.3.28)

dt 2 l 

which is the same differential equation (Eq. (23.3.16)) that we found using the force 
method. 

We can find the time t1 that the object first reaches the bottom of the circular arc by 
setting θ( t1) = 0 in Eq. (23.3.22) 

⎛ g ⎞
0 = θ0 cos t1 ⎠⎟ 

. (23.3.29)
⎝⎜ l 

This zero occurs when the argument of the cosine satisfies 

πt1 = (23.3.30)
2 

.
g
l 

The z -component of the angular velocity at time t1 is therefore 

dθ 
dt 
(t1) = − θ0 sin

⎛ 

⎝⎜ 
t1 

⎞ 

⎠⎟ 
= − θ0 sin ⎛ π ⎞ 

⎝⎜ ⎠⎟ = −
2
 

g
l 

g
l 

g
l 

g
l
θ0 . (23.3.31)
 

Note that the negative sign means that the bob is moving in the negative θ̂ -direction 
when it first reaches the bottom of the arc. The θ -component of the velocity at time t1 is 
therefore 

= l dθ g ⎛ g ⎞ ⎛ π ⎞θ0 sin t1 ⎠⎟ 
= − lg θ0 sin ⎠⎟ = − lg θ0 .(23.3.32)vθ (t1) ≡ v1 (t1) = −l ⎝⎜dt l ⎝⎜ l 2 

We can also find the components of both the velocity and angular velocity using energy 
methods. When we release the bob from rest, the energy is only potential energy 

0E = U0 = mgl (1 − cosθ0 ) ≅ mgl θ
2 

, (23.3.33)
2 

where we used the approximation that cosθ0 ≅ 1−θ0
2 / 2 . When the bob is at the bottom 

of the arc, the only contribution to the mechanical energy is the kinetic energy given by 
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K1 = 
2 

1 mv1 
2 . (23.3.34) 

Because the energy is constant, we have that U0 = K1 or 

mgl θ 

2 

2 
0 = 

1 

2 
2mv1 . (23.3.35) 

We can solve for the θ -component of the velocity at the bottom of the arc 

vθ ,1 = ± gl θ0 . (23.3.36) 

The two possible solutions correspond to the different directions that the motion of the 
bob can have when at the bottom. The z -component of the angular velocity is then 

dθ (t1) = 
dt 

v1 

l
= ±


g
l
θ0 , (23.3.37)
 

in agreement with our previous calculation. 

If we do not make the small angle approximation, we can still use energy techniques to 
find the θ -component of the velocity at the bottom of the arc by equating the energies at 
the two positions 

1 2mgl (1 − cosθ0 ) = 
2 
mv1 , (23.3.38) 

(23.3.39) 

23.4 Worked Examples 

Example 23.3: Rolling Without Slipping Oscillating Cylinder 

Attach a solid cylinder of mass M and radius R to a horizontal massless spring with 
spring constant k so that it can roll without slipping along a horizontal surface. At time t , 
the center of mass of the cylinder is moving with speed Vcm and the spring is compressed 

vθ , 1 = ± 2gl 1− cosθ0( ) . 

a distance x from its equilibrium length. What is the period of simple harmonic motion 
for the center of mass of the cylinder? 

Figure 23.9 Example 23.3 

23-18
 



 
 

 

 
   

 

    

 
      

 

    

 
 

    

 
  

 

    

 
   

 

    

 

    

 
   

 
      

            
          

      
        

 


 
 

 

   

     

   
 

   

 
  

 
 

 


 
 
 
 

    
 

 
 

 


 

       

    
 

      
    

 

  
  

 

 
   

  
 

 

  

 
 

 
 

 

 

Solution: At time t , the energy of the rolling cylinder and spring system is 

21
2
 

1
2
 

1
2
 

⎛ dθ ⎞Mvcm ⎝⎜ ⎠⎟ 

where x is the amount the spring has compressed, Icm = (1 / 2)MR2 , and because it is 
rolling without slipping 

2 

dθ 
dt 

= 
Vcm 

R 
. (23.4.2) 

Therefore the energy is 

kx2E =
 Icm (23.4.1)
+
 +
 .

dt 

21
2
 

1
4
 

1
2
 

3
4
 

1
2
 

Vcm ⎛
⎜⎝
 

⎞
⎟⎠
 

2MVcm MVcm 

The energy is constant (no non-conservative force is doing work on the system) so 

dE 3 dVcm 1 dx 3 M d 2 x0 = = 2MVcm + 
2 
k2x = Vcm ( dt 2 + kx) (23.4.4)

dt 4 dt dt 2 

2 

Because Vcm is non-zero most of the time, the displacement of the spring satisfies a 
simple harmonic oscillator equation 

d 2 x 
dt 2 + 

2k 
3M 

x = 0 . (23.4.5) 

Hence the period is 

T = 
2π 
ω 0 

= 2π . (23.4.6) 

Example 23.4: U-Tube 

A U-tube open at both ends is filled with an incompressible fluid of density ρ . The 
cross-sectional area A of the tube is uniform and the total length of the fluid in the tube 
is L . A piston is used to depress the height of the liquid column on one side by a distance 
x0 , (raising the other side by the same distance) and then is quickly removed (Figure 
23.10). What is the angular frequency of the ensuing simple harmonic motion? Neglect 
any resistive forces and at the walls of the U-tube. 

MR2 kx2 kx2E =
 (23.4.3)
+
 +
 +
=
 .

R
 

3M 

2k 
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Figure 23.10 Example 23.4 Figure 23.11 Energy diagram for water 

Solution: We shall use conservation of energy. First choose as a zero for gravitational 
potential energy in the configuration where the water levels are equal on both sides of the 
tube. When the piston on one side depresses the fluid, it rises on the other. At a given 
instant in time when a portion of the fluid of mass Δm = ρ Ax is a height x above the 
equilibrium height (Figure 23.11), the potential energy of the fluid is given by 

U = Δmgx = (ρ Ax)gx = ρ Agx2 . (23.4.7) 

At that same instant the entire fluid of length L and mass m = ρ AL is moving with 
speed v , so the kinetic energy is 

K = 
1 mv 2 = 

1 ρ ALv2 . (23.4.8)
2 2 

Thus the total energy is 

E = K +U = 
1 ρ ALv2 + ρ Agx2 . (23.4.9)
2 

By neglecting resistive force, the mechanical energy of the fluid is constant. Therefore 

dE dv dx0 = = ρ ALv + 2ρ Agx . (23.4.10)
dt dt dt 

If we just consider the top of the fluid above the equilibrium position on the right arm in 
Figure 23.13, we rewrite Eq. (23.4.10) as 

dE dvx dx0 = = ρ ALv + 2ρ Agx , (23.4.11)
dt x dt dt 

where vx = dx / dt . We now rewrite the energy condition using dvx / dt = d 2 x / dt2 as 
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d 2⎛ x ⎞
0 = vx ρ A L + 2gx . (23.4.12)

⎝⎜ dt2 ⎠⎟ 

This condition is satisfied when vx = 0 , i.e. the equilibrium condition or when 

d 2 x0 = L + 2gx . (23.4.13)
dt2 

This last condition can be written as 
d 2 x 2g= − x . (23.4.14)
dt2 L 

This last equation is the simple harmonic oscillator equation. Using the same 
mathematical techniques as we used for the spring-block system, the solution for the 
height of the fluid above the equilibrium position is given by 

x(t) = Bcos(ω0t) + C sin(ω0t) , (23.4.15) 
where 

2gω0 = (23.4.16)
L 

is the angular frequency of oscillation. The x -component of the velocity of the fluid on 
the right-hand side of the U-tube is given by 

dx(t)
v (t) = Bsin(ω0t) + ω0C cos(ω0t) . (23.4.17)x = −ω0dt 

The coefficients B and C are determined by the initial conditions. At t = 0 , the height of 
the fluid is x t( = 0) = B = x0 . At t = 0 , the speed is zero so vx (t = 0) = ω0C = 0 , hence 
C = 0 . The height of the fluid above the equilibrium position on the right hand-side of 
the U-tube as a function of time is thus 

⎛
 ⎞
2g
x(t) = x0 cos .
 (23.4.18)
t⎜

⎝

⎟
⎠
L
 

23.5 Damped Oscillatory Motion 

Let’s now consider our spring-block system moving on a horizontal frictionless surface 
but now the block is attached to a damper that resists the motion of the block due to 
viscous friction. This damper, commonly called a dashpot, is shown in Figure 23.13. The 
viscous force arises when objects move through fluids at speeds slow enough so that 
there is no turbulence. When the viscous force opposes the motion and is proportional to 
the velocity, so that 
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  = −bv , (23.5.1)fvis 

the dashpot is referred to as a linear dashpot. The constant of proportionality b depends 
on the properties of the dashpot. 

Figure 23.12 Spring-block system connected to a linear dashpot 

Choose the origin at the equilibrium position and choose the positive x -direction to the 
right in the Figure 23.13. Define x(t) to be the position of the object with respect to the 
equilibrium position. The x -component of the total force acting on the spring is the sum 
of the linear restoring spring force, and the viscous friction force (Figure 23.13), 

dx
F = −k x − b (23.5.2)x dt 

Figure 23.13 Free-body force diagram for spring-object system with linear dashpot 

Newton’s Second law in the x -direction becomes 

−k x − b 
dx 
dt 

= m 
d 2 x 
dt2 . (23.5.3) 

We can rewrite Eq. (23.5.3) as 
d 2 x 
dt2 + 

b 
m 

dx 
dt 

+ 
k 
m 

x = 0 . (23.5.4) 

When (b / m)2 < 4k / m , the oscillator is called underdamped, and the solution to Eq. 
(23.5.4) is given by 

x(t) = x m e
−αt cos(γ t +φ) (23.5.5) 
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= (k / m − (b / 2m)2 )1 2 where γ is the angular frequency of oscillation, α = b 2m is a 
parameter that measured the exponential decay of the oscillations, x m is a constant and φ 
is the phase constant. Recall the undamped oscillator has angular frequency 

= (k / m)1 2 , so the angular frequency of the underdamped oscillator can be expressed ω0 

as 
2 −α 2 )1 2 γ . (23.5.6)= (ω0 

In Appendix 23B: Complex Numbers, we introduce complex numbers and use them to 
solve Eq.(23.5.4) in Appendix 23C: Solution to the Underdamped Simple Harmonic 
Oscillator Equation. 

The x -component of the velocity of the object is given by 

−αtvx (t) = dx dt = (−γ x sin(γ t +φ) −α x cos(γ t +φ))e . (23.5.7)m m 

The position and the x -component of the velocity of the object oscillate but the 
amplitudes of the oscillations decay exponentially. In Figure 23.14, the position is plotted 
as a function of time for the underdamped system for the special case φ = 0 . For that case 

x(t) = x m e
−αt cos(γ t) . (23.5.8) 

and 
−αtvx (t) = dx dt = (−γ x sin(γ t) −α x cos(γ t))e . (23.5.9)m m 

Figure 23.14 Plot of position x(t) of object for underdamped oscillator with φ = 0 

Because the coefficient of exponential decay α = b 2m is proportional to the b , we see 
that the position will decay more rapidly if the viscous force increases. We can introduce 
a time constant 

τ = 1 α = 2m / b . (23.5.10) 
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When t = τ , the position is 

x(t = τ ) = x m cos(γτ )e−1 . (23.5.11) 

The envelope of exponential decay has now decreases by a factor of e−1 , i.e. the 
amplitude can be at most x m e

−1 . During this time interval [0,τ ] , the position has 
undergone a number of oscillations. The total number of radians associated with those 
oscillations is given by 

= (k / m − (b / 2m)2 )1 2 (2m / b) .γτ (23.5.12) 

The closest integral number of cycles is then 

n = ⎡⎣γτ / 2π ⎤⎦ = ⎡⎣(k / m − (b / 2m)2 )1 2 (m / πb)⎤⎦ . (23.5.13) 

If the system is very weakly damped, such that (b / m)2 << 4k / m , then we can 
approximate the number of cycles by 

(k / m)1 2 (m / πb)n = ⎡⎣γτ ⎤⎦ = ⎡⎣ω0(m / π b)⎤⎦ , (23.5.14)2π ⎤⎦  ⎡⎣ 

= (k / m)1 2 where ω0 is the angular frequency of the undamped oscillator. 

We define the quality, Q , of this oscillating system to be proportional to the number of 
integral cycles it takes for the exponential envelope of the position function to fall off by 
a factor of e−1 . The constant of proportionality is chosen to be π . Thus 

Q = nπ . (23.5.15) 

For the weakly damped case, we have that 

Q  ω0(m / b) . (23.5.16) 

23.5.1 Energy in the Underdamped Oscillator 

= (k / m − (b / 2m)2 )1 2 For the underdamped oscillator, (b / m)2 < 4k / m , γ , and 
α = b 2m . Let’s choose t = 0 such that the phase shift is zero φ = 0 . The stored energy 
in the system will decay due to the energy loss due to dissipation. The mechanical energy 
stored in the potential and kinetic energies is then given by 

1 
kx2 + 

1 2E = mv . (23.5.17)
2 2 
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where the position and the x -component of the velocity are given by Eqs. (23.5.8) and 
(23.5.9). The mechanical energy is then 

1 2 −2αt + 
1 −2αtE = kx cos2(γ t)e m(−γ x sin(γ t) −α x cos(γ t))2 

e . (23.5.18)m m m2 2 

Expanding this expression yields 

1 2 −2αt + 
1 −2αtE = (k + mα 2 )x cos 2(γ t)e−2αt + mγα x 2 sin(γ t)cos(γ t)e mγ 2 x 2 sin2(γ t)e (23.5.19)m m m2 2 

The kinetic energy, potential energy, and mechanical energy are shown in Figure 23.15. 

Figure 23.15 Kinetic, potential and mechanical energy for the underdamped oscillator 

The stored energy at time t = 0 is 

E(t = 0) = 
1 
2 

(k + mα 2 )x m 
2 (23.5.20) 

The mechanical energy at the conclusion of one cycle, with γ T = 2π , is 

E(t = T ) = 
1 
2 

(k + mα 2 )x m 
2e−2αT (23.5.21) 

The change in the mechanical energy for one cycle is then 

E(t = T ) − E(t = 0) = − 
1 
2 

(k + mα 2 )x m 
2 (1− e−2αT ) . (23.5.22) 

23-25 



 
 

 

 
    

 

 
  

  

 
   

 
  

 
    

  

 
      

       
 

 
 

 
  

 
 
      
 

             
              

       
    

 

 
  

   

 
     

 

 
  

   

 
  

 

 
  

   

 
 

  

       

 
 

 
 

 
 

 
 

   

 

 

   

   

   

= b2Recall that α 2 4m2 . Therefore 

E(t = T ) − E(t = 0) = − 
1 (k + b2 4m)x m

2(1− e−2αT ) . (23.5.23)
2 

We can show (although the calculation is lengthy) that the energy dissipated by the 
viscous force over one cycle is given by the integral 

T  2 ⎛ b2 ⎞ x m= ⋅ v dt = − k + (1− e−2αt ) . (23.5.24)Edis ∫Fvis 
0 ⎝⎜ 4m⎠⎟ 2 

By comparison with Eq. (23.5.23), the change in the mechanical energy in the 
underdamped oscillator during one cycle is equal to the energy dissipated due to the 
viscous force during one cycle. 

23.6 Forced Damped Oscillator 

Let’s drive our damped spring-object system by a sinusoidal force. Suppose that the x -
component of the driving force is given by 

Fx (t) = F0 cos(ωt) , (23.6.1) 

where F0 is called the amplitude (maximum value) and ω is the driving angular 
frequency. The force varies between F0 and −F0 because the cosine function varies 
between +1 and −1 . Define x(t) to be the position of the object with respect to the 
equilibrium position. The x -component of the force acting on the object is now the sum 

dx
F cos(ωt) − kx − b . (23.6.2)x = F0 dt 

Newton’s Second law in the x -direction becomes 

d 2dx x
cos(ωt) − kx − b = m . (23.6.3)F0 dt dt2 

We can rewrite Eq. (23.6.3) as 

d 2 x dx
cos(ωt) = m + b + kx . (23.6.4)F0 dt2 dt 
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We derive the solution to Eq. (23.6.4) in Appendix 23E: Solution to the forced Damped 
Oscillator Equation. The solution to is given by the function 

x(t) = x0 cos(ωt +φ) , (23.6.5) 

where the amplitude x0 is a function of the driving angular frequency ω and is given by 

F0 / m
(ω ) = . (23.6.6)x0 1/2 2 −ω 2 )2((b / m)2ω 2 + (ω0 ) 

The phase constant φ is also a function of the driving angular frequency ω and is given 
by 

⎛ (b / m)ω ⎞ φ(ω ) = tan−1 
⎜ 2 ⎟⎝ ω 2 − ω0 ⎠ 

. (23.6.7) 

In Eqs. (23.6.6) and (23.6.7) 
kω0 = (23.6.8)
m 

is the natural angular frequency associated with the undriven undamped oscillator. The x 
-component of the velocity can be found by differentiating Eq. (23.6.5), 

dx 
v (t) = sin(ωt +φ) , (23.6.9)x (t) = −ω x0dt 

where the amplitude x0(ω ) is given by Eq. (23.6.6) and the phase constant φ(ω ) is given 
by Eq. (23.6.7). 

23.6.1 Resonance 

When b / m << 2ω0 we say that the oscillator is lightly damped. For a lightly-damped 
driven oscillator, after a transitory period, the position of the object will oscillate with the 
same angular frequency as the driving force. The plot of amplitude x0(ω ) vs. driving 
angular frequency ω for a lightly damped forced oscillator is shown in Figure 23.16. If 
the angular frequency is increased from zero, the amplitude of the x0(ω ) will increase 
until it reaches a maximum when the angular frequency of the driving force is the same 
as the natural angular frequency, ω0 , associated with the undamped oscillator. This is 
called resonance. When the driving angular frequency is increased above the natural 
angular frequency the amplitude of the position oscillations diminishes. 
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Figure 23.16 Plot of amplitude x0(ω ) vs. driving angular frequency ω for a lightly 
damped oscillator with b / m << 2ω0 

We can find the angular frequency such that the amplitude x0(ω ) is at a maximum by 
setting the derivative of Eq. (23.6.6) equal to zero, 

d F0(2ω ) ((b / m)2 − 2(ω0
2 −ω 2 )) 

0 = (ω ) = − . (23.6.10)x0 3/2 dt 2m 2 −ω 2 )2((b / m)2ω 2 + (ω0 ) 
This vanishes when 

ω = (ω0
2 − (b / m)2 / 2)1/2 . (23.6.11) 

For the lightly-damped oscillator, ω0 >> (1/ 2)b / m , and so the maximum value of the 
amplitude occurs when 

= (k / m)1/2 . (23.6.12)ω  ω0 

The amplitude at resonance is then 

F0x0(ω = ω0 ) = (lightly damped) . (23.6.13)
bω0 

The plot of phase constant φ(ω ) vs. driving angular frequency ω for a lightly damped 
forced oscillator is shown in Figure 23.17. 
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Figure 23.17 Plot of phase constant φ(ω ) vs. driving angular frequency ω for a lightly 
damped oscillator with b / m << 2ω0 

The phase constant at resonance is zero, 

φ(ω = ω0 ) = 0 . (23.6.14) 

At resonance, the x -component of the velocity is given by 

dx F0vx (t) = (t) = − sin(ω0t) (lightly damped) . (23.6.15)
dt b 

When the oscillator is not lightly damped ( b / m  ω0 ), the resonance peak is shifted to 
the left of ω = ω0 as shown in the plot of amplitude vs. angular frequency in Figure 
23.18. The corresponding plot of phase constant vs. angular frequency for the non-lightly 
damped oscillator is shown in Figure 23.19. 

Figure 23.18 Plot of amplitude vs. angular frequency for lightly-damped driven oscillator 
where b / m  ω0 
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Figure 23.19 Plot of phase constant vs. angular frequency for lightly-damped driven 
oscillator where b / m  ω0 

23.6.2 Mechanical Energy 

The kinetic energy for the driven damped oscillator is given by 

K(t) = 
1 

mv 2(t) = 
1 

mω 2 x0
2 sin2(ωt +φ) . (23.6.16)

2 2 

The potential energy is given by 

1 1 2U (t) = kx2(t) = kx0 cos2(ωt +φ) . (23.6.17)
2 2 

The mechanical energy is then 

1 1 1 
mω 2 1

E(t) = mv2(t) + kx2(t) = x0
2 sin2(ωt +φ) + kx0 

2 cos2(ωt +φ) .(23.6.18)
2 2 2 2 

Example 23.5: Time-Averaged Mechanical Energy 

The period of one cycle is given by T = 2π / ω . Show that 

1 T 1(i) ∫ sin2(ωt +φ) dt = , (23.6.19)
T 0 2 
1 T 

(ii) ∫ cos2(ωt +φ)dt = 
1 , (23.6.20)

T 0 2 

T 
1 T 

∫ 
0 

(iii) sin(ωt)cos(ωt) dt = 0 . (23.6.21) 
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Solution: (i) We use the trigonometric identity 

sin2(ωt +φ)) = 
1 

(1− cos(2(ωt +φ)) (23.6.22)
2 

to rewrite the integral in Eq. (23.6.19) as 

1 T T 

∫ sin2(ωt +φ)) dt = 
1 
∫ (1− cos(2(ωt +φ))dt (23.6.23)

T 0 2T 0 

Integration yields 

T =2π /ω
1 T 1 ⎛ sin(2(ωt +φ)) ⎞
∫ (1− cos(2(ωt +φ)) dt = −

2T 0 2 ⎝⎜ 2ω ⎠⎟ 
T =0 (23.6.24) 

1 ⎛ sin(4π + 2φ) sin(2φ)⎞ 1 = − − ,
⎠⎟ 
= 

2 ⎝⎜ 2ω 2ω 2 

where we used the trigonometric identity that 

sin(4π + 2φ) = sin(4π )cos(2φ) + sin(2φ)cos(4π ) = sin(2φ) , (23.6.25) 

proving Eq. (23.6.19). 

(ii) We use a similar argument starting with the trigonometric identity that 

cos2(ωt +φ)) = 
1 

(1+ cos(2(ωt +φ)) . (23.6.26)
2 

Then 
1 T T 

∫ cos2(ωt +φ)) dt = 
1 
∫ (1+ cos(2(ωt +φ)) dt . (23.6.27)

T 0 2T 0 

Integration yields 
T =2π /ω

1 T 1 ⎛ sin(2(ωt +φ)) ⎞
(1+ cos(2(ωt +φ)) dt = +∫2T 0 2 ⎝⎜ 2ω ⎠⎟ 

T =0 (23.6.28) 
1 ⎛ sin(4π + 2φ) sin(2φ)⎞ 1 = + − .

⎠⎟ 
= 

2 ⎝⎜ 2ω 2ω 2 

(iii) We first use the trigonometric identity that 
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1
sin(ωt)cos(ωt) = sin(ωt) . (23.6.29)

2 
Then 

1 T T 

sin(ωt)cos(ωt)dt = sin(ωt) dt∫ 
1 
∫T 0 T 0 (23.6.30)T 

11 cos(ωt)= − = − (1−1) = 0.
T 2ω 0 2ωT 

The values of the integrals in Example 23.5 are called the time-averaged values. We 
denote the time-average value of a function f (t) over one period by 

1 T 
f ≡ ∫ f (t) dt . (23.6.31)

T 0 

In particular, the time-average kinetic energy as a function of the angular frequency is 
given by 

1 
mω 2 2K(ω ) = x0 . (23.6.32)

4 

The time-averaged potential energy as a function of the angular frequency is given by 

1 2U (ω ) = kx0 . (23.6.33)
4 

The time-averaged value of the mechanical energy as a function of the angular frequency 
is given by 

1 
mω 2 2 + 

1 1
E(ω ) = x0 kx0 

2 = (mω 2 + k)x0 
2 . (23.6.34)

4 4 4 

We now substitute Eq. (23.6.6) for the amplitude into Eq. (23.6.34) yielding 

2 2 + ω 2 )F0 (ω0= . (23.6.35)E(ω ) 
4m ⎛ (b / m)2ω 2 + 2 −ω 2

2 ⎞ 
⎝ (ω0 ) ⎠ 

A plot of the time-averaged energy versus angular frequency for the lightly-damped case 
( b / m << 2ω0 ) is shown in Figure 23.20. 
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Figure 23.20 Plot of the time-averaged energy versus angular frequency for the 
lightly-damped case ( b / m << 2ω0 ) 

We can simplify the expression for the time-averaged energy for the lightly-damped case 
by observing that the time-averaged energy is nearly zero everywhere except where 

, (see Figure 23.20). We first substitute ω = ω0 everywhere in Eq. (23.6.35)ω = ω0 
2 −ω 2except the term ω0 that appears in the denominator, yielding 

2 2 )F0 (ω0= . (23.6.36)E(ω ) 
2m ⎛ (b / m)2ω0

2 + (ω0
2 −ω 2 )2 ⎞ 

⎝ ⎠ 

We can approximate the term 

2 −ω 2ω0 −ω )(ω0 + ω )  2ω0 −ω ) (23.6.37)= (ω0 (ω0 

Then Eq. (23.6.36) becomes 

F0
2 1E(ω ) = (lightly damped) . (23.6.38)

2m ((b / m)2 + 4(ω0 −ω )2 ) 
The right-hand expression of Eq. (23.6.38) takes on its maximum value when the 
denominator has its minimum value. By inspection, this occurs when ω = ω0 . 
Alternatively, to find the maximum value, we set the derivative of Eq. (23.6.35) equal to 
zero and solve for ω , 
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0 = 
d d F0

2 1E(ω ) = 
dω dω 2m ((b / m)2 + 4(ω0 −ω )2 ) 

. (23.6.39)
4F0

2 −ω )
= 

(ω0 

m −ω )2 2((b / m)2 + 4(ω0 ) 
The maximum occurs when occurs at ω = ω0 and has the value 

mF0
2 

E(ω0 ) = (underdamped) . (23.6.40)
2b2 

23.6.3 The Time-averaged Power 

The time-averaged power delivered by the driving force is given by the expression 

1 T 1 T F0
2ω cos(ωt)sin(ωt +φ)

P(ω ) = v dt = − dt , (23.6.41)
T ∫ 0 

Fx x T ∫ 0 m (b / m)2ω 2 + (ω0
2 −ω 2 )2 1/2 ( ) 

where we used Eq. (23.6.1) for the driving force, and Eq. (23.6.9) for the x -component 
of the velocity of the object. We use the trigonometric identity 

sin(ωt +φ) = sin(ωt)cos(φ) + cos(ωt)sin(φ) (23.6.42) 

to rewrite the integral in Eq. (23.6.41) as two integrals 

1 T F0
2ω cos(ωt)sin(ωt)cos(φ)

P(ω ) = − dt
T ∫ 2 −ω 2 )2 1/2 

0 m((b / m)2ω 2 + (ω0 ) 
(23.6.43)

1 T F0
2ω cos2(ωt)sin(φ)

− dt.
T ∫ 2 −ω 2 )2 1/2 

0 m((b / m)2ω 2 + (ω0 ) 
Using the time-averaged results from Example 23.5, we see that the first term in Eq. 
(23.6.43) is zero and the second term becomes 

F0
2ω sin(φ)

= (23.6.44)P(ω ) 
2 −ω 2 )2 1/2 

2m((b / m)2ω 2 + (ω0 ) 
For the underdamped driven oscillator, we make the same approximations in Eq. 
(23.6.44) that we made for the time-averaged energy. In the term in the numerator and the 
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term on the left in the denominator, we set ω  ω0 , and we use Eq. (23.6.37) in the term 
on the right in the denominator yielding 

F0
2 sin(φ)

P(ω ) = 1/2 (underdamped) . (23.6.45) 
2m((b / m)2 + 2(ω0 −ω )) 

The time-averaged power dissipated by the resistive force is given by 

T T T1 1 1 F0
2ω 2 sin2(ωt +φ)dt

(ω ) = 
T ∫ (F x )dis vx dt = − 

T ∫ bv x 
2 dt = 

T ∫ 2 (b / m)2ω 2 + (ω0
2 −ω 2 )2

Pdis 

0 0 0 m
 ( ) 

,(23.6.46)
F0

2ω 2dt 
= .
 

2m2 ((b / m)2ω 2 + (ω0
2 −ω 2 )2 )
 

where we used Eq. (23.5.1) for the dissipative force, Eq. (23.6.9) for the x -component of 
the velocity of the object, and Eq. (23.6.19) for the time-averaging. 

23.6.4 Quality Factor 

The plot of the time-averaged energy vs. the driving angular frequency for the 
underdamped oscullator has a width, Δω (Figure 23.20). One way to characterize this 
width is to define Δω = ω , where ω ± are the values of the angular frequency such + −ω− 

that time-averaged energy is equal to one half its maximum value 

1 mF0
2 

E(ω ± ) = E(ω0 ) = . (23.6.47)
4b22 

The quantity Δω is called the line width at half energy maximum also known as the 
resonance width. We can now solve for ω ± by setting 

F0
2 1 mF0

2 

E(ω ± ) = = , (23.6.48)
2m ((b / m)2 + 4(ω0 −ω ± )

2 ) 4b2 

yielding the condition that 
)2(b / m)2 = 4(ω0 −ω ± . (23.6.49) 

Taking square roots of Eq. (23.6.49) yields 

(b / 2m) = ω0 −ω ± . (23.6.50) 
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Therefore 
± (b / 2m) . (23.6.51)ω ± = ω0 

The half-width is then 

Δω = ω + (b / 2m)) − (ω0 − (b / 2m)) = b / m . (23.6.52)+ −ω− = (ω0 

We define the quality Q of the resonance as the ratio of the resonant angular frequency 
to the line width, 

ω0 ω0Q = = . (23.6.53)
Δω b / m 

Figure 23.21 Plot of time-averaged energy vs. angular frequency for different values of 
b / m 

In Figure 23.21 we plot the time-averaged energy vs. angular frequency for several 
different values of the quality factor Q = 10, 5, and 3. Recall that this was the same result 
that we had for the quality of the free oscillations of the damped oscillator, Eq. (23.5.16) 
(because we chose the factor π in Eq. (23.5.16)). 

23.7 Small Oscillations 

Any object moving subject to a force associated with a potential energy function that is 
quadratic will undergo simple harmonic motion, 

1 )2U (x) = U0 + k(x − x . (23.7.1)
2 eq 

where k is a “spring constant”, xeq is the equilibrium position, and the constant U0 just 

depends on the choice of reference point xref for zero potential energy, U (xref ) = 0 , 
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1 
)2+ − x . (23.7.2)0 = U (xref ) = U0 2 

k(xref eq 

Therefore the constant is 
1 

)2U0 = − 
2 

k(xref − xeq . (23.7.3) 

The minimum of the potential x0 corresponds to the point where the x -component of the 
force is zero, 

dU 
− x ) = 0 ⇒ x0 = x , (23.7.4)= 2k(x0 eq eq dx 

x = x0 

corresponding to the equilibrium position. Therefore the constant is U (x0 ) = U0 and we 
rewrite our potential function as 

1 
)2U (x) = U (x0 ) + k(x − x0 . (23.7.5)

2 

Now suppose that a potential energy function is not quadratic but still has a minimum at 
x0 . For example, consider the potential energy function 

3 2 ⎞⎛ ⎛ x ⎞ ⎛ x ⎞ 
U (x) = −U1 ⎜ − ⎟ , (23.7.6)

⎜ ⎝⎜ ⎝⎜ ⎝ x1 ⎠
⎟ x1 ⎠

⎟ ⎟⎠ 

(Figure 23.22), which has a stable minimum at x0 . 

Figure 23.22 Potential energy function with stable minima and unstable maxima 

When the energy of the system is very close to the value of the potential energy at the 
minimum U (x0 ) , we shall show that the system will undergo small oscillations about the 
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minimum value x0 . We shall use the Taylor formula to approximate the potential 
function as a polynomial. We shall show that near the minimum x0 , we can approximate 
the potential function by a quadratic function similar to Eq. (23.7.5) and show that the 
system undergoes simple harmonic motion for small oscillations about the minimum x0 . 

We begin by expanding the potential energy function about the minimum point using the 
Taylor formula 

dU 1 d 2U )2 + 
1 d 3U

U (x) = U (x0 ) + (x − x0 ) + (x − x0 (x − x0 )3 + ⋅⋅⋅ (23.7.7)
dx 2! dx2 3! dx3 

x=x0 x=x0 x=x0 

1 d 3U )3where (x − x0 )3 is a third order term in that it is proportional to (x − x0 , and 
3! dx3 

x=x0 

d 3U d 2U dU , 
dx2 and are constants. If x0 is the minimum of the potential 

dx3 dx, x=x0x=x0 x=x0 

energy, then the linear term is zero, because 

dU = 0 (23.7.8)
dx x=x0 

and so Eq. ((23.7.7)) becomes 

1 d 2U )2 + 
1 d 3U

U (x)  U (x0 ) + (x − x0 (x − x0 )3 + ⋅⋅⋅ (23.7.9)
2 dx2 3! dx3 

x=x0 x=x0 

For small displacements from the equilibrium point such that is sufficiently small, 
the third order term and higher order terms are very small and can be ignored. Then the 
potential energy function is approximately a quadratic function, 

x − x0 

1 d 2U )2 1 )2U (x)  U (x0 ) + (x − x0 = U (x0 ) + (x − x0 (23.7.10)keff 2 dx2 2 
x=x0 

where we define keff , the effective spring constant, by 

≡ . (23.7.11)keff 

d
dx

2U 
2 

x=x0 
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Because the potential energy function is now approximated by a quadratic function, the 
system will undergo simple harmonic motion for small displacements from the minimum 
with a force given by 

F x = − 
dU 
dx 

= −keff (x − x0 ) . (23.7.12) 

At x = x0 , the force is zero 

F x (x0 ) = 
dU 
dx 

(x0 ) = 0 . (23.7.13) 

We can determine the period of oscillation by substituting Eq. (23.7.12) into Newton’s 
Second Law 

x(x − x0 (23.7.14)−keff ) = meff 

d
dt

2 

2 

where meff is the effective mass. For a two-particle system, the effective mass is the 
reduced mass of the system. 

m1m2= (23.7.15)meff ≡ µred , m1 + m2 

Eq. (23.7.14) has the same form as the spring-object ideal oscillator. Therefore the 
angular frequency of small oscillations is given by 

ω0 = 
keff 

meff 

= 

d 2U 
dx2 

x=x0 

meff 

. (23.7.16)
 

Example 23.6: Quartic Potential 

A system with effective mass m has a potential energy given by 

⎛ ⎛ x ⎞ 
2 

⎛ x ⎞ 
4 ⎞ 

U (x) = ⎜ −2 + ⎟ , (23.7.17)U0 ⎜ ⎝⎜ ⎝⎜ ⎝ x0 ⎠
⎟ x0 ⎠

⎟ ⎟⎠ 

where U0 and x0 are positive constants and U (0) = 0 . (a) Find the points where the 
force on the particle is zero. Classify these points as stable or unstable. Calculate the 
value of U (x) / U0 at these equilibrium points. (b) If the particle is given a small 
displacement from an equilibrium point, find the angular frequency of small oscillation. 

Solution: (a) A plot of U (x) / U0 as a function of x / x0 is shown in Figure 23.23. 
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Figure 22.23 Plot of U (x) / U0 as a function of x / x0 

The force on the particle is zero at the minimum of the potential energy, 

⎛ 2 4 ⎞dU ⎛ 1 ⎞ ⎛ 1 ⎞ 0 = = ⎜ −4 x + 4 xU0dx ⎜⎝ ⎝⎜ x0 ⎠
⎟ ⎝⎜ x0 ⎠

⎟ 
3 

⎟⎠
⎟ 

(23.7.18) 
⎛ 1 ⎞ 

2 ⎛ ⎛ x ⎞ 
2 ⎞ 

= −4U0 x ⎜1− ⎟ ⇒ x2 = x0
2 and x = 0. 

⎝⎜ ⎝⎜x0 ⎠
⎟ ⎜⎝ x0 ⎠

⎟ ⎟⎠ 
The equilibrium points are at x = ±x0 which are stable and x = 0 which is unstable. The 
second derivative of the potential energy is given by 

⎛ ⎛ 1 ⎞ 
2 

⎛ 1 ⎞ 
4 ⎞d 2U 2 ⎟⎜ −4 +12 x . (23.7.19)

dx2 = U0 ⎝⎜ ⎝⎜⎜⎝ x0 ⎠
⎟ x0 ⎠

⎟ ⎟⎠ 

If the particle is given a small displacement from x = x0 then 

⎛ 2 4 ⎞d 2U ⎛ 1 ⎞ ⎛ 1 ⎞ 2 ⎟ 
8

⎜ −4 +12 . (23.7.20)= U0 x0 = U0 2dx2 ⎜ ⎝⎜ x0 ⎠
⎟ ⎝⎜ x0 ⎠

⎟ ⎟ x0x=x0 ⎝ ⎠ 

(b) The angular frequency of small oscillations is given by 

. (23.7.21)ω0 = 
d 2U 
dx2 

x=x0 
mx0 

/ m = 
8U0 

2 
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Example 23.7: Lennard-Jones 6-12 Potential 

A commonly used potential energy function to describe the interaction between two atoms is the 
Lennard-Jones 6-12 potential 

/ r)12 − 2(r0U (r) = U0 
⎡⎣(r0 / r)6 ⎤⎦ ; r > 0 , (23.7.22) 

where r is the distance between the atoms. Find the angular frequency of small oscillations 
about the stable equilibrium position for two identical atoms bound to each other by the Lennard-
Jones interaction. Let m denote the effective mass of the system of two atoms. 

Solution: The equilibrium points are found by setting the first derivative of the potential 
energy equal to zero, 

⎡ 6 ⎤dU 12 −13 +12r0 
6r−7 6 −7 r00 = = U0 

⎡⎣−12r0 r ⎤⎦ = U012r0 r ⎢−
⎛ ⎞ 

+1⎥ . (23.7.23)
dr ⎝⎜ r ⎠⎟⎢⎣ ⎥⎦ 

The equilibrium point occurs when r = r0 . The second derivative of the potential energy 
function is 

12 6 −8d
dr

2U 
2 = U0 

⎡⎣+(12)(13)r0 r−14 − (12)(7)r0 r ⎤⎦ . (23.7.24) 

Evaluating this at r = r0 yields 

d 2U = 72U0
−2 . (23.7.25)r0dr 2 

r=r0 

The angular frequency of small oscillation is therefore 

ω0 = 
d 2U 
dr 2 

r=r0 

/ m = 72U0 / mr0 
2 . (23.7.26)
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Appendix 23A: Solution to Simple Harmonic Oscillator Equation 

In our analysis of the solution of the simple harmonic oscillator equation of motion, 
Equation (23.2.1), 

2d x −k x = m , (23.A.1)
dt 2 

we assumed that the solution was a linear combination of sinusoidal functions, 

x(t) = Acos(ω0 t) + Bsin(ω0 t) , (23.A.2) 

where ω0 = k / m . We shall now derive Eq. (23.A.2).
 

Assume that the mechanical energy of the spring-object system is given by the constant
 
E . Choose the reference point for potential energy to be the unstretched position of the 
spring. Let x denote the amount the spring has been compressed ( x < 0 ) or stretched 
( x > 0 ) from equilibrium at time t and denote the amount the spring has been 
compressed or stretched from equilibrium at time t = 0 by x t( = 0) ≡ x0 . Let vx = dx / dt 
denote the x -component of the velocity at time t and denote the x -component of the 
velocity at time t = 0 by v (t = 0) ≡ v The constancy of the mechanical energy is then x x ,0 . 
expressed as 

1 2 1 2E = K +U = k x + mv . (23.A.3)
2 2 

We can solve Eq. (23.A.3) for the square of the x -component of the velocity, 

2 2E k 2 2E ⎛ k 2 ⎞ v = − x = 1− x 
⎠⎟ 

. (23.A.4)x m m m ⎝⎜ 2E 

Taking square roots, we have 
dx 2E k 2= 1− x . (23.A.5)
dt m 2E 

(why we take the positive square root will be explained below). 

Let a1 ≡ 2E / m and a2 ≡ k / 2E . It’s worth noting that a1 has dimensions of velocity 

and w has dimensions of [length]−2 . Eq. (23.A.5) is separable, 
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dx 2= a1 x1− a2dt 
(23.A.6)dx 

dt. 
2 
= a1 

x1− a2 

We now integrate Eq. (23.A.6), 
dx = ∫ dt . (23.A.7)a1 

The integral on the left in Eq. (23.A.7) is well known, and a derivation is presented here. 

1− a1 x
2∫ 

We make a change of variables cosθ = x with the differentials dθ and dx relateda2 

by −sinθ dθ = a2 dx . The integration variable is 

θ = cos−1 ( a2 x) . (23.A.8) 

Eq. (23.A.7) then becomes 

a1 dt . (23.A.9) 

This is a good point at which to check the dimensions. The term on the left in Eq. 

−sinθ dθ 

1−cos2 θ
∫ = a2∫ 

(23.A.9) is dimensionless, and the product on the right has dimensions of inverse a2 a1 

time, [length]−1[length ⋅ time−1] = [time−1] , so dt is dimensionless. Using the a2 a1 

2 θtrigonometric identity 1−cos = sinθ , Eq. (23.A.9) reduces to 

dt . (23.A.10)∫ dθ = −∫ a2 a1 

Although at this point in the derivation we don’t know that , which has a2 a1 

dimensions of frequency, is the angular frequency of oscillation, we’ll use some foresight 
and make the identification 

k 2E k≡ = = , (23.A.11)ω0 a2 a1 2E m m 

and Eq. (23.A.10) becomes 
θ t 

dθ = − dt . (23.A.12)∫ ∫ ω0 
θ t=0=θ0 
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2E 
k 

After integration we have 
t , (23.A.13)θ −θ0 = −ω0 

−1 a2where θ0 ≡ −φ is the constant of integration. Because θ = cos ( x(t)) , Eq. (23.A.13) 

becomes 
−1cos ( x(t) t +φ) . (23.A.14)a2 ) = −(ω0 

Take the cosine of each side of Eq. (23.A.14), yielding 

1 2E 
x(t) = cos(−(ω0 t +φ)) = cos(ω0 t +φ) . (23.A.15)

ka2 

At t = 0 , 

≡ x(t = 0) = cosφ . (23.A.16)x0 

The x -component of the velocity as a function of time is then 

dx(t) 2E 
v x (t) = sin(ω0 t + φ) . (23.A.17)= −ω0dt k 

At t = 0 , 
2E 

v ≡ v (t = 0) = −ω0 sinφ . (23.A.18)x ,0 x k 

We can determine the constant φ by dividing the expressions in Eqs. (23.A.18) and 
(23.A.16), 

v 
− x ,0 = tanφ. (23.A.19)
ω0 x0 

Thus the constant φ can be determined by the initial conditions and the angular 
frequency of oscillation, 

⎛ v ⎞ 
φ = tan−1 

⎜ − x ,0 
⎟ . (23.A.20)

⎝ ω0 x0 ⎠ 
Use the identity 

cos(ω0t +φ) = cos(ω0t)cos(φ) − sin(ω0t)sin(φ) (23.A.21) 

to expand Eq. (23.A.15) yielding 
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2E 2E 
x(t) = cos(ω0t)cos(φ) − sin(ω0t)sin(φ) , (23.A.22)

k k 

and substituting Eqs. (23.A.16) and (23.A.18) into Eq. (23.A.22) yields 

v 
x(t) = x cosω t + x ,0 sinω t , (23.A.23)0 0 0ω0 

agreeing with Eq. (23.2.21). 

So, what about the missing ± that should have been in Eq. (23.A.5)? Strictly speaking, 
we would need to redo the derivation for the block moving in different directions.  
Mathematically, this would mean replacing φ by π −φ (or φ −π ) when the block’s 
velocity changes direction. Changing from the positive square root to the negative and 
changing φ to π −φ have the collective action of reproducing Eq. (23.A.23). 

Appendix 23B: Complex Numbers 

A complex number z can be written as a sum of a real number x and a purely imaginary 
number iy where i = 

z = x + iy . (23.B.1) 

The complex number can be represented as a point in the x-y plane as show in Figure 
23B.1. 

−1 , 

Figure 23B.1 Complex numbers 

The complex conjugate z of a complex number z is defined to be 

The modulus of a complex number is 
z = x − iy . (23.B.2) 

z = (zz )1 2 = ((x + iy)(x − iy))1 2 = (x2 + y2 )1 2 . (23.B.3) 
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zwhere we used the fact that i2 = −1 . The modulus represents the length of the ray 
from the origin to the complex number z in Figure 23B.1. Let φ denote the angle that 
the ray with the positive x -axis in Figure 23B.1. Then 

x = z cosφ , (23.B.4) 

y = z sinφ . (23.B.5) 
Hence the angle φ is given by 

φ = tan−1( y / x) . (23.B.6) 

The inverse of a complex number is then 

1 z x − iy = = . (23.B.7)2 + yz zz (x 2 ) 

The modulus of the inverse is the inverse of the modulus; 

1 1 1 = = . (23.B.8)2 + y2 )1 2 z (x z 

The sum of two complex numbers, z1 + iy1 and z2 + iy2 , is the complex number= x1 = x2 

(23.B.9)z3 = z1 + z2 = (x1 + x2 ) + i( y1 + y2 ) = x3 + iy3 , 

where x3 + x2 , = We can represent this by the vector sum in Figure = x1 y3 y1 + y2 . 
23B.2, 

Figure 23B.2 Sum of two complex numbers 

The product of two complex numbers is given by 
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+ iy1 + iy2 ) = (x1z3 = z1z2 = (x1 )(x2 x2 − y1 y2 ) + i(x1 y2 + x2 y1) = x3 + iy3 , (23.B.10) 

where x3 = x1 y2 , and y3 y1 .x2 − y1 = x1 y2 + x2 

One of the most important identities in mathematics is the Euler formula, 

eiφ = cosφ + isinφ . (23.B.11) 

This identity follows from the power series representations for the exponential, sine, and 
cosine functions, 

φ 2 φ3 φ 4 φ5 
iφ 

n=∞ 1 (iφ)ne = ∑ = 1+ iφ − − i + + i ... , (23.B.12) 
n=0 n! 2 3! 4! 5! 

φ 2 φ 4 

cosφ = 1− + − ... , (23.B.13)
2 4! 
φ3 φ5 

sinφ = φ − + − ... . (23.B.14)
3! 5! 

We define two projection operators. The first one takes the complex number eiφ and 
gives its real part, 

Re eiφ = cosφ . (23.B.15) 

The second operator takes the complex number eiφ and gives its imaginary part, which is 
the real number 

Im eiφ = sinφ . (23.B.16) 

A complex number z = x + iy can also be represented as the product of a modulus z and 

a phase factor eiφ , 
z = z eiφ . (23.B.17) 

The inverse of a complex number is then 
1 1 1 = iφ 

= e− iφ , (23.B.18)
z zz e 

where we used the fact that 
1 − iφ 
iφ 
= e . (23.B.19)

e 

iφ1zIn terms of modulus and phase, the sum of two complex numbers, z1 = e and1 

iφ2z = z e , is2 
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iφ1= e + eiφ2 . (23.B.20)z1 + z2 z1 z2 

A special case of this result is when the phase angles are equal, φ1 , then the sum= φ2 

z1 + z2 has the same phase factor eiφ1 as z1 and z2 , 

iφ1iφ1 iφ1 == e + e ( + )e . (23.B.21)z1 + z2 z1 z2 z1 z2 

iφ2z zThe product of two complex numbers, z1 = eiφ1 , and z2 = e is1 2 

iφ1+φ2iφ1 iφ2 =z1z2 = e e e . (23.B.22)z1 z2 z1 z2 

When the phases are equal, the product does not have the same factor as z1 and z2 , 

iφ1iφ1z1z2 = e e = ei2φ1 . (23.B.23)z1 z2 z1 z2 

Appendix 23C: Solution to the Underdamped Simple Harmonic 
Oscillator 

Consider the underdamped simple harmonic oscillator equation (Eq. (23.5.4)), 

d 2 x b dx k+ + x = 0 . (23.C.1)
dt2 m dt m 

When (b / m)2 < 4k / m , we show that the equation has a solution of the form 

x(t) = x m e
−αt cos(γ t +φ) . (23.C.2) 

Solution: Let’s suppose the function x(t) has the form 

zt )x(t) = ARe(e (23.C.3) 

where z is a number (possibly complex) and A is a real number. Then 

dx = zAezt (23.C.4)
dt 

d 2 x 2 Aezt = z (23.C.5)
dt2 
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We now substitute Eqs. (23.C.3), (23.C.4), and (23.C.5), into Eq. (23.C.1) resulting in 

2 Aezt + 
b k Aezt z zAezt + = 0 . (23.C.6)
m m 

Collecting terms in Eq. (23.C.6) yields 

⎛ 2 + 
b k 

⎠⎟
⎞ 

Aezt z z + = 0 (23.C.7)
⎝⎜ m m 

The condition for the solution is that 
2 + 

b k z z + = 0 . (23.C.8)
m m 

This quadratic equation has solutions 

−(b / m) ± ((b / m)2 − 4k / m)1 2 

z = . (23.C.9)
2 

When (b / m)2 < 4k / m , the oscillator is called underdamped, and we have two solutions 
for z , however the solutions are complex numbers. Let 

= (k / m − (b / 2m)2 )1 2 ;γ (23.C.10) 
and 

α = b 2m . (23.C.11) 
. 
Recall that the imaginary number i = −1 . The two solutions are then z1 γ= −α + i t and 
z2 = −α − i t γ . Because our system is linear, our general solution is a linear combination 
of these two solutions, 

−α +iγ t + A2
−α−iγ t iγ t + A2

− iγ t )e−αtx(t) = A1e e = ( A1e e , (23.C.12) 

where A1 and A2 are constants. We shall transform this expression into a more familiar 
equation involving sine and cosine functions with help from the Euler formula, 

± iγ te = cos(γ t) ± isin(γ t) . (23.C.13) 

Therefore we can rewrite our solution as 

−αtx(t) = ( A1(cos(γ t) + isin(γ t)) + A2(cos(γ t) − isin(γ t)) )e . (23.C.14) 
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A little rearrangement yields 

−αtx(t) = (( A1 + A2 )cos(γ t) + i( A1 − A2 )sin(γ t))e . (23.C.15) 

Define two new constants C = and D = i( A1 − A2 ) . Then our solution looks likeA1 + A2 

x(t) = (C cos(γ t) + Dsin(γ t))e−αt . (23.C.16) 

Recall from Example 23.5 that we can rewrite 

C cos(γ t) + Dsin(γ t) = x m cos(γ t +φ) (23.C.17) 
, 

where 
x m = (C 2 + D2 )1 2 , and φ = tan−1(D / C) . 

Then our general solution for the underdamped case (Eq. (23.C.16)) can be written as 

x(t) = x m e
−αt cos(γ t +φ) . (23.C.18) 

There are two other possible cases which we shall not analyze: when (b / m)2 > 4k / m , a 
case referred to as overdamped, and when (b / m)2 = 4k / m , a case referred to as 
critically damped. 

Appendix 23D: Solution to the Forced Damped Oscillator Equation 

We shall now use complex numbers to solve the differential equation 

d 2 x dx
F0 cos(ωt) = m + b + kx . (23.D.1)

dt2 dt 

We begin by assuming a solution of the form 

x(t) = x0 cos(ωt +φ) . (23.D.2) 

where the amplitude x0 and the phase constant φ need to be determined. We begin by 
defining the complex function 

i(ωt+φ )z(t) = x0e . (23.D.3) 

Our desired solution can be found by taking the real projection 
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x(t) = Re(z(t)) = x0 cos(ωt +φ) . (23.D.4) 

Our differential equation can now be written as 

d 2 
iωt z dzF0e = m + b + kz . (23.D.5)

dt2 dt 

We take the first and second derivatives of Eq. (23.D.3), 

dz i(ωt+φ )(t) = iω x0e = iω z . (23.D.6)
dt 

d 2 z i(ωt+φ ) = −ω 2(t) = −ω 2 x0e z . (23.D.7)
dt2 

We substitute Eqs. (23.D.3), (23.D.6), and (23.D.7) into Eq. (23.D.5) yielding 

iωt i(ωt+φ )F0e = (−ω 2m + biω + k)z = (−ω 2m + biω + k)x0e . (23.D.8) 

We divide Eq. (23.D.8) through by eiωt and collect terms using yielding 

F0 / m 
x0e

iφ = . (23.D.9)
((ω0

2 −ω 2 ) + i(b / m)ω ) 

where we have used ω0
2 = k / m . Introduce the complex number 

z1 = (ω0
2 −ω 2 ) + i(b / m)ω . (23.D.10) 

Then Eq. (23.D.9) can be written as 

iφ F0x0e = . (23.D.11)
my 

Multiply the numerator and denominator of Eq. (23.D.11) by the complex conjugate 
2 −ω 2 ) − i(b / m)ω yieldingz1 = (ω0 

((ω0
2 −ω 2 ) − i(b / m)ω )iφ F0 z1 F0x0e = = ≡ u + iv . (23.D.12)

mz1 m ((ω0
2 −ω 2 )2 + (b / m)2ω 2 )z1 

where 
2 −ω 2 )F0 (ω0u = , (23.D.13)

m ((ω0
2 −ω 2 )2 + (b / m)2ω 2 ) 
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v = − 
F0 

m 
(b / m)ω 

((ω0 
2 − ω 2 )2 + (b / m)2ω 2 ) 

. (23.D.14) 

Therefore the modulus x0 is given by 

x0 = (u2 + v2 )1/2 = 
F0 / m 

((ω0 
2 − ω 2 )2 + (b / m)2ω 2 ) 

, (23.D.15) 

and the phase is given by 

φ = tan−1(v / u) = 
−(b / m)ω 

(ω0 
2 − ω 2 ) 

. (23.D.16) 
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Chapter 24 Physical Pendulum 

…. I had along with me….the Descriptions, with some Drawings of the 
principal Parts of the Pendulum-Clock which I had made, and as also of 
them of my then intended Timekeeper for the Longitude at Sea.1 

John Harrison 

24.1 Introduction 

We have already used Newton’s Second Law or Conservation of Energy to analyze 
systems like the spring-object system that oscillate. We shall now use torque and the 
rotational equation of motion to study oscillating systems like pendulums and torsional 
springs. 

24.1.1 Simple Pendulum: Torque Approach 

Recall the simple pendulum from Chapter 23.3.1.The coordinate system and force 
diagram for the simple pendulum is shown in Figure 24.1. 

(a) (b) 

Figure 24.1 (a) Coordinate system and (b) torque diagram for simple pendulum 

The torque about the pivot point P is given by 

  τ = r × mg = l r̂ × m g(cosθ r̂ − sinθ θ̂) = −l m g sinθ k̂ (24.1.1)P P, m 

The z -component of the torque about point P 

) = −mgl sinθ . (24.1.2)(τ P z 

1 J. Harrison, A Description Concerning Such Mechanisms as will Afford a Nice, or True Mensuration of 
Time;…(London, 1775), p.19. 
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When θ > 0 , (τ P )z < 0 and the torque about P is directed in the negative k̂ -direction 
(into the plane of Figure 24.1b) when θ < 0 , ) > 0 and the torque about P is(τ P z 

directed in the positive k̂ -direction (out of the plane of Figure 24.1b). The moment of 
inertia of a point mass about the pivot point P is IP = ml2 . The rotational equation of 
motion is then 

(τ P )z = IPα z ≡ IP 

d
dt

2θ 
2 

(24.1.3) 
−mgl sinθ = ml2 d 2θ . 

dt2 

Thus we have 
d 2θ g= − sinθ , (24.1.4)
dt 2 l 

agreeing with Eq. 23. 3.14. When the angle of oscillation is small, we may use the small 
angle approximation 

sinθ ≅θ , (24.1.5) 

and Eq. (24.1.4) reduces to the simple harmonic oscillator equation 

d 2θ g 
2 ≅ − θ . (24.1.6)

dt l 

We have already studied the solutions to this equation in Chapter 23.3. A procedure for 
determining the period when the small angle approximation does not hold is given in 
Appendix 24A. 

24.2 Physical Pendulum 

A physical pendulum consists of a rigid body that undergoes fixed axis rotation about a 
fixed point S (Figure 24.2). 

Figure 24.2 Physical pendulum 
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The gravitational force acts at the center of mass of the physical pendulum. Denote the 
distance of the center of mass to the pivot point S by lcm . The torque analysis is nearly 
identical to the simple pendulum. The torque about the pivot point S is given by 

  τ = r × mg = l r̂ × m g(cosθ r̂ − sinθ θ̂) = −l m g sinθ k̂ . (24.2.1)S S , cm cm cm 

Following the same steps that led from Equation (24.1.1) to Equation (24.1.4), the 
rotational equation for the physical pendulum is 

d 2θ− mglcm sinθ = IS , (24.2.2)
dt2 

where IS the moment of inertia about the pivot point S . As with the simple pendulum, 
for small angles sinθ ≈θ , Equation (24.2.2) reduces to the simple harmonic oscillator 
equation 

d 2θ mglcm  − θ . (24.2.3)
dt2 IS 

The equation for the angle θ(t) is given by 

θ(t) = Acos(ω 0 t) + Bsin(ω 0 t) , (24.2.4) 

where the angular frequency is given by 

mg lcm ω0  (physical pendulum) , (24.2.5)
IS 

and the period is 
2π IST =  2π (physical pendulum) . (24.2.6)

mg l ω0 cm 

Substitute the parallel axis theorem, IS = ml 2 + I , into Eq. (24.2.6) with the result that cm cm 

l I cm cm T  2π + (physical pendulum) . (24.2.7)
g mg lcm 

Thus, if the object is “small” in the sense that I << ml 2 , the expressions for the cm cm 

physical pendulum reduce to those for the simple pendulum. The z -component of the 
angular velocity is given by 
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dθω (t) = Asin(ω0 Bcos(ω0 t) . (24.2.8)z (t) = −ω0 t) + ω0dt 

The coefficients A and B can be determined form the initial conditions by setting t = 0 
in Eqs. (24.2.4) and (24.2.8) resulting in the conditions that 

A = θ(t = 0) ≡θ0 

ω z (t = 0) ω z ,0 (24.2.9)
B = ≡ .

ω0 ω0 

dθTherefore the equations for the angle θ(t) and ω (t) = (t) are given byz dt 

θ(t) = θ0 cos(ω0 t) + 
ω
ω 

z 

0

,0 sin(ω0 t) , (24.2.10) 

ω (t) = (t) = −ω0 sin(ω0 t) + ω cos(ω0 t) . (24.2.11)z 

d
dt 
θ θ0 z ,0 

24.3 Worked Examples 

Example 24.1 Oscillating Rod 

A physical pendulum consists of a uniform rod of length d and mass m pivoted at one 
end. The pendulum is initially displaced to one side by a small angle θ0 and released 
from rest with θ0 << 1. Find the period of the pendulum. Determine the period of the 
pendulum using (a) the torque method and (b) the energy method. 

Figure 24.3 Oscillating rod 

(a) Torque Method: with our choice of rotational coordinate system the angular 
acceleration is given by 
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 d 2θ
α = k̂ . (24.3.1)

dt2 

The force diagram on the pendulum is shown in Figure 24.4. In particular, there is an 
unknown pivot force and the gravitational force acts at the center of mass of the rod. 

Figure 24.4 Free-body force diagram on rod 

The torque about the pivot point P is given by 

  × mg . (24.3.2)τP = rP,cm 

The rod is uniform, therefore the center of mass is a distance d / 2 from the pivot point. 
The gravitational force acts at the center of mass, so the torque about the pivot point P is 
given by 


τP = (d / 2)r̂ × mg(− sinθ θ̂ + cos r̂) = −(d / 2)mg sinθ k̂ . (24.3.3) 

The rotational equation of motion about P is then 

 
α . (24.3.4)τP = IP

Substituting Eqs. (24.3.3) and (24.3.1) into Eq. (24.3.4) yields 

d 2θ
−(d / 2)mg sinθ k̂ = IP dt2 k̂ . (24.3.5) 

When the angle of oscillation is small, we may use the small angle approximation 
sinθ ≅θ , then Eq. (24.3.5) becomes 
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d 2θ (d / 2)mg + θ  0 , (24.3.6)
dt2 IP 

which is a simple harmonic oscillator equation. The angular frequency of small 
oscillations for the pendulum is 

ω0  
(d / 2)mg 

IP 

. (24.3.7)
 

The moment of inertia of a rod about the end point P is IP = (1 / 3)md 2 therefore the 
angular frequency is 

ω0  
(d / 2)mg 
(1/ 3)md 2 = 

(3 / 2)g 
d 

(24.3.8)
 

with period 

T = 
2π 
ω0 

 2π 
2 
3 

d 
g 

. (24.3.9) 

(b) Energy Method: Take the zero point of gravitational potential energy to be the point 
where the center of mass of the pendulum is at its lowest point (Figure 24.5), that is, 
θ = 0 . 

Figure 24.5 Energy diagram for rod 

When the pendulum is at an angle θ the potential energy is 

dU = mg (1− cosθ ) . (24.3.10)
2 

The kinetic energy of rotation about the pivot point is 
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K rot 1 2= I ω . (24.3.11)
2 p z 

The mechanical energy is then 

E = U + K rot d 1 2= mg (1− cosθ ) + I ω , (24.3.12)
2 2 p z 

with IP = (1/ 3)md 2 . There are no non-conservative forces acting (by assumption), so the 
mechanical energy is constant, and therefore the time derivative of energy is zero, 

dE d dθ dω z0 = = mg sinθ + I p ω z . (24.3.13)
dt 2 dt dt 

Recall that ω = dθ / dt and α = dω / dt = d 2θ / dt2 , so Eq. (24.3.13) becomes z z z 

⎛ d d 2θ ⎞0 = ω mg sinθ + I 
⎠⎟ 

. (24.3.14)z p⎝⎜ 2 dt2 

There are two solutions, ω z = 0 , in which case the rod remains at the bottom of the 
swing, 

d d 2θ0 = mg sinθ + I . (24.3.15)
2 p dt2 

Using the small angle approximation, we obtain the simple harmonic oscillator equation 
(Eq. (24.3.6)) 

d 2θ m g(d / 2) 
+ θ  0 . (24.3.16)

dt2 I p 

Example 24.3 Torsional Oscillator 

A disk with moment of inertia about the center of mass I cm rotates in a horizontal plane. 
It is suspended by a thin, massless rod. If the disk is rotated away from its equilibrium 
position by an angle θ , the rod exerts a restoring torque about the center of the disk with 
magnitude given by τ cm = bθ (Figure 24.6), where b is a positive constant. At t = 0 , the 
disk is released from rest at an angular displacement of θ0 . Find the subsequent time 
dependence of the angular displacement θ ( )t . 
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Figure 24.6 Example 24.3 with exaggerated angle θ 

Solution: Choose a coordinate system such that k̂ is pointing upwards (Figure 24.6), 
then the angular acceleration is given by 

α
 
= 

d 2θ k̂ . (24.3.17)
dt2 

The torque about the center of mass is given in the statement of the problem as a 
restoring torque, therefore 


τ cm = −bθ k̂ . (24.3.18) 

The z -component of the rotational equation of motion is 

d 2θ−bθ = I cm . (24.3.19)
dt2 

This is a simple harmonic oscillator equation with solution 

θ(t) = Acos(ω0 t) + Bsin(ω0 t) (24.3.20) 

where the angular frequency of oscillation is given by 

= b / I . (24.3.21)ω0 cm 

The z -component of the angular velocity is given by 

dθω (t) = Asin(ω0 Bcos(ω0 t) . (24.3.22)z (t) = −ω0 t) + ω0dt 

The initial conditions at t = 0 , are θ (t = 0) = A = θ0 , and (dθ / dt)(t = 0) = ω0 B = 0 . 
Therefore 

θ(t) = cos( b / I t) . (24.3.23)θ0 cm 
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Example 24.4 Compound Physical Pendulum 

A compound physical pendulum consists of a disk of radius R and mass md fixed at the 
end of a rod of mass mr and length l (Figure 24.7a). (a) Find the period of the pendulum. 
(b) How does the period change if the disk is mounted to the rod by a frictionless bearing 
so that it is perfectly free to spin? 

rr 

(a) (b) 

Figure 24.7 (a) Example 24.4 (b) Free-body force diagram 

Solution: We begin by choosing coordinates. Let k̂ be normal to the plane of the motion 
of the pendulum pointing out of the plane of the Figure 24.7b. Choose an angle variable 
θ such that counterclockwise rotation corresponds to a positive z -component of the 
angular velocity. Thus a torque that points into the page has a negative z -component and 
a torque that points out of the page has a positive z -component. The free-body force 
diagram on the pendulum is also shown in Figure 24.7b. In particular, there is an 
unknown pivot force, the gravitational force acting at the center of mass of the rod, and 
the gravitational force acting at the center of mass of the disk. The torque about the pivot 
point is given by      (24.3.24)τP P,disk × m +
 × md =
 g g .
P,cm r 

Recall that the vector  rP,cm points from the pivot point to the center of mass of the rod a 
distance l / 2 from the pivot. The vector r points from the pivot point to the center of P,disk 

mass of the disk a distance l from the pivot. Torque diagrams for the gravitational force 
on the rod and the disk are shown in Figure 24.8. Both torques about the pivot are in the 
negative k̂ -direction (into the plane of Figure 24.8) and hence have negative z -
components, 


τP = −(mr (l / 2) + mdl)g sinθ k̂ . (24.3.25) 
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(a) (b) 

Figure 24.8 Torque diagram for (a) center of mass, (b) disk 

In order to determine the moment of inertia of the rigid compound pendulum we will 
treat each piece separately, the uniform rod of length d and the disk attached at the end 
of the rod. The moment of inertia about the pivot point P is the sum of the moments of 
inertia of the two pieces, 

IP = IP,rod + IP,disc . (24.3.26) 

We calculated the moment of inertia of a rod about the end point P (Chapter 16.3.3), 
with the result that 

1 l2IP,rod = 
3 

mr . (24.3.27) 

We can use the parallel axis theorem to calculate the moment of inertia of the disk about 
the pivot point P , 

l2IP,disc = Icm,disc + md . (24.3.28) 

We calculated the moment of inertia of a disk about the center of mass (Example 16.3) 
and determined that 

R2= . (24.3.29)Icm,disc 

1 md2 

The moment of inertia of the compound system is then 

1 l2 + 
1 R2= m l2 + md . (24.3.30)IP r md3 2 

Therefore the rotational equation of motion becomes 
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d 2θR2−((1/ 2)m + md )gl sinθ k̂ = (((1/ 3)m + md )l
2 + (1/ 2)md ) k̂ . (24.3.31)r r dt2 

When the angle of oscillation is small, we can use the small angle approximation 
sinθ  θ . Then Eq. (24.3.31) becomes a simple harmonic oscillator equation, 

d 2θ ((1/ 2)m )glr + md − θ . (24.3.32)
R2dt2 ((1/ 3)m )l2 + (1/ 2)mdr + md 

Eq. (24.3.32) describes simple harmonic motion with an angular frequency of oscillation 
when the disk is fixed in place given by 

((1/ 2)m )gl
ω fixed 

r + md 

R2 . (24.3.33)= 
((1/ 3)m )l2 + (1/ 2)mdr + md 

The period is 
R22π ((1/ 3)m )l2 + (1/ 2)mdr + md . (24.3.34)=  2πTfixed ((1/ 2)m )glω fixed r + md 

(b) If the disk is not fixed to the rod, then it will not rotate about its center of mass as the 
pendulum oscillates. Therefore the moment of inertia of the disk about its center of mass 
does not contribute to the moment of inertia of the physical pendulum about the pivot 
point. Notice that the pendulum is no longer a rigid body. The total moment of inertia is 
only due to the rod and the disk treated as a point like object, 

1 l2= m l2 + md . (24.3.35)IP r3 

Therefore the period of oscillation is given by 

)l22π ((1/ 3)m r + md . (24.3.36)=  2πTfree ((1/ 2)m )glω free r + md 

Comparing Eq. (24.3.36) to Eq. (24.3.34), we see that the period is smaller when the disk 
is free and not fixed. From an energy perspective we can argue that when the disk is free, 
it is not rotating about the center of mass. Therefore more of the gravitational potential 
energy goes into the center of mass translational kinetic energy than when the disk is free. 
Hence the center of mass is moving faster when the disk is free so it completes one 
period is a shorter time. 
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Appendix 24A Higher-Order Corrections to the Period for Larger
 
Amplitudes of a Simple Pendulum
 

In Section 24.1.1, we found the period for a simple pendulum that undergoes small 
oscillations is given by 

T = 
2π 

ω0 

≅ 2π 
l 
g 

(simple pendulum) . 

How good is this approximation? If the pendulum is pulled out to an initial angle θ0 that 
is not small (such that our first approximation sinθ ≅θ no longer holds) then our 
expression for the period is no longer valid. We shall calculate the first-order (or higher-
order) correction to the period of the pendulum. 

Let’s first consider the mechanical energy, a conserved quantity in this system. Choose 
an initial state when the pendulum is released from rest at an angle θ i ; this need not be at 
time t = 0 , and in fact later in this derivation we’ll see that it’s inconvenient to choose 
this position to be at t = 0 . Choose for the final state the position and velocity of the bob 
at an arbitrary time t . Choose the zero point for the potential energy to be at the bottom 
of the bob’s swing (Figure 24A.1). 

Figure 24A.1 Energy diagram for simple pendulum 

The mechanical energy when the bob is released from rest at an angle θ i is 

= mg l (1− cosθ i ) . (24.C.37)Ei = Ki +Ui 

The tangential component of the velocity of the bob at an arbitrary time t is given by 

dθ vθ = l , (24.C.38)
dt 

and the kinetic energy at that time is 
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1 2 1 ⎛ dθ ⎞ 
2 

K f = mvθ = m
⎝⎜ 

l . (24.C.39)
2 2 dt ⎠⎟ 

The mechanical energy at time t is then 

1 ⎛ dθ ⎞
2 

Ef = K f +U f = m⎜ l ⎟ + mg l(1− cosθ ) . (24.C.40)
2 ⎝ dt ⎠ 

Because the tension in the string is always perpendicular to the displacement of the bob, 
the tension does no work, we neglect any frictional forces, and hence mechanical energy 
is constant, E f . Thus= Ei 

dθ ⎞ 
2

1 ⎛ 
m l + mg l (1− cosθ ) = mg l (1− cosθ i )2 ⎝⎜ dt ⎠⎟ 

(24.C.41) 
dθ ⎞ 

2
⎛ gl = 2 (cosθ − cosθ i ). ⎝⎜ dt ⎠⎟ l 

We can solve Equation (24.C.41) for the angular velocity as a function of θ , 

dθ 2g= cosθ − cosθ i . (24.C.42)
dt l 

Note that we have taken the positive square root, implying that dθ / dt ≥ 0 . This clearly 
cannot always be the case, and we should change the sign of the square root every time 
the pendulum’s direction of motion changes. For our purposes, this is not an issue. If we 
wished to find an explicit form for either θ(t) or t( ) , we would have to consider the θ 
signs in Equation (24.C.42) more carefully. 

Before proceeding, it’s worth considering the difference between Equation (24.C.42) and 
the equation for the simple pendulum in the simple harmonic oscillator limit, where 
cosθ  1− (1/ 2)θ 2 . Then Eq. (24.C.42) reduces to 

2 θ 2dθ 2g θ i= − . (24.C.43)
dt l 2 2 

In both Equations (24.C.42) and (24.C.43) the last term in the square root is proportional 
to the difference between the initial potential energy and the final potential energy. The 
final potential energy for the two cases is plotted in Figures 24A.2 for −π < θ < π on the 
left and −π / 2 < θ < π / 2 on the right (the vertical scale is in units of mgl ). 
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Figures 24A.2 Potential energies as a function of displacement angle 

It would seem to be to our advantage to express the potential energy for an arbitrary 
displacement of the pendulum as the difference between two squares. We do this by first 
recalling the trigonometric identity 

1− cosθ = 2sin2(θ / 2) (24.C.44) 

with the result that Equation (24.C.42) may be re-expressed as 

dθ 2g= 2(sin2(θ i / 2) − sin2(θ / 2)) . (24.C.45)
dt l 

Equation (24.C.45) is separable, 

dθ g= 2 dt (24.C.46)
sin2(θ i / 2) − sin2(θ / 2) l 

Rewrite Equation (24.C.46) as 

dθ g= 2 dt . (24.C.47)
sin2(θ / 2) l 

sin(θ i / 2) 1− 
sin2(θ i / 2) 

The ratio sin(θ / 2) / sin(θ i / 2) in the square root in the denominator will oscillate (but 
not with simple harmonic motion) between −1 and +1, and so we will make the 
identification 

sin(θ / 2) sinφ = . (24.C.48)
sin(θ i / 2) 
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Let b = sin(θ i / 2) , so that 

θ
sin = bsinφ

2 
(24.C.49)

θ ⎛ ⎞
1 2 

= (1− b2 sin2 φ)1 2 cos = 1− sin2 θ 
.

2 ⎝⎜ 2⎠⎟ 

Eq. (24.C.47) can then be rewritten in integral form as 

dθ g= 2∫ l 
dt . (24.C.50)∫ 

b 1− sin2 φ 

From differentiating the first expression in Equation (24.C.49), we have that 

1 θ 
cos dθ = bcosφ dφ

2 2 

cosφ 1− sin2 φdθ = 2b dφ = 2b dφ (24.C.51)
cos(θ / 2) 1− sin2(θ / 2) 

= 2b 1− sin2 φ 

1− b2 sin2 φ 
dφ. 

Substituting the last equation in (24.C.51) into the left-hand side of the integral in 
(24.C.50) yields 

∫ 
2b 

b 1− sin2 φ 

1− sin2 φ 

1− b2 sin2 φ 
dφ = 2∫ 

dφ 

1− b2 sin2 φ 
. (24.C.52) 

dφ 

1− b2 sin2 φ
∫ = 

g 
l∫ 

Thus the integral in Equation (24.C.50) becomes 

dt . (24.C.53) 

This integral is one of a class of integrals known as elliptic integrals. We find a power 
series solution to this integral by expanding the function 

(1− b2 sin2 φ)−1 2 1 3 = 1+ b2 sin2 φ + b4 sin4 φ + ⋅⋅⋅ . (24.C.54)
2 8 

The integral in Equation (24.C.53) then becomes 
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⎛ 1 3 ⎞ g dt . (24.C.55)∫ 1+ b2 sin2 φ + b4 sin4 φ + ⋅⋅⋅
⎠⎟ 

dφ = ∫⎝⎜ 2 8 l 

Now let’s integrate over one period. Set t = 0 when θ = 0 , the lowest point of the swing, 
so that sinφ = 0 and φ = 0 . One period T has elapsed the second time the bob returns to 
the lowest point, or when φ = 2π . Putting in the limits of the φ -integral, we can 
integrate term by term, noting that 

2π 1 2π 1 b2 1b2 sin2 φ dφ = (1− cos(2φ)) dφ∫0 2 ∫0 2 2 
2π 

1 b2 1 ⎛ sin(2φ)⎞ = φ − (24.C.56)
2 2 ⎝⎜ 2 ⎠⎟ 

0 

1 πb2 1 = = π sin2 θ i .
2 2 2 

Thus, from Equation (24.C.55) we have that 

2π ⎛ 1 3 ⎞ T gb2 sin2 φ + b4 sin4 φ + ⋅⋅⋅ dt∫0 ⎝⎜
1+ 

⎠⎟ 
dφ = ∫02 8 l , (24.C.57) 

1 θ i2π + π sin2 + ⋅⋅⋅ = 
2 2 

g 
l 

T 

We can now solve for the period, 

l ⎛ 1 ⎞
T = 2π 1+ sin2 θ i + ⋅⋅⋅ 

⎠⎟ 
. (24.C.58)

g ⎝⎜ 4 2 

If the initial angle θ i << 1 (measured in radians), then sin2(θ i / 2)  θ i 
2 / 4 and the period 

is approximately 
l ⎛ 1 2 ⎞ ⎛ 1 2 ⎞1+ θ i ⎠⎟ 

= T0 ⎝⎜
1+ θ i ⎠⎟ 

, (24.C.59)T ≅ 2π 
g ⎝⎜ 16 16 

where 
l (24.C.60)T0 = 2π 
g 

is the period of the simple pendulum with the standard small angle approximation. The 
first order correction to the period of the pendulum is then 
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1 2 T0 .= (24.C.61)ΔT1 θ i16 

Figure 24A.3 below shows the three functions given in Equation (24.C.60) (the 
horizontal, or red plot if seen in color), Equation (24.C.59) (the middle, parabolic or 
green plot) and the numerically-integrated function obtained by integrating the expression 
in Equation (24.C.53) (the upper, or blue plot) between φ = 0 and φ = 2π . The plots 
demonstrate that Equation (24.C.60) is a valid approximation for small values of θ i , and 
that Equation (24.C.59) is a very good approximation for all but the largest amplitudes of 
oscillation. The vertical axis is in units of Note the displacement of the 
horizontal axis. 

l / g . 

Figure 24A.3 Pendulum Period Approximations as Functions of Amplitude 
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Chapter 25 Celestial Mechanics 

...and if you want the exact moment in time, it was conceived mentally on 
8th March in this year one thousand six hundred and eighteen, but 
submitted to calculation in an unlucky way, and therefore rejected as 
false, and finally returning on the 15th of May and adopting a new line of 
attack, stormed the darkness of my mind. So strong was the support from 
the combination of my labour of seventeen years on the observations of 
Brahe and the present study, which conspired together, that at first I 
believed I was dreaming, and assuming my conclusion among my basic 
premises. But it is absolutely certain and exact that "the proportion 
between the periodic times of any two planets is precisely the 
sesquialterate proportion of their mean distances ..." 1 

Johannes Kepler 

25.1 Introduction: The Kepler Problem 

Johannes Kepler first formulated the laws that describe planetary motion, 

I. Each planet moves in an ellipse with the sun at one focus.

II. The radius vector from the sun to a planet sweeps out equal areas in equal time.

III. The period of revolution T of a planet about the sun is related to the semi-major 
axis a of the ellipse by T 2 = k a3 where k is the same for all planets.2 

The third law was published in 1619, and efforts to discover and solve the equation of 
motion of the planets generated two hundred years of mathematical and scientific 
discovery. In his honor, this problem has been named the Kepler Problem. 

When there are more than two bodies, the problem becomes impossible to solve 
exactly. The most important “three-body problem” in the 17th and 18th centuries involved 
finding the motion of the moon, due to gravitational interaction with both the sun and the 
earth. Newton realized that if the exact position of the moon were known, the longitude 
of any observer on the earth could be determined by measuring the moon’s position with 
respect to the stars. 

In the eighteenth century, Leonhard Euler and other mathematicians spent many 
years trying to solve the three-body problem, and they raised a deeper question. Do the 
small contributions from the gravitational interactions of all the planets make the 
planetary system unstable over long periods of time? At the end of 18th century, Pierre 

1 Kepler, Johannes, Harmonice mundi Book 5, Chapter 3, trans. Aiton, Duncan and Field, p. 411 
2 As stated in An Introduction to Mechanics, Daniel Kleppner and Robert Kolenkow, McGraw-Hill, 1973, 
p 401. 
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Simon Laplace and others found a series solution to this stability question, but it was 
unknown whether or not the series solution converged after a long period of time. Henri 
Poincaré proved that the series actually diverged. Poincaré went on to invent new 
mathematical methods that produced the modern fields of differential geometry and 
topology in order to answer the stability question using geometric arguments, rather than 
analytic methods. Poincaré and others did manage to show that the three-body problem 
was indeed stable, due to the existence of periodic solutions. Just as in the time of 
Newton and Leibniz and the invention of calculus, unsolved problems in celestial 
mechanics became the experimental laboratory for the discovery of new mathematics. 

25.2 Planetary Orbits 

We now commence a study of the Kepler Problem. We shall determine the equation of 
motion for the motions of two bodies interacting via a gravitational force (two-body 
problem) using both force methods and conservation laws. 

25.2.1 Reducing the Two-Body Problem into a One-Body Problem 

We shall begin by showing how the motion of two bodies interacting via a gravitational 
force (two-body problem) is mathematically equivalent to the motion of a single body 
acted on by an external central gravitational force, where the mass of the single body is 
the reduced mass µ , 

1 1 1 m2m1= + ⇒ µ = . (25.2.1)
µ m1 m2 m1 + m2 

Once we solve for the motion of the reduced body in this equivalent one-body problem, 
we can then return to the real two-body problem and solve for the actual motion of the 
two original bodies. The reduced mass was introduced in Chapter 13 Appendix A of 
these notes. That appendix used similar but slightly different notation from that used in 
this chapter. 

Consider the gravitational interaction between two bodies with masses and asm1 m2 

shown in Figure 25.1. 

Figure 25.1 Gravitational force between two bodies 
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Choose a coordinate system with a choice of origin such that body 1 has position r1 and 
 body 2 has position r2 (Figure 25.2). The relative position vector r pointing from body 2 

2 . r r1 

 r byto body 1 is r =
 −
 We denote the magnitude of r = r , where r is the distance 
between the bodies, and r̂ is the unit vector pointing from body 2 to body 1, so that 
 r = r r̂ . 

Figure 25.2 Coordinate system for the two-body problem 

The force on body 1 (due to the interaction of the two bodies) can be described by 
Newton’s Universal Law of Gravitation 

 m1 m2r̂ = − G 2 r̂ . (25.2.2)F2,1 = −F2,1 r 

Recall that Newton’s Third Law requires that the force on body 2 is equal in magnitude 
and opposite in direction to the force on body 1, 

  
F1,2 = −F2,1 . (25.2.3) 

Newton’s Second Law can be applied individually to the two bodies: 

 d 2 r1F , (25.2.4)2,1 = m1 dt2 

 d 2
 
F1,2 = m2 dt

r
2 
2 . (25.2.5)
 

Dividing through by the mass in each of Equations (25.2.4) and (25.2.5) yields 

 
d 2F2,1 r 

= 1 , (25.2.6)
dt2m1 
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F d 2 

1,2 r2= . (25.2.7)
dt2m2 

Subtracting the expression in Equation (25.2.7) from that in Equation (25.2.6) yields 

2,1 1,2 

m1 m2 

 
F 

 
F

=
 
d 2 

dt2 

r1 −
 
d 2 

dt2 dt2 

r2 
rd 2 

−
 (25.2.8)
= .
 

Using Newton’s Third Law, Equation (25.2.3), Equation (25.2.8) becomes 

2,1 


F 

r⎛ 1 1 ⎞ d 2 

(25.2.9)
+
 
⎠⎟ 
=
 

⎝⎜
 
.


dt2m1 m2 

Using the reduced mass µ , as defined in Equation (25.2.1), Equation (25.2.9) becomes 

 
F rd 2 


F 

2,1 = 
µ dt2 

2,1 

(25.2.10)
rd 2 

= µ 
dt2 , 

 
where F2,1 is given by Equation (25.2.2). 

Our result has a special interpretation using Newton’s Second Law. Let µ be the 
mass of a single body with position vector r = r r̂ with respect to an origin O , where r̂ 

is the unit vector pointing from the origin O to the single body. Then the equation of 
motion, Equation (25.2.10), implies that the single body of mass µ is under the influence 
of an attractive gravitational force pointing toward the origin. So, the original two-body 
gravitational problem has now been reduced to an equivalent one-body problem,  
involving a single body with mass µ under the influence of a central force FG r̂ .= − F2,1 

Note that in this reformulation, there is no body located at the central point (the origin 
O ). The parameter r in the two-body problem is the relative distance between the 
original two bodies, while the same parameter r in the one-body problem is the distance 
between the single body and the central point. This reduction generalizes to all central 
forces. 

25.3 Energy and Angular Momentum, Constants of the Motion 

The equivalent one-body problem has two constants of the motion, energy E and the 
angular momentum L about the origin O . Energy is a constant because in our original 
two-body problem, the gravitational interaction was an internal conservative force. 
Angular momentum is constant about the origin because the only force is directed 
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towards the origin, and hence the torque about the origin due to that force is zero (the 
vector from the origin to the single body is anti-parallel to the force vector and sinπ = 0 ). 
Because angular momentum is constant, the orbit of the single body lies in a plane with 
the angular momentum vector pointing perpendicular to this plane. 

In the plane of the orbit, choose polar coordinates (r, θ ) for the single body (see Figure 
25.3), where r is the distance of the single body from the central point that is now taken 
as the origin O , and θ is the angle that the single body makes with respect to a chosen 
direction, and which increases positively in the counterclockwise direction. 

Figure 25.3 Coordinate system for the orbit of the single body 

There are two approaches to describing the motion of the single body. We can try to find 
both the distance from the origin, r(t) and the angle, θ(t) , as functions of the parameter 
time, but in most cases explicit functions can’t be found analytically. We can also find 
the distance from the origin, r(θ ) , as a function of the angle θ . This second approach 
offers a spatial description of the motion of the single body (see Appendix 25A). 

25.3.1 The Orbit Equation for the One-Body Problem 

Consider the single body with mass µ given by Equation (25.2.1), orbiting about a 
central point under the influence of a radially attractive force given by Equation (25.2.2). 
Since the force is conservative, the potential energy (from the two-body problem) with 
choice of zero reference point U (∞) = 0 is given by 

G m1 m2U (r) = − . (25.3.1)
r 

The total energy E is constant, and the sum of the kinetic energy and the potential 
energy is 

1 2 − 
G m1 m2E = µ v . (25.3.2)

2 r 

The kinetic energy term µv2 / 2 is written in terms of the mass µ and the relative speed 
v of the two bodies. Choose polar coordinates such that 
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ˆv  = v r r̂ + vθθ, 
 (25.3.3)dr v = v = ,

dt 

where vr = dr / dt and vθ = r(dθ / dt) . Equation (25.3.2) then becomes 

dθ ⎞ 
2 ⎤1 ⎡⎛ dr ⎞ 

2 
⎛ G m1 m2E = µ ⎢ + r ⎥ − . (25.3.4)

2 ⎢⎣⎝
⎜ dt ⎠⎟ ⎝⎜ dt ⎠⎟ ⎥⎦ r 

The angular momentum with respect to the origin O is given by 

   2 dθ ˆLO = rO × µv = rr̂ × µ(v r r̂ + vθ θ̂) = µ rvθ k̂ = µ r k̂ ≡ Lk (25.3.5)
dt 

with magnitude 
2 dθL = µ r vθ = µ r . (25.3.6)

dt 

We shall explicitly eliminate the θ dependence from Equation (25.3.4) by using our 
expression in Equation (25.3.6), 

dθ L = . (25.3.7)
dt µ r 2 

The mechanical energy as expressed in Equation (25.3.4) then becomes 

L21 ⎛ dr ⎞ 
2

1 G m1 m2E = µ + 2 − . (25.3.8)
2 ⎝⎜ dt ⎠⎟ 2 µ r r 

Equation (25.3.8) is a separable differential equation involving the variable r as a 
function of time t and can be solved for the first derivative dr / dt , 

1 

L2 ⎞ 2dr 2 ⎛ 1 G m1 m2= E − 2 + . (25.3.9)
dt µ ⎝⎜ 2 µ r r ⎠⎟ 

Equation (25.3.9) can in principle be integrated directly for r(t) . In fact, doing the 
integrals is complicated and beyond the scope of this book. The function r(t) can then, 
in principle, be substituted into Equation (25.3.7) and can then be integrated to find θ(t) . 

Instead of solving for the position of the single body as a function of time, we 
shall find a geometric description of the orbit by finding r(θ ) . We first divide Equation 
(25.3.7) by Equation (25.3.9) to obtain 
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dθ 
dθ L (1/ r 2 )dt= = 1/2 . (25.3.10)
dr dr 2µ ⎛ G m1 

⎞
E − +dt ⎝⎜ 2µ 

L2 

r 2 r 
m2 

⎠⎟ 

The variables r and θ are separable; 

L (1/ r 2 )
dθ = dr . (25.3.11)

⎞
1/2 

L22µ ⎛ G m1 m2E − 2 + 
⎝⎜ 2µ r r ⎠⎟ 

Equation (25.3.11) can be integrated to find the radius as a function of the angle θ ; see 
Appendix 25A for the exact integral solution. The result is called the orbit equation for 
the reduced body and is given by 

r0r = (25.3.12)
1− ε cosθ 

where 
L2 

= (25.3.13)r0 µ G m1 m2 

is a constant (known as the semilatus rectum) and 

1 

⎞ 2⎛ 2 E L2 

ε = 1+ 
)2 ⎠⎟ 

(25.3.14)
⎝⎜ µ(G m1 m2 

is the eccentricity of the orbit. The two constants of the motion, angular momentum L 
and mechanical energy E , in terms of r0 and ε , are 

)1/2 L = (µ G m1 (25.3.15)m2 r0 

G m1 m2(ε 2 −1) 
E = . (25.3.16)

2r0 

The orbit equation as given in Equation (25.3.12) is a general conic section and is 
perhaps somewhat more familiar in Cartesian coordinates. Let x = r cosθ and y = r sinθ , 

2 2 + ywith r = x 2 . The orbit equation can be rewritten as 

r = r0 + ε r cosθ . (25.3.17) 
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Using the Cartesian substitutions for x and y , rewrite Equation (25.3.17) as 

2 + y2 )1/2 (x + ε x . (25.3.18)= r0 

Squaring both sides of Equation (25.3.18), 

2 + y2 + ε 2 2x = r0
2 + 2ε x r0 x . (25.3.19) 

After rearranging terms, Equation (25.3.19) is the general expression of a conic section 
with axis on the x -axis, 

x2(1− ε 2 ) − 2ε x r0 + y2 = r0
2 . (25.3.20) 

(We now see that the horizontal axis in Figure 25.3 can be taken to be the x -axis). 

For a given r0 > 0 , corresponding to a given nonzero angular momentum as in Equation 
(25.3.12), there are four cases determined by the value of the eccentricity.
 

Case 1: when ε = 0 , < 0 and r = r0 , Equation (25.3.20) is the equation for a
 E = Emin 

circle, 
2 + y2 2x = r0 . (25.3.21) 

Case 2: when 0 < ε < 1, Emin < E < 0 , Equation (25.3.20) describes an ellipse, 

y2 + Ax2 − B x = k . (25.3.22) 

where A > 0 and k is a positive constant. (Appendix 25C shows how this expression 
may be expressed in the more traditional form involving the coordinates of the center of 
the ellipse and the semi-major and semi-minor axes.) 

Case 3: when ε = 1 , E = 0 , Equation (25.3.20) describes a parabola, 

y2 r0x = − . (25.3.23)
2r0 2 

Case 4: when ε > 1 , E > 0 , Equation (25.3.20) describes a hyperbola, 

y2 − Ax2 − B x = k , (25.3.24) 

where A > 0 and k is a positive constant. 

25-9 



    

 
 

      
         

   
 

 
  

  

 
 

 

 
  

  

 
       

 

 
  

  

 
                

           
              

              
          

           
 

 
  

  

 
           

       
  

 

 
    

  

 

 

  
 

  
       

  
   

 

 

 

 

   
 

 
 

 
     

25.4 Energy Diagram, Effective Potential Energy, and Orbits 

The energy (Equation (25.3.8)) of the single body moving in two dimensions can be 
reinterpreted as the energy of a single body moving in one dimension, the radial direction 
r , in an effective potential energy given by two terms, 

L2 G m1 m2= − . (25.4.1)Ueff 22µ r r 

The energy is still the same, but our interpretation has changed, 

L21 ⎛ dr ⎞ 
2 G m1 m2= µ + − , (25.4.2)E = Keff +Ueff 22 ⎝⎜ dt ⎠⎟ 2µ r r 

where the effective kinetic energy associated with the one-dimensional motion isKeff 

1 ⎛ dr ⎞ 
2 

Keff = µ 
⎝⎜ ⎠⎟ 

. (25.4.3)
2 dt 

The graph of Ueff as a function of u = r / r0 , where r0 as given in Equation (25.3.13), is 

shown in Figure 25.4. The upper red curve is proportional to L2 / (2µr 2 )  1/ 2r 2 . The 
lower blue curve is proportional to −Gm1m2 / r  −1/ r . The sum Ueff is represented by 
the middle green curve. The minimum value of Ueff is at r = r0 , as will be shown 
analytically below. The vertical scale is in units of (r0 ) . Whenever the one-−Ueff 

dimensional kinetic energy is zero, Keff = 0 , the energy is equal to the effective potential 
energy, 

L2 G m1 m2= − . (25.4.4)E = Ueff 22µ r r 

Recall that the potential energy is defined to be the negative integral of the work done by 
the force. For our reduction to a one-body problem, using the effective potential, we will 
introduce an effective force such that 

B B 
eff ⋅ d  eff drr = −∫ F (25.4.5)Ueff , B −Ueff , A = −∫F r 

A A 
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Figure 25.4 Graph of effective potential energy 

The fundamental theorem of calculus (for one variable) then states that the integral of the 
derivative of the effective potential energy function between two points is the effective 
potential energy difference between those two points, 

B dUeff = dr (25.4.6)Ueff , B −Ueff , A ∫ 
A dr 

Comparing Equation (25.4.6) to Equation (25.4.5) shows that the radial component of the 
effective force is the negative of the derivative of the effective potential energy, 

eff dUeff Fr = − (25.4.7)
dr 

The effective potential energy describes the potential energy for a reduced body moving 
in one dimension. (Note that the effective potential energy is only a function of the 
variable r and is independent of the variable θ ). There are two contributions to the 
effective potential energy, and the radial component of the force is then 

eff d d ⎛ L2 G m1 m2 
⎞

F = − = − − (25.4.8)r Ueff 2dr dr ⎝⎜ 2µ r r ⎠⎟ 

Thus there are two “forces” acting on the reduced body, 

F
eff =
Fr , centifugal +
Fr , gravity , (25.4.9)
r 

with an effective centrifugal force given by 
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L2 L2d ⎛ ⎞
Fr ,centrifugal = − 2 ⎠⎟ 

= 3 (25.4.10)
dr ⎝⎜ 2µ r µ r 

and the centripetal gravitational force given by 

G m1 m2F = − . (25.4.11)r , gravity 2r 

With this nomenclature, let’s review the four cases presented in Section 25.3. 

Figure 25.5 Plot of Ueff (r) vs. r with four energies corresponding to circular, elliptic, 
parabolic, and hyperbolic orbits 

25.4.1 Circular Orbit E = Emin 

The lowest energy state, Emin , corresponds to the minimum of the effective potential 
energy, Emin )min . We can minimize the effective potential energy= (Ueff 

L2 G m1m2dUeff 0 = = − 3 + 2 . (25.4.12)
dr 

r=r0 
µ r0 r0 

and solve Equation (25.4.12) for r0 , 

L2 

= , (25.4.13)r0 G m1m2 

reproducing Equation (25.3.13). For r = r0 which corresponds to a circular E = Emin , 
orbit. 
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25.4.2 Elliptic Orbit Emin < E < 0 

For Emin < E < 0 , there are two points rmin and r such that E = Ueff ) = (r ) . max (rmin Ueff max 

At these points Keff = 0 , therefore dr / dt = 0 which corresponds to a point of closest or 
furthest approach (Figure 25.6). This condition corresponds to the minimum and 
maximum values of r for an elliptic orbit. 

(a) (b) 

1/2 

⎟
⎟

⎛ 
⎜
⎝ 

⎛ 
⎜
⎜

Figure 25.6 (a) elliptic orbit, (b) closest and furthest approach 

The energy condition at these two points 

L2 G m1 m2E = − , = r , (25.4.14)2 r = rmin max 2µ r r 

is a quadratic equation for the distance r , 

2 + 
G m1 m2 L2 

r r − = 0 . (25.4.15)
E 2µE 

There are two roots 
⎛ 2 ⎞G m1 ⎛ G m1 ⎞ L2m2 m2r = − ± ⎜ + ⎟ . (25.4.16)

2E ⎜⎝ ⎝
⎜ 2E ⎠⎟ 2µE ⎟⎠ 

Equation (25.4.16) may be simplified somewhat as 

1± 1+ 
⎝ ⎠ 

1/2 ⎞⎞
2L2 EG m1 m2r = − (25.4.17)
⎟
⎠
)22E
 µ(G m1 m2 

From Equation (25.3.14), the square root is the eccentricity ε , 
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1 

⎛ 2EL2 ⎞ 2 

ε = 1+ , (25.4.18)
)2⎝⎜ µ(G m1 m2 ⎠⎟ 

and Equation (25.4.17) becomes 
G m1 m2r = − (1± ε ) . (25.4.19)

2E 
A little algebra shows that 

L2 / µ G m1r0 m2= 
1− ε 2 ⎛ 2L2 E ⎞ 

1− 1+⎜ )2 ⎟ 
⎝ µ(G m1 m2 ⎠ 

L2 / µGm1m2= (25.4.20)
)2−2L2 E / µ(Gm1m2 

G m1 m2= − .
2E 

Substituting the last expression in (25.4.20) into Equation (25.4.19) gives an expression 
for the points of closest and furthest approach, 

r0 r0r = (1± ε ) = . (25.4.21)
1− ε 2 1 ε 

The minus sign corresponds to the distance of closest approach, 

r0= (25.4.22)r ≡ rmin 1+ ε 

and the plus sign corresponds to the distance of furthest approach, 

r0r ≡ r = . (25.4.23)max 1− ε 

25.4.3 Parabolic Orbit E = 0 

The effective potential energy, as given in Equation (25.4.1), approaches zero (Ueff → 0 ) 
when the distance r approaches infinity ( r →∞ ). When E = 0 , as r →∞ , the kinetic 
energy also approaches zero, Keff → 0 . This corresponds to a parabolic orbit (see 
Equation (25.3.23)). Recall that in order for a body to escape from a planet, the body 
must have an energy E = 0 (we set Ueff = 0 at infinity). This escape velocity condition 
corresponds to a parabolic orbit. For a parabolic orbit, the body also has a distance of 
closest approach. This distance r par can be found from the condition 
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L2 G m1 m2E = Ueff (r par ) = 2 − = 0 . (25.4.24)
2µ r r par par 

Solving Equation (25.4.24) for r par yields 

L2 1 r = = ; (25.4.25)par r02µ G m1 m2 2 

the fact that the minimum distance to the origin (the focus of a parabola) is half the 
semilatus rectum is a well-known property of a parabola (Figure 25.5). 

25.4.4 Hyperbolic Orbit E > 0 

When E > 0 , in the limit as r →∞ the kinetic energy is positive, > 0 . ThisKeff 

corresponds to a hyperbolic orbit (see Equation (25.3.24)). The condition for closest 
approach is similar to Equation (25.4.14) except that the energy is now positive. This 
implies that there is only one positive solution to the quadratic Equation (25.4.15), the 
distance of closest approach for the hyperbolic orbit 

r0rhyp = . (25.4.26)
1+ ε 

The constant r0 is independent of the energy and from Equation (25.3.14) as the energy 
of the single body increases, the eccentricity increases, and hence from Equation 
(25.4.26), the distance of closest approach gets smaller (Figure 25.5). 

25.5 Orbits of the Two Bodies 

The orbit of the single body can be circular, elliptical, parabolic or hyperbolic, depending 
on the values of the two constants of the motion, the angular momentum and the energy. 
Once we have the explicit solution (in this discussion, r(θ ) ) for the single body, we can 
find the actual orbits of the two bodies. 

Choose a coordinate system as we did for the reduction of the two-body problem 
(Figure 25.7). 
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Figure 25.7 Center of mass coordinate system 

r 

The center of mass of the system is given by 

rm1 1 + m2 2 

R
 (25.4.27)
=
 . 
cm m1 + m2 

′ ′Let r  1 be the vector from the center of mass to body 1 and r  2 be the vector from the 
center of mass to body 2. Then, by the geometry in Figure 25.6, 

  − 
 − 

 r = r1 ′ ′ , (25.4.28)r2 = r1 r2 

and hence 
r r r rr rr

( − ) µm1 1 + m2 2 m2 1 2 
1 1 cm 1 m1 + m2 m1 + m2 m1 

A similar calculation shows that 
  r2 ′ = − 

µ 


R



 r .
′ =
 −
 −
 (25.4.29)
=
 =
 =
 

(25.4.30)
r . 
m2 

Thus each body undergoes a motion about the center of mass in the same manner that the 
single body moves about the central point given by Equation (25.3.12). The only 
difference is that the distance from either body to the center of mass is shortened by a 
factor µ / mi . When the orbit of the single body is an ellipse, then the orbits of the two 
bodies are also ellipses, as shown in Figure 25.8. When one mass is much smaller than 
the other, for example , then the reduced mass is approximately the smaller m1 << m2 

mass, 

m1 m2 m1 m2µ = ≅ = m1 . (25.4.31)
m1 + m2 m2 
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Figure 25.8 The elliptical motion of bodies interacting gravitationally 

The center of mass is located approximately at the position of the larger mass, body 2 of 
mass m2 . Thus body 1 moves according to 

r1 

µ 
m1 

and body 2 is approximately stationary, 

r ≅

r ,
′ =
 (25.4.32)
 

r2 ′ = 
m2 

r− 
µ 

0 
m2 

r 
m1− ≅ . 

25.6 Kepler’s Laws 

25.6.1 Elliptic Orbit Law 

I. Each planet moves in an ellipse with the sun at one focus. 

When the energy is negative, E < 0 , and according to Equation (25.3.14), 

1 

⎞ 2⎛ 2 E L2 

ε = 1+ 

(25.4.33)
 

(25.5.1)

⎝⎜
 )2 ⎠⎟µ(G m1 m2 

and the eccentricity must fall within the range 0 ≤ ε < 1 . These orbits are either circles or 
ellipses. Note the elliptic orbit law is only valid if we assume that there is only one 
central force acting. We are ignoring the gravitational interactions due to all the other 
bodies in the universe, a necessary approximation for our analytic solution. 
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25.6.2 Equal Area Law 

II. The radius vector from the sun to a planet sweeps out equal areas in equal time. 

Using analytic geometry in the limit of small Δθ , the sum of the areas of the triangles in 
Figure 25.9 is given by 

ΔA = 
1 (r Δθ )r +
2 

(r Δθ ) Δr
2 

(25.5.2) 

Figure 25.9 Kepler’s equal area law. 

The average rate of the change of area, ΔA , in time, Δt , is given by 

1 (r Δθ )r (r Δθ ) ΔrΔA = + . (25.5.3)
2 Δt 2 Δt 

In the limit as Δt → 0 , Δθ → 0 , this becomes 

dA 1 2 dθ = r . (25.5.4)
dt 2 dt 

Recall that according to Equation (25.3.7) (reproduced below as Equation (25.5.5)), the 
angular momentum is related to the angular velocity dθ / dt by 

dθ L = 2 (25.5.5)
dt µ r 

and Equation (25.5.4) is then 
dA L = . (25.5.6)
dt 2µ 

Because L and µ are constants, the rate of change of area with respect to time is a 
constant. This is often familiarly referred to by the expression: equal areas are swept out 
in equal times (see Kepler’s Laws at the beginning of this chapter). 
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25.6.3 Period Law 

III. The period of revolution T of a planet about the sun is related to the semi-major 
axis a of the ellipse by T 2 = k a3 where k is the same for all planets. 

When Kepler stated his period law for planetary orbits based on observation, he only 
noted the dependence on the larger mass of the sun. Because the mass of the sun is much 
greater than the mass of the planets, his observation is an excellent approximation. 

In order to demonstrate the third law we begin by rewriting Equation (25.5.6) in the form 

dA2µ = L . (25.5.7)
dt 

Equation (25.5.7) can be integrated as 

2µ dA = Ldt , (25.5.8)∫ ∫0 

T 

orbit 

where T is the period of the orbit. For an ellipse, 

Area = dA = π ab , (25.5.9)∫ 
orbit 

where a is the semi-major axis and b is the semi-minor axis (Figure 25.10). 

Figure 25.10 Semi-major and semi-minor axis for an ellipse 

Thus we have 
2µπ abT = . (25.5.10)

L 
Squaring Equation (25.5.10) then yields 
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2 2b24π 2µ aT 2 = . (25.5.11)
L2 

In Appendix 25B, Equation (25.B.20) gives the angular momentum in terms of the semi-
major axis and the eccentricity. Substitution for the angular momentum into Equation 
(25.5.11) yields 

2b24π 2µ2aT 2 = . (25.5.12)
a(1− ε 2 )µ Gm1 m2 

In Appendix 25B, Equation (25.B.17) gives the semi-minor axis which upon substitution 
into Equation (25.5.12) yields 

4π 2µ2a3 

T 2 = . (25.5.13)
µ Gm1 m2 

Using Equation (25.2.1) for reduced mass, the square of the period of the orbit is 
proportional to the semi-major axis cubed, 

4π 2a3 

T 2 = . (25.5.14)
+ m2 )G(m1 

25.7 Worked Examples 

Example 25.1 Elliptic Orbit 

A satellite of mass m is in an elliptical orbit around a planet of mass m >> m . The s p s 

planet is located at one focus of the ellipse. The satellite is at the distance ra when it is 
furthest from the planet. The distance of closest approach is rp (Figure 25.11). What is (i) 

the speed vp of the satellite when it is closest to the planet and (ii) the speed va of the 
satellite when it is furthest from the planet? 

Figure 25.11 Example 25.1 
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 Solution: The angular momentum about the origin is constant and because r ⊥ v andO ,a a 
 ⊥ 

 v , the magnitude of the angular momentums satisfiesrO , p p 

L ≡ LO ,p = LO ,a . (25.6.1) 

Because m << m , the reduced mass µ ≅ m and so the angular momentum condition s p s 

becomes 
L = m r v = m r v (25.6.2)s p p s a a 

We can solve for v in terms of the constants G , m , r and r as follows. Choose zero p p a p 

for the gravitational potential energy, U (r = ∞) = 0 . When the satellite is at the maximum 
distance from the planet, the mechanical energy is 

Gm m1 2 − s pE = K +U = m v . (25.6.3)a a a s a2 r a 

When the satellite is at closest approach the energy is 

Gm m 1 2 − s pE = m v . (25.6.4)p s p2 r p 

Mechanical energy is constant, 
E ≡ Ea = Ep , (25.6.5) 

therefore 
1 Gm m 1 Gm m2 − s p 2 − s pE = m v = m v . (25.6.6)s p s a2 r 2 r p a 

From Eq. (25.6.2) we know that 
v = (r / r )v . (25.6.7)a p a p 

Substitute Eq. (25.6.7) into Eq. (25.6.6) and divide through by ms / 2 yields 

2Gm r 2 2Gm 2 − p p 2 − pv = v . (25.6.8)p 2 pr r r p a a 

We can solve this Eq. (25.6.8) for vp : 
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⎛
 2 ⎛⎞ ⎞
1 1 
r r 

r p2 ⎟
⎠
 
= 2Gm p ⎜

⎝
 
1−
 −
 ⇒
⎜
⎝
 

⎟
⎠
 

v 2p r p aa 

2 − r 2⎛ r ⎛⎞
⇒ 

⎞r − r2 a p a p 

r r p a 

= 2Gm ⎜
⎝
 

⎟
⎠
 

⎜
⎝


⎟
⎠ 

⎛
 

v 2p pr a 
(25.6.9)


⎞
⎛
 ⎞
(r − r )(r + r )a p a p r − r2 a p 

r r p a 

= 2Gm ⇒
⎜
⎝


⎟
⎠
 

v ⎜
⎝


⎟
⎠
2p pr a 

p (r + r )r a p p 

2Gm r p av = . 

We now use Eq. (25.6.7) to determine that 

2Gm r 
v = (r / r )v = p p . (25.6.10)a p a p (r + r )r a p a 

Example 25.2 The Motion of the Star SO-2 around the Black Hole at the Galactic 
Center 

The UCLA Galactic Center Group, headed by Dr. Andrea Ghez, measured the orbits of 
many stars within 0.8′′ × 0.8′′ of the galactic center. The orbits of six of those stars are 
shown in Figure 25.12. 

Figure 25.12 Obits of six stars near black hole at center of Milky Way galaxy. 
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We shall focus on the orbit of the star S0-2 with the following orbit properties given in 
Table 25.13. Distances are given in astronomical units, 1au = 1.50 × 1011 m , which is 
the mean distance between the earth and the sun. 

Table 25.1 Orbital Properties of S0-2 

Star Period 
(yrs) 

Eccentricity Semi-major 
axis 
(10−3arcsec ) 

Periapse 
(au) 

Apoapse 
(au) 

S0-2 15.2 
(0.68/0.76) 

0.8763 
(0.0063) 

120.7 (4.5) 119.5 (3.9) 1812 (73) 

The period of S0-2 satisfies Kepler’s Third Law, given by 

4π 2a3 

T 2 = , (25.6.11)
+ m2 )G(m1 

where m1 is the mass of S0-2, m2 is the mass of the black hole, and a is the semi-major 
axis of the elliptic orbit of S0-2. (a) Determine the mass of the black hole that the star S0-
2 is orbiting. What is the ratio of the mass of the black hole to the solar mass? (b) What is 
the speed of S0-2 at periapse (distance of closest approach to the center of the galaxy) 
and apoapse (distance of furthest approach to the center of the galaxy)? 

Solution: (a) The semi-major axis is given by 

rp + ra 119.5au +1812au a = = = 965.8au . (25.6.12)
2 2 

In SI units (meters), this is 
1.50 × 1011 m a = 965.8au = 1.45 × 1014 m . (25.6.13)

1au 

The mass of the star S0-2 is much less than the mass of the black hole, andm1 m2 

Equation (25.6.11) can be simplified to 
4π 2a3 

T 2 = . (25.6.14)
G m2 

Solving for the mass m2 and inserting the numerical values, yields 

3 A.M.Ghez, et al., Stellar Orbits Around Galactic Center Black Hole, preprint arXiv:astro-ph/0306130v1, 
5 June, 2003. 
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m2 = 
4π 2 a3 

GT 2 

= 
(4π 2 )(1.45×1014 m)3 

(6.67 ×10−11 N ⋅m2 ⋅kg−2 )((15.2 yr)(3.16 ×107 s ⋅ yr-1))2 

= 7.79 ×1034 kg. 

(25.6.15) 

The ratio of the mass of the black hole to the solar mass is 

m2 

m sun 

= 
7.79 ×1034 kg 
1.99 ×1030 kg 

= 3.91×106 . (25.6.16) 

The mass of black hole corresponds to nearly four million solar masses. 

(b) We can use our results from Example 25.1 that 

2Gm2ra Gm2rav = = (25.6.17)p (r + r )r ar a p p p 

r 2Gm2r Gm2r p p pv = v = = , (25.6.18)a r p (r + r )r ar a a p a a 

where a = (r ) / 2 is the semi-major axis. Inserting numerical values,a + rb 

rGm2 av = p a r p 

(6.67 ×10−11 N ⋅m2 ⋅kg−2 )(7.79 ×1034 kg) ⎛ 1812 ⎞ = (25.6.19)
(1.45 ×1014 m) ⎝⎜ 119.5⎠⎟ 

= 7.38 ×106 m ⋅s−1. 

The speed v a at apoapse is then 

rp ⎛ 1812 ⎞ −1v = v = 
⎠⎟ 

(7.38 ×106 m ⋅s−1) = 4.87 ×105 m ⋅s . (25.6.20)a pr a ⎝⎜ 119.5 

Example 25.3 Central Force Proportional to Distance Cubed 

A particle of mass m moves in plane about a central point under an attractive central 
force of magnitude F = br3 . The magnitude of the angular momentum about the central 
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point is equal to L . (a) Find the effective potential energy and make sketch of effective 
potential energy as a function of r . (b) Indicate on a sketch of the effective potential the 
total energy for circular motion. (c) The radius of the particle’s orbit varies between r0 
and 2r0 . Find r0 . 

Solution: a) The potential energy, taking the zero of potential energy to be at r = 0 , is 

r bU (r) = − (−br′3) dr′ = r 4∫0 4 

The effective potential energy is 

L2 L2 b 4(r) = +U (r) = + r .Ueff 2 22mr 2mr 4 

A plot is shown in Figure 25.13a, including the potential (yellow, right-most curve), the 
term L2 / 2m (green, left-most curve) and the effective potential (blue, center curve). The 
horizontal scale is in units of r0 (corresponding to radius of the lowest energy circular 
orbit) and the vertical scale is in units of the minimum effective potential. 

b) The minimum effective potential energy is the horizontal line (red) in Figure 25.13a. 

(a) (b) 

Figure 25.13 (a) Effective potential energy with lowest energy state (red line), (b) higher 
energy state (magenta line) 

c) We are trying to determine the value of such that Ueff ) = (2r0 ) . Thusr0 (r0 Ueff 

L2 L2b 4 b )4 
2 + r0 = 

)2 + (2r0 . 
mr0 4 m(2r0 4 
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Rearranging and combining terms, we can then solve for r0 , 

3 L2 1 15 = br0
4 

8 m r0
2 4 

2 
6 1 L r = .0 10 mb 

In the plot in Figure 25.13b, if we could move the red line up until it intersects the blue 
curve at two point whose value of the radius differ by a factor of 2 , those would be the 
respective values for r0 and 2r0 . A graph, showing the corresponding energy as the 
horizontal magenta line, is shown in Figure 25.13b. 

Example 25.4 Transfer Orbit 

A space vehicle is in a circular orbit about the earth. The mass of the vehicle is 
m s = 3.00 × 103 kg and the radius of the orbit is 2R e = 1.28 ×104 km . It is desired to 

transfer the vehicle to a circular orbit of radius 4R e (Figure 24.14). The mass of the earth 

is M e = 5.97 × 1024 kg . (a) What is the minimum energy expenditure required for the 
transfer? (b) An efficient way to accomplish the transfer is to use an elliptical orbit from 
point A on the inner circular orbit to a point B on the outer circular orbit (known as a 
Hohmann transfer orbit). What changes in speed are required at the points of intersection, 
A and B ? 

Figure 24.12 Example 25.5 

Solution: (a) The mechanical energy is the sum of the kinetic and potential energies, 

E = K +U 
1 ms Me (25.6.21)= m v2 − G .
2 s R e 
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For a circular orbit, the orbital speed and orbital radius must be related by Newton’s 
Second Law, 

F = ma r r 

ms Me v2 

−G 2 = −ms ⇒ (25.6.22)
Re Re 

1 1 m M 2 s em v = G .
2 s 2 R e 

Substituting the last result in (25.6.22) into Equation (25.6.21) yields 

1 m M m M 1 m M 1s e s e s eE = G − G = − G = U (R ) . (25.6.23)
2 R R 2 R 2 e 

e e e 

Equation (25.6.23) is one example of what is known as the Virial Theorem, in which the 
energy is equal to (1/2) the potential energy for the circular orbit. In moving from a 
circular orbit of radius 2R e to a circular orbit of radius 4R e , the total energy increases, 
(as the energy becomes less negative). The change in energy is 

ΔE = E(r = 4Re ) − E(r = 2Re ) 

1 m M ⎛ 1 m M ⎞ s e s e= − G − − G (25.6.24)
2 4Re ⎝⎜ 2 2Re ⎠⎟ 

Gm M 
= s e .

8R e 

Inserting the numerical values, 

1 m M 1 m M s e s eΔE = G = G
8 R 4 2R e e 

1 (3.00 ×103 kg)(5.97 ×1024 kg)3 ⋅ kg−1 ⋅s−2 )= (6.67 ×10−11 m (25.6.25)
4 (1.28 ×104 km) 

= 2.3×1010 J. 

b) The satellite must increase its speed at point A in order to move to the larger orbit 
radius and increase its speed again at point B to stay in the new circular orbit. Denote 
the satellite speed at point A while in the circular orbit as and after the speed vA, i 

increase (a “rocket burn”) as vA, f . Similarly, denote the satellite’s speed when it first 

reaches point B as vB, i . Once the satellite reaches point B , it then needs to increase its 
speed in order to continue in a circular orbit. Denote the speed of the satellite in the 
circular orbit at point B by The speeds and are given by Equation vB, f . vA, i vB, f 
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(25.6.22). While the satellite is moving from point A to point B in the elliptic orbit (that 
is, during the transfer, after the first burn and before the second), both mechanical energy 
and angular momentum are conserved. Conservation of energy relates the speeds and 
radii by 

m m m m 1 m (vA, f )
2 − G s e = 

1 m (vB,i )
2 − G s e . (25.6.26)

2 s 2R 2 s 4R e e 

Conservation of angular momentum relates the speeds and radii by 

m (2R ) = m (4R ) = 2vB,i . (25.6.27)s vA, f e s vB,i e ⇒ vA, f 

Substitution of Equation (25.6.27) into Equation (25.6.26) yields, after minor algebra, 

2 G M 1 GM e , = e= . (25.6.28)vB,ivA, f 3 R 6 R e e 

We can now use Equation (25.6.22) to determine that 

1 G M 1 G M e , = e . (25.6.29)vA,i = vB, f2 R 4 R e e 

Thus the change in speeds at the respective points is given by 

⎛ 2 − 
1 ⎞ G M eΔvA = vA, f − vA,i = ⎜ ⎟3 2 R⎝ ⎠ e 

(25.6.30)
⎛ ⎞1 1 G M e= − .⎟ΔvB = vB, f − vB,i ⎜
⎝ 4 6 R⎠ e 

Substitution of numerical values gives 

−2 −2ΔvA = 8.6 × 102 m ⋅ s , = 7.2 × 102 m ⋅ s . (25.6.31)ΔvB 

25-28 



    

        
 

 
 

  
 

 

  

  

 
      

        

   
 

   

 
          

       
 

 

 

  

  

 
            

          
           

        
        

 
 

 
  

  

 
  

  
  

     

      

  
   

    

  

         
   

 

 

   
  

 

     

       

   
  

Appendix 25A Derivation of the Orbit Equation 

25A.1 Derivation of the Orbit Equation: Method 1 

Start from Equation (25.3.11) in the form 

L (1/ r 2 )dθ = 
2µ ⎛ G m1 

⎞
1/2 dr . (25.A.1) 

L2 m2E − 2 + 
⎝⎜ 2µ r r ⎠⎟ 

What follows involves a good deal of hindsight, allowing selection of convenient 
substitutions in the math in order to get a clean result. First, note the many factors of the 
reciprocal of r . So, we’ll try the substitution u = 1/ r , du = −(1/ r 2 ) dr , with the result 

L  du  . (25.A.2)dθ = − 
2µ ⎛  L2 2 ⎞

1/ 2 

E − u + Gm m  u  ⎜  1 2 ⎟  
⎝  2µ ⎠  

Experience in evaluating integrals suggests that we make the absolute value of the factor 
multiplying u2 inside the square root equal to unity. That is, multiplying numerator and 
denominator by 2 / L,µ 

dudθ = − (25.A.3)1/2 .(2µE / L2 − u2 + 2(µG m1 m2 / L2 )u) 
As both a check and a motivation for the next steps, note that the left side dθ of Equation 
(25.A.3) is dimensionless, and so the right side must be. This means that the factor of 
µGm  m  / L2 in the square root must have the same dimensions as u , or length−1; so, 1 2 

define r ≡ L2 / µGm  m  . This is of course the semilatus rectum as defined in Equation 0 1 2 

(25.3.12), and it’s no coincidence; this is part of the “hindsight” mentioned above. The 
differential equation then becomes 

dudθ = − 
(2µE / L2 − u2 + 2u / r0 )

1/2 . (25.A.4) 

We now rewrite the denominator in order to express it terms of the eccentricity. 
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dudθ = − 
2 − u 2(2µE / L2 +1/ r0

2 + 2u / r0 −1/ r0 )1/2 

du = − 
)2 1/2 (25.A.5)

(2µE / L2 +1/ r0
2 − (u −1/ r0 ) 

dur0= − 1/2 .(2µEr0
2 / L2 +1− (r0 u −1)2 ) 

We note that the combination of terms 2µEr0
2 / L2 +1 is dimensionless, and is in fact 

equal to the square of the eccentricity ε as defined in Equation (25.3.13); more 
hindsight. The last expression in (25.A.5) is then 

r dudθ = − 0 (25.A.6)1/ 2 . (ε 2 − (r u −1)2 )0 

From here, we’ll combine a few calculus steps, going immediately to the substitution 
r u −1 = ε cosα , r du = −ε sinα dα , with the final result that0 0 

−ε sinα dαdθ = − 
)1/ 2 = dα , (25.A.7)

2 2 2(ε −ε cos α 

We now integrate Eq. (25.A.7) with the very simple result that 

θ = α + constant . (25.A.8) 

We have a choice in selecting the constant, and if we pick θ α π  = + ,= − , α θ π  
cosα = −cosθ , the result is 

1 r0r = = , (25.A.9)
u 1− ε cosθ 

which is our desired result, Equation (25.3.11). Note that if we chose the constant of 
integration to be zero, the result would be 

1 r0r = =  (25.A.10)
u 1+ ε cosθ 

which is the same trajectory reflected about the “vertical” axis in Figure 25.3, indeed the 
same as rotating by π . 

25A.2 Derivation of the Orbit Equation: Method 2 

The derivation of Equation (25.A.9) in the form 
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u = 
1 (1−ε cosθ ) (25.A.11)
r0 

suggests that the equation of motion for the one-body problem might be manipulated to 
obtain a simple differential equation. That is, start from 

 F = µ a 

⎛ dθ ⎞ 
2 ⎞m1

⎛ d 2r (25.A.12)
−G 

m2 r̂ = µ ⎜⎜ 
− r r̂.2 dt2 ⎝⎜ ⎠⎟ ⎟⎟r dt⎝ ⎠ 

Setting the components equal, using the constant of motion L = µr 2(dθ / dt) and 
rearranging, Eq. (25.A.12) becomes 

2 2d r L  Gmm  
µ = − 1 2 . (25.A.13)2 3 2dt µ r r 

We now use the same substitution u = 1/ r and change the independent variable from t to 
r , using the chain rule twice, since Equation (25.A.13) is a second-order equation. That 
is, the first time derivative is 

dr dr du dr du dθ 
= = . (25.A.14)

dt du dt du dθ dt 

From r = 1/u we have dr du / = −1/  u2 . Combining with dθ / dt in terms of L and u , 
d dθ = u2 / , Equation (25.A.14) becomes/ t L µ 

dr 1 du Lu2 du L 
= − = − , (25.A.15)

dt u2 dθ µ dθ µ 

a very tidy result, with the variable u appearing linearly. Taking the second derivative 
with respect to t , 

d 2r d ⎛ dr ⎞ d ⎛ dr ⎞ dθ = . (25.A.16)
dt2 dt ⎝⎜ dt ⎠⎟ 

= 
dθ ⎝⎜ dt ⎠⎟ dt 

Now substitute Eq. (25.A.15) into Eq. (25.A.16) with the result that 

L2 ⎞d 2r d 2u ⎛ 2= − u (25.A.17)
dt2 dθ 2 ⎝⎜ 2 ⎠⎟ 

. 
µ 

Substituting into Equation (25.A.13), with r = 1/u yields 
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2 2 2d u  2 L L 3 2− u = u − Gmm u . (25.A.18)
dθ 2 µ µ 1 2  

Canceling the common factor of u2 and rearranging, we arrive at 

2d u  µGmm  
− = u − 1 2 . (25.A.19)

θ 2 2d L

Equation (25.A.19) is mathematically equivalent to the simple harmonic oscillator 
equation with an additional constant term. The solution consists of two parts: the angle-
independent solution 

µGm m u0 = 1 2  (25.A.20)
L2 

and a sinusoidally varying term of the form 

= Acos(θ −θ0 ) , (25.A.21)uH 

where A and θ0 are constants determined by the form of the orbit. The expression in 
Equation (25.A.20) is the inhomogeneous solution and represents a circular orbit. The 
expression in Equation (25.A.21) is the homogeneous solution (as hinted by the 
subscript) and must have two independent constants. We can readily identify 1/u0 as the 
semilatus rectum r0 , with the result that 

1 u = u0 + uH = (1+ r0 A(θ −θ0 )) ⇒ 
r0 (25.A.22)

1 r0r = = . 
u A(θ −θ0 )1+ r0 

Choosing the product r A to be the eccentricity ε and = π (much as was done leading0 θ0 
to Equation (25.A.9) above), Equation (25.A.9) is reproduced. 
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Appendix 25B Properties of an Elliptical Orbit 

25B.1 Coordinate System for the Elliptic Orbit 

We now consider the special case of an elliptical orbit. Choose coordinates with the 
central point located at one focal point and coordinates (r,θ ) for the position of the 
single body (Figure 25B.1a). In Figure 25B.1b, let a denote the semi-major axis, b 
denote the semi-minor axis and x0 denote the distance from the center of the ellipse to 
the origin of our coordinate system. 

(a) (b) 

Figure 25B.1 (a) Coordinate system for elliptic orbit, (b) semi-major axis 

25B.2 The Semi-major Axis 

Recall the orbit equation, Eq, (25.A.9), describes r(θ ) , 

r(θ ) = 
r0 

1− ε cosθ 
. (25.B.1) 

The major axis 2A a= is given by 
A = 2 a = r a + r p . (25.B.2) 

where the distance of furthest approach ra occurs when θ = 0 , hence 

r0r = r(θ = 0) = , (25.B.3)a 1− ε 

and the distance of nearest approach rp occurs when θ π , hence= 

r0r = r(θ = π ) = . (25.B.4)p 1+ ε 
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Figure 25B.2 shows the distances of nearest and furthest approach. 

Figure 25B.2 Furthest and nearest approach 

We can now determine the semi-major axis 

1 ⎛  r r ⎞  r0 0 0a = + = . (25.B.5)⎜  ⎟2 ⎝  1−ε 1+ ε ⎠  1−ε 2 

The semilatus rectum r0 can be re-expressed in terms of the semi-major axis and the 
eccentricity, 

= a(1− ε 2 ) . (25.B.6)r0 

We can now express the distance of nearest approach, Equation (25.B.4), in terms of the 
semi-major axis and the eccentricity, 

r0 a(1− ε 2 )r = = = a(1− ε ) . (25.B.7)p 1+ ε 1+ ε 

In a similar fashion the distance of furthest approach is 

r0 a(1− ε 2 )r = = = a(1+ ε ) . (25.B.8)a 1− ε 1− ε 

25B.2.3 The Location x0 of the Center of the Ellipse 

From Figure 25B.3a, the distance from a focus point to the center of the ellipse is 

= a − r . (25.B.9)x0 p 
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(a) (b)
 

Figure 25B.3 Location of the center of the ellipse and semi-minor axis.
 

Using Equation (25.B.7) for rp , we have that 

x0 = a − a(1− ε ) = ε a. (25.B.10) 

25B.2.4 The Semi-minor Axis 

From Figure 25B.3b, the semi-minor axis can be expressed as 

where 

We can rewrite Eq. (25.B.12) as 

rb = 
r0 

1− ε cosθb 

. 

(25.B.11) 

(25.B.12) 

0cos b b br r  rε θ− = . (25.B.13) 

The horizontal projection of rb is given by (Figure 25B.2b), 

0 b cos bx r θ= , (25.B.14) 

which upon substitution into Eq. (25.B.13) yields 

0 0rb r= +ε x . (25.B.15) 

Substituting Equation (25.B.10) 
Equation (25.B.15) yields 

for x0 and Equation (25.B.6) for r0 into 

b = (rb 
2 − x0 

2 ) , 

= a(1− ε 2 ) + aε 2 = a . (25.B.16)rb 
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The fact that rb = a is a well-known property of an ellipse reflected in the geometric 
construction, that the sum of the distances from the two foci to any point on the ellipse is 
a constant. We can now determine the semi-minor axis b by substituting Eq. (25.B.16) 
into Eq. (25.B.11) yielding 

2 2 2 2 2 2b = (rb − x ) = a −ε a = a 1−ε . (25.B.17)0 

25B.2.5 Constants of the Motion for Elliptic Motion 

We shall now express the parameters a , b and x0 in terms of the constants of the motion 
L , E , µ , m1 and m2 . Using our results for r0 and ε from Equations (25.3.13) and 
(25.3.14) we have for the semi-major axis 

L2 1 a = 
µ Gm1 m2 (1− (1+ 2 E L2 / µ(G m1 m2 )2 )) . (25.B.18)

G m1 m2= − 
2E 

The energy is then determined by the semi-major axis, 

Gm  m  E = − 1 2 . (25.B.19)
2a 

The angular momentum is related to the semilatus rectum r0 by Equation (25.3.13). 
Using Equation (25.B.6) for r0 , we can express the angular momentum (25.B.4) in terms 
of the semi-major axis and the eccentricity, 

L = µ Gm1 m2r0 = µ Gm1 m2a(1− ε 2 ) . (25.B.20)
 
Note that 

L(1− ε 2 ) = , (25.B.21) 
µ Gm1 m2a 

Thus, from Equations (25.3.14), (25.B.10), and (25.B.18), the distance from the center of 
the ellipse to the focal point is 

Gm  m  21 2 2x = ε a = − (1 2+ E L  /µ (Gm  m  ) ) , (25.B.22)0 1 22E 

a result we will return to later. We can substitute Eq. (25.B.21) for 1−ε 2 into Eq. 
(25.B.17), and determine that the semi-minor axis is 
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2 
1 2/b  aL  Gm  m  µ= . (25.B.23)
 

We can now substitute Eq. (25.B.18) for a into Eq. (25.B.23), yielding 

Gm  m  12 1 2b = aL / µ Gm m = L − / µ Gm m = L − . (25.B.24)1 2 1 22E 2µE 

25B.2.6 Speeds at Nearest and Furthest Approaches 

At nearest approach, the velocity vector is tangent to the orbit (Figure 25B.4), so the 
magnitude of the angular momentum is 

L = µrpv p , (25.B.25) 
and the speed at nearest approach is 

vp = L / µrp . (25.B.26) 

Figure 25B.4 Speeds at nearest and furthest approach 

Using Equation (25.B.20) for the angular momentum and Equation (25.B.7) for rp , 
Equation (25.B.26) becomes 

L µ Gm1 m2(1− ε 2 ) Gm1 m2(1− ε 2 ) Gm1 m2(1+ ε )
v = = = = . (25.B.27)p µrp µa(1− ε ) µa(1− ε )2 µa(1− ε ) 

A similar calculation show that the speed va at furthest approach, 

1− ε 2L (1− ε 2 )µ Gm1 m2 Gm1 m2
Gm1 m2 (1− ε ) 

. (25.B.28)v = = = = a µra µa(1+ ε ) µa(1+ ε )2 µa(1+ ε ) 
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Appendix 25C Analytic Geometric Properties of Ellipses 

Consider Equation (25.3.20), and for now take ε < 1 , so that the equation is that of an 
ellipse. We shall now show that we can write it as 

)2 2(x − x0 y+ = 1 , (25.C.1)2 b2a 

where the ellipse has axes parallel to the x - and y -coordinate axes, center at (x0 , 0) , 
semi-major axis a and semi-minor axis b . We begin by rewriting Equation (25.3.20) as 

2 2εr y2 r2 x − 0 x + = 0 . (25.C.2)2 2 21−ε 1−ε 1−ε 
We next complete the square, 

2 2 2 2ε 2 ε 2 
2 − 

2εr0 r0 y r0 r0x x + + = + ⇒ 
1− ε 2 (1− ε 2 )2 1− ε 2 1− ε 2 (1− ε 2 )2 

2
⎛ ⎞ y2 2εr0 r0 

⎝⎜ 
x − 

1− ε 2 ⎠⎟ 
+ 

1− ε 2 = 
(1− ε 2 )2 ⇒ (25.C.3) 

⎞ 
2

⎛ 
x − 

1
ε
− 

r
ε 
0 

2 ⎠⎟ 2⎝⎜ y = 1.+ 
1− ε 2 )2( / (1− ε 2 ))2

(r0 /r0 

The last expression in (25.C.3) is the equation of an ellipse with semi-major axis 

0a = 
r , (25.C.4)

1−ε 2 
semi-minor axis 

, (25.C.5) 

and center at 
εr0= = εa , (25.C.6)x0 (1− ε 2 ) 

as found in Equation (25.B.10). 

rb = 0 = a 1− ε 2 
1− ε 2 
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 Chapter 26 Elastic Properties of Materials
 

26.1 Introduction 

In our study of rotational and translational motion of a rigid body, we assumed that the 
rigid body did not undergo any deformations due to the applied forces. Real objects 
deform when forces are applied. They can stretch, compress, twist, or break. For example 
when a force is applied to the ends of a wire and the wire stretches, the length of the wire 
increases. More generally, when a force per unit area, referred to as stress, is applied to 
an object, the particles in the object may undergo a relative displacement compared to 
their unstressed arrangement. Strain is a normalized measure of this deformation. For 
example, the tensile strain in the stretched wire is fractional change in length of a stressed 
wire. The stress may not only induce a change in length, but it may result in a volume 
change as occurs when an object is immersed in a fluid, and the fluid exerts a force per 
unit area that is perpendicular to the surface of the object resulting in a volume strain 
which is the fractional change in the volume of the object. Another type of stress, known 
as a shear stress occurs when forces are applied tangential to the surface of the object, 
resulting in a deformation of the object. For example, when scissors cut a thin material, 
the blades of the scissors exert shearing stresses on the material causing one side of the 
material to move down and the other side of the material to move up as shown in Figure 
26.1, resulting in a shear strain. The material deforms until it ultimately breaks. 

Figure 26.1: Scissors cutting a thin material1 

In many materials, when the stress is small, the stress and strains are linearly proportional 
to one another. The material is then said to obey Hooke’s Law. The ratio of stress to 
strain is called the elastic modulus. Hooke’s Law only holds for a range of stresses, a 
range referred to as the elastic region. An elastic body is one in which Hooke’s Law 
applies and when the applied stress is removed, the body returns to its initial shape. Our 
idealized spring is an example of an elastic body. Outside of the elastic region, the stress-
strain relationship is non-linear until the object breaks. 

1 Mohsen Mahvash, et al, IEEE Trans Biomed Eng. 2008, March; 55(3); 848-856. 
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26.2 Stress and Strain in Tension and Compression 

Consider a rod with cross sectional area A and length l0 . Two forces of the same 
magnitude F⊥ 

are applied perpendicularly at the two ends of the section stretching the 
rod to a length l (Figure 26.2), where the beam has been stretched by a positive amount 
δ l = l − l0 .

Figure 26.2: Tensile stress on a rod 

The ratio of the applied perpendicular force to the cross-sectional area is called the tensile 
stress, 

F⊥= . (26.2.1)σ T A 

The ratio of the amount the section has stretched to the original length is called the tensile 
strain, 

δ l = . (26.2.2)εT l0 

Experimentally, for sufficiently small stresses, for many materials the stress and strain are 
linearly proportional, 

F⊥ 

A 
= Y δ l

l0 

(Hooke's Law) . (26.2.3) 

where the constant of proportionality Y is called Young’s modulus. The SI unit for 
Young’s Modulus is the pascal where 1 Pa ≡ 1 N ⋅ m−2 . Note the following conversion 
factors between SI and English units: 1 bar ≡ 105 Pa , 1 psi ≡ 6.9 ×10−2 bar , and 
1 bar = 14.5 psi . In Table 26.1, Young’s Modulus is tabulated for various materials. 
Figure 26.3 shows a plot of the stress-strain relationship for various human bones. For 
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stresses greater than approximately 70 N ⋅ mm-2 , the material is no longer elastic. At a 
certain point for each bone, the stress-strain relationship stops, representing the fracture 
point. 

Material Young’s Modulus, Y 
(Pa) 

Iron 21×1010 

Nickel 21×1010 

Steel 20 ×1010 

Copper 11×1010 

Brass 9.0 ×1010 

Aluminum 7.0 ×1010 

Crown Glass 6.0 ×1010 

Cortical Bone 7 ×109 − 30 ×109 

Lead 1.6 ×1010 

Tendon 2 ×107 

Rubber 7 ×105 − 40 ×105 

Blood vessels 2 ×105 

Table 26.1: Young’s Modulus for 
various materials 

When the material is under compression, the forces on the ends are directed towards each 
other producing a compressive stress resulting in a compressive strain (Figure 26.4). For 
compressive strains, if we define δ l = l0 − l > 0 then Eq. (26.2.3) holds for compressive 
stresses provided the compressive stress is not too large. For many materials, Young’s 
Modulus is the same when the material is under tension and compression. There are some 
important exceptions. Concrete and stone can undergo compressive stresses but fail when 
the same tensile stress is applied. When building with these materials, it is important to 
design the structure so that the stone or concrete is never under tensile stresses. Arches 
are used as an architectural structural element primarily for this reason. 

Figure 26.3: Stress-strain relation for 
various human bones (figure from H. 
Yamada, Strength of Biological 
Materials) 
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Figure 26.4: Compressive Stress 

26.3 Shear Stress and Strain 

The surface of material may also be subjected to tangential forces producing a shearing 
action. Consider a block of height h and area A , in which a tangential force, Ftan , is 
applied to the upper surface. The lower surface is held fixed. The upper surface will shear 
by an angle α corresponding to a horizontal displacement δ x . The geometry of the 
shearing action is shown in Figure 26.5. 

Figure 26.5: Shearing forces 

The shear stress is defined to be the ratio of the tangential force to the cross sectional 
area of the surface upon which it acts, 

F 
= tan . (26.3.1)σ S A 

The shear strain is defined to be the ratio of the horizontal displacement to the height of 
the block, 

δ xα = . (26.3.2)
h 

For many materials, when the shear stress is sufficiently small, experiment shows that a 
Hooke’s Law relationship holds in that the shear stress is proportional to shear strain, 
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F δ xtan = S (Hooke's Law) . (26.3.3)
A h 

where the constant of proportional, S , is called the shear modulus. When the 
deformation angle is small, δ x / h = tanα  sinα  α , and Eq. (26.3.3) becomes 

Ftan  Sα (Hooke's Law) . (26.3.4)
A 

In Table 26.2, the shear modulus is tabulated for various materials. 

Table 26.2: Shear Modulus for Various Materials 

Material Shear Modulus, S (Pa) 

Nickel 7.8 ×1010 

Iron 7.7 ×1010 

Steel 7.5×1010 

Copper 4.4 ×1010 

Brass 3.5×1010 

Aluminum 2.5×1010 

Crown Glass 2.5×1010 

Lead 0.6 ×1010 

Rubber 2 ×105 −10 ×105 

Example 26.1: Stretched wire 

An object of mass 1.5×101 kg is hanging from one end of a steel wire. The wire without 
the mass has an unstretched length of 0.50 m . What is the resulting strain and elongation 
of the wire? The cross-sectional area of the wire is 1.4 ×10−2 cm2 . 

Solution: When the hanging object is attached to the wire, the force at the end of the wire 
acting on the object exactly balances the gravitational force. Therefore by Newton’s 
Third Law, the tensile force stressing the wire is 

F⊥ 
= mg . (26.3.5) 

We can calculate the strain on the wire from Hooke’s Law (Eq. (26.2.3)) and the value of 
Young’s modulus for steel 20 ×1010 Pa (Table 26.1); 
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−2 )δ l F⊥ mg (1.5 ×101 kg)(9.8 m ⋅s = = = = 5.3×10−4 . (26.3.6)
l0 YA YA (2.0 ×1011 Pa)(1.4 ×10−6 m2 ) 

The elongation δ l of the wire is then 

mg δ l = = (5.3×10−4 )(0.50 m) = 2.6 ×10−4 m . (26.3.7)l0YA 

26.4 Elastic and Plastic Deformation 

Consider a single sheet of paper. If we bend the paper gently, and then release the 
constraining forces, the sheet will return to its initial state. This process of gently bending 
is reversible as the paper displays elastic behavior. The internal forces responsible for the 
deformation are conservative. Although we do not have a simple mathematical model for 
the potential energy, we know that mechanical energy is constant during the bending. We 
can take the same sheet of paper and crumple it. When we release the paper it will no 
longer return to its original sheet but will have a permanent deformation. The internal 
forces now include non-conservative forces and the mechanical energy is decreased. This 
plastic behavior is irreversible. 

Figure 26.5: Stress-strain relationship 

When the stress on a material is linearly proportional to the strain, the material 
behaves according to Hooke’s Law. The proportionality limit is the maximum value of 
stress at which the material still satisfies Hooke’s Law. If the stress is increased above the 
proportionality limit, the stress is no longer linearly proportional to the strain. However, 
if the stress is slowly removed then the material will still return to its original state; the 
material behaves elastically. If the stress is above the proportionality limit, but less then 

26-6 



  

       
        

          
           

            
         
          

          
         

          
  

 
    

 
  

 
   

   
   
   

    
   

   
   

   
   

 

  
 

        
         

  
           

        
       

            
       

        
              

      
  

 

 

the elastic limit, then the stress is no longer linearly proportional to the strain. Even in 
this non-linear region, if the stress is slowly removed then the material will return to its 
original state. The maximum value of stress in which the material will still remain elastic 
is called the elastic limit. For stresses above the elastic limit, when the stress is removed 
the material will not return to its original state and some permanent deformation sets in, a 
state referred to as a permanent set. This behavior is referred to as plastic deformation. 
For a sufficiently large stress, the material will fracture. Figure 26.5 illustrates a typical 
stress-strain relationship for a material. The value of the stress that fractures a material is 
referred to as the ultimate tensile strength. The ultimate tensile strengths for various 
materials are listed in Table 26.3. The tensile strengths for wet human bones are for a 
person whose age is between 20 and 40 years old. 

Table 26.3: Ultimate Tensile Strength for Various Materials 

Material Shear Modulus, S (Pa) 

Femur 1.21×108 

Humerus 1.22 ×108 

Tibia 1.40 ×108 

Fibula 1.46 ×108 

Ulna 1.48 ×108 

Radius 1.49 ×108 

Aluminum 2.2 ×108 

Iron 3.0 ×108 

Brass 4.7 ×108 

Steel 5− 20 ×108 

Example 26.2: Ultimate Tensile Strength of Bones 

The ultimate tensile strength of the wet human tibia (for a person of age between 20 and 
40 years) is 1.40 ×108 Pa . If a greater compressive force per area is applied to the tibia 
then the bone will break. The smallest cross sectional area of the tibia, about 3.2 cm2 , is 
slightly above the ankle. Suppose a person of mass 60 kg jumps to the ground from a 
height 2.0 m and absorbs the shock of hitting the ground by bending the knees. Assume
that there is constant deceleration during the collision. During the collision, the person 
lowers her center of mass by an amount d = 1.0 cm . (a) What is the collision time Δtcol ? 
(b) Find the average force of the ground on the person during the collision. (c) Can we 
effectively ignore the gravitational force during the collision? (d) Will the person break 
her ankle? (e) What is the minimum distance Δdmin that she would need to lower her 
center of mass so she does not break her ankle? What is the ratio h0 / Δdmin ? What factors 
does this ratio depend on? 
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Solution: Choose a coordinate system with the positive y -direction pointing up, and the 
origin at the ground. While the person is falling to the ground, mechanical energy is 
constant (we are neglecting any non-conservative work due to air resistance). Choose the 
contact point with the ground as the zero potential energy reference point. Then the initial
mechanical energy is 

= mgh0 . (26.3.8)E0 = U0 

The mechanical energy of the person just before contact with the ground is 

1 2= mvb . (26.3.9)Eb = K1 2 

The constancy of mechanical energy implies that 

1 2mgh0 = mvb . (26.3.10)
2 

The speed of the person the instant contact is made with the ground is then 

= . (26.3.11)vb 2gh0 

If we treat the person as the system then there are two external forces acting on the 


person, the gravitational force Fg = −mgĵ and a normal force between the ground and the 
 

person FN = N ĵ . This force varies with time but we shall consider the time average 
 
FN = N ĵ . Then using Newton’s Second Law,ave ave 

N − mg = ma . (26.3.12)ave y ,ave 

The y -component of the average acceleration is equal to 

N ave a = − g . (26.3.13)y ,ave m 

Set t = 0 for the instant the person reaches the ground; then vy ,0 = −vb . The displacement 

of the person while in contact with the ground for the time interval Δtcol is given by 

1 2Δy = −vbΔtcol + 
2 

ay ,ave Δtcol . (26.3.14) 
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Δtcol 2gh0 2(9.8 m ⋅s2 )(2.0 m) 

The y -component of the velocity is zero at t = Δtcol when the person’s displacement is 
Δy = −d , 

0 = −vb + ay ,ave Δtcol . (26.3.15) 

Solving Eq. (26.3.15) for the collision time yields 

Δtcol = vb / ay ,ave . (26.3.16) 

We can now substitute Δy = −d , Eq. (26.3.16), and Eq. (26.3.11) into Eq. (26.3.14) and 
solve for the y -component of the acceleration, yielding 

gh0a = . (26.3.17)y ,ave d 

We can solve for the collision time by substituting Eqs. (26.3.17) and Eq. (26.3.11) into 
Eq. (26.3.16) and using the given values in the problem statement, yielding 

2d 2(1.0 ×10−2 m) = = = 3.2 ×10−3s . (26.3.18) 

Now substitute Eq. (26.3.17) for the y -component of the acceleration into Eq. (26.3.13)
and solve for the average normal force 

⎛ h0 ⎞ ⎛ (2.0 m) ⎞
N = mg 1+ 

⎠⎟ 
= (60 kg)(9.8 m ⋅s−2 ) 1+ 1.2 ×105 N . (26.3.19)ave ⎝⎜ ⎝⎜ ⎠⎟ 

= 
d (1.0 ×10−2 m) 

Notice that the factor 1+ h0 / d  h0 / d so during the collision we can effectively ignore 
the external gravitational force. The average compressional force per area on the person’s 
ankle is the average normal force divided by the cross sectional area 

N ave mg ⎛ h0 ⎞ 1.2 ×105 NP =  = 3.7 ×108 Pa . (26.3.20)
⎠⎟ 
= 2A A ⎝⎜ d 3.2 ×10−4 m 

From Table 26.3, the tensile strength of the tibia is 1.4 ×108 Pa , so this fall is enough to 
break the tibia. 

In order to find the minimum displacement that the center of mass must fall in order to 
avoid breaking the tibia bone, we set the force per area in Eq. (26.3.20) equal to 
P = 1.4 ×108 Pa . Because at this value of tensile strength, 
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PA (1.4 ×108 Pa)((3.2 ×10−4 m2 )= = 80 (26.3.21)−2 )mg (60 kg)(9.8 m ⋅s 

and so PA >> mg . We can solve Eq. (26.3.20) for the minimum displacement 

h0 mgh0 (60 kg)(9.8 m ⋅s−2 )(2.0 m) =  = = 2.6 cm , (26.3.22)dmin ⎛ PA −1
⎞ PA (1.4 ×108 Pa)(3.2 ×10−4 m2 ) 

⎝⎜ mg ⎠⎟ 

where we used the fact that 

PA (1.4 ×108 Pa)((3.2 ×10−4 m2 )= = 76 (26.3.23)−2 )mg (60 kg)(9.8 m ⋅s 

and so PA >> mg . The ratio 
 PA / mg = 76 . (26.3.24)h0 / dmin 

This ratio depends on the compressive strength of the bone, the cross sectional area, and 
inversely on the weight of the person. The maximum normal force is anywhere from two 
to ten times the average normal force. A safe distance to lower the center of mass would 
be about 20 cm. 
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Chapter 27 Static Fluids
 

27.1 Introduction 

Water is everywhere around us, covering 71% of the Earth’s surface. The water content 
of a human being can vary between 45% and 70 % of body weight. Water can exist in 
three states of matter: solid (ice), liquid, or gas. Water flows through many objects: 
through rivers, streams, aquifers, irrigation channels, and pipes to mention a few. 
Humans have tried to control and harness this flow through many different technologies 
such as aqueducts, Archimedes’ screw, pumps, and water turbines. Water in the gaseous 
state also flows. Water vapor, lighter than air, can cause convection currents that form 
clouds. In the liquid state, the density of water molecules is greater than the gaseous state 
but in both states water can flow. Liquid water forms a surface while water vapor does 
not. Water in both the liquid and gaseous state is classified as a fluid to distinguish it from 
the solid state. 

At the macroscopic scale, matter can be roughly grouped into two classes, solids and 
fluids. There is some ambiguity in the use of the term fluid. In ordinary language, the 
term fluid is used to describe the liquid state of matter. More technically, a fluid is a state 
of matter that, when at rest, cannot sustain a shear stress and hence will flow. A solid, 
when at rest, can sustain a shear stress and although it may deform it will remain at rest. 
However there is some ambiguity in this description. Glacier ice will flow but very 
slowly. So for a time interval that is small compared to the time interval involved in the 
flow, glacial ice can be thought of as a solid. This description of a fluid applies to both 
liquids and gases. A gas will expand to fill whatever volume it is confined in, while a 
liquid placed in a container will have a well-defined volume with a surface layer 
separated the liquid and vapor phases of the substance. We shall The viscosity of a fluid 
is a measure of its resistance to gradual deformation by shear stress or tensile stress. 

27.2 Density 

The density of a small amount of matter is defined to be the amount of mass ΔM divided 
by the volume ΔV of that element of matter, 

ρ = ΔM / ΔV . (27.2.1) 

The SI unit for density is the kilogram per cubic meter, kg ⋅m−3 . If the density of a 
material is the same at all points, then the density is given by 

ρ = M / V , (27.2.2) 

where M is the mass of the material and V is the volume of material. A material with 
constant density is called homogeneous. For a homogeneous material, density is an 
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intrinsic property. If we divide the material in two parts, the density is the same in both 
parts, 

. (27.2.3)ρ = ρ1 = ρ2 

However mass and volume are extrinsic properties of the material. If we divide the 
material into two parts, the mass is the sum of the individual masses 

M = M1 , (27.2.4)+ M2 

as is the volume 
V . (27.2.5)= V1 +V2 

The density is tabulated for various materials in Table 27.1. 

Table 27.1: Density for Various Materials (Unless otherwise noted, all densities given 
are at standard conditions for temperature and pressure, that is, 273.15 K (0.00 °C) and 

100 kPa (0.987 atm). 

Material 
Density, ρ 

kg ⋅m−3 

Helium 0.179 
Air (at sea 
level) 1.20 

Styrofoam 75 
Wood 
Seasoned, 0.7 ×103 

typical 
Ethanol 0.81×103 

Ice 0.92 ×103 

Water 1.00 ×103 

Seawater 1.03×103 

Blood 1.06 ×103 

Aluminum 2.70 ×103 

Iron 7.87 ×103 

Copper 8.94 ×103 

Lead 11.34 ×103 

Mercury 13.55 ×103 

Gold 19.32 ×103 

Plutonium 19.84 ×103 

Osmium 22.57 ×103 
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If we examine a small volume element of a fluid, it consists of molecules interacting via 
intermolecular forces. If we are studying the motion of bodies placed in fluids or the flow 
of the fluid at scales that are large compared to the intermolecular forces then we can 
consider the fluid to be continuous and quantities like density will vary smoothly from 
point to point in the fluid. 

27.3 Pressure in a Fluid 

When a shear force is applied to the surface of fluid, the fluid will undergo flow. When a 
fluid is static, the force on any surface within fluid must be perpendicular (normal) to 
each side of that surface. This force is due to the collisions between the molecules of the 
fluid on one side of the surface with molecules on the other side. For a static fluid, these 
forces must sum to zero. Consider a small portion of a static fluid shown in Figure 27.1. 
That portion of the fluid is divided into two parts, which we shall designate 1 and 2, by a  
small mathematical shared surface element S of area . The force F1,2 (S) on the AS 

surface of region 2 due to the collisions between the molecules of 1 and 2 is 
perpendicular to the surface. 

Figure 27.1: Forces on a surface within a fluid 
 

The force F2,1(S) on the surface of region 1 due to the collisions between the molecules 
of 1 and 2 by Newton’s Third Law satisfies 

  
(S) = − (S) . (27.3.1)F1,2 F2,1 

Denote the magnitude of these forces that form this interaction pair by 

  
F⊥ 

(S) = (S) = (S) . (27.3.2)F1,2 F2,1 
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Define the hydrostatic pressure at those points within the fluid that lie on the surface S 
by 

F⊥ 
(S)

P ≡ . (27.3.3)
AS 

The pressure at a point on the surface S is the limit 

F⊥ 
(S)

P = lim . (27.3.4)
AS →0 AS 

The SI units for pressure are N ⋅ m−2 and is called the pascal (Pa), where 

1 Pa = 1 N ⋅m−2 = 10−5 bar . (27.3.5) 

Atmospheric pressure at a point is the force per unit area exerted on a small surface 
containing that point by the weight of air above that surface. In most circumstances 
atmospheric pressure is closely approximated by the hydrostatic pressure caused by the 
weight of air above the measurement point. On a given surface area, low-pressure areas 
have less atmospheric mass above their location, whereas high-pressure areas have more 
atmospheric mass above their location. Likewise, as elevation increases, there is less 
overlying atmospheric mass, so that atmospheric pressure decreases with increasing 
elevation. On average, a column of air one square centimeter in cross-section, measured 
from sea level to the top of the atmosphere, has a mass of about 1.03 kg and weight of 
about 10.1 N. (A column one square inch in cross-section would have a weight of about 
14.7 lbs, or about 65.4 N). The standard atmosphere [atm] is a unit of pressure such 
that 

1atm = 1.01325×105 Pa = 1.01325 bar . (27.3.6) 

27.4 Pascal’s Law: Pressure as a Function of Depth in a Fluid of 
Uniform Density in a Uniform Gravitational Field 

Consider a static fluid of uniform density ρ . Choose a coordinate system such that the z -
axis points vertical downward and the plane z = 0 is at the surface of the fluid. Choose an 
infinitesimal cylindrical volume element of the fluid at a depth z , cross-sectional area A 
and thickness dz as shown in Figure 27.3. The volume of the element is dV = A dz and 
the mass of the fluid contained within the element is dm = ρ A dz . 
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Figure 27.2: Coordinate system for fluid 

The surface of the infinitesimal fluid cylindrical element has three faces, two caps and the 
cylindrical body. Because the fluid is static the force due to the fluid pressure points 
inward on each of these three faces. The forces on the cylindrical surface add to zero. On 
the end-cap at z , the force due to pressure of the fluid above the end-cap is downward,  
F(z) = F(z)k̂ , where F(z) is the magnitude of the force. On the end-cap at z + dz , the 
force due to the pressure of the fluid below the end-cap is upward, 
F(z + dz) = −F(z + dz)k̂ , where F(z + dz) is the magnitude of the force. The 
gravitational force acting on the element is given by 
Fg = (dm)gk̂ = (ρdV )gk̂ = ρ A dz g k̂ . There are also radial inward forces on the 
cylindrical body which sum to zero. The free body force diagram on the element is shown 
in Figure 27.3. 

Figure 27.3: Free-body force diagram on cylindrical fluid element 

The vector sum of the forces is zero because the fluid is static (Newton’s Second Law). 
Therefore in the +k̂ -direction 

F(z) − F(z + dz) + ρ Adzg = 0 . (27.4.1) 

27-5 



  

        
    

 
      

  

 
  

   

 
     

 

 
  

   

 
 

 
 

  

 
  

 

 
  

  

 
        

   
 
      
 

  
 

 
 

  
 

 
        

         

   
 

 

  

  

 

    

  
 

 

  
 

 

   

   

  

   
 

 
 

 
 

We divide through by the area A of the end-cap and use Eq. (27.3.4) to rewrite 
Eq. (27.4.1) in terms of the pressure 

P(z) − P(z + dz) + ρdzg = 0 . (27.4.2) 
Rearrange Eq. (27.4.2) as 

P(z + dz) − P(z) = ρg . (27.4.3)
dz 

Now take the limit of Eq. (27.4.3) as the thickness of the element dz → 0 , 

P(z + dz) − P(z)lim = ρg . (27.4.4)
dz→0 dz 

resulting in the differential equation 
dP = ρg . (27.4.5)
dz 

Integrate Eq. (27.4.5), 

P( z ) z′=z 

∫ dP = ∫ ρg dz′ . (27.4.6) 
P( z=0) z′=0 

Performing the integrals on both sides of Eq. (27.4.6) describes the change in pressure 
between a depth z and the surface of a fluid 

P(z) − P(z = 0) = ρgz (Pascal's Law) , (27.4.7) 

a result known as Pascal’s Law. 

Example 27.1 Pressure in the Earth’s Ocean 

What is the change in pressure between a depth of 4 km and the surface in Earth’s 
ocean? 

Solution: We begin by assuming the density of water is uniform in the ocean, and so we 
can use Pascal’s Law, Eq. (27.4.7) to determine the pressure, where we use 
ρ = 1.03×103 kg ⋅m−3 for the density of seawater (Table 27.1). Then 

P(z) − P(z = 0) = ρgz
 

= (1.03×103kg ⋅m−3)(9.8 m ⋅s−2 )(4 ×103 m) (27.4.8)
 
= 40 ×106 Pa.
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Example 27.2 Pressure in a Rotating Sample in a Centrifuge 

In an ultra centrifuge, a liquid filled chamber is spun with a high angular speed ω �about 
a fixed axis. The density ρ of the fluid is uniform. The open-ended side of the chamber 
is a distance r0 from the fixed axis. The chamber has cross sectional area A and of 
length L , (Figure 27.4). 

Figure 27.4: Schematic representation of centrifuge 

The chamber is spinning fast enough to ignore the effect of gravity. Determine the 
pressure in the fluid as a function of distance r from the fixed axis. 

Solution: Choose polar coordinates in the plane of circular motion. Consider a small 
volume element of the fluid of cross-sectional area A , thickness dr , and mass 
dM = ρ Adr that is located a distance r from the fixed axis. Denote the pressure at one 
end of the volume element by P(r) = F(r) / A and the pressure at the other end by 
P(r + dr) = F(r + dr) / A . The free-body force diagram on the volume fluid element is 
shown in Figure 27.5. 

Figure 27.5: Free-body force diagram showing only radial forces on fluid element in 
centrifuge 

The element is accelerating inward with radial component of the acceleration, ar = −rω 2 . 
Newton’s Second Law applied to the fluid element is then 
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(P(r) − P(r + dr)) A = −(ρ Adr)rω 2 , (27.4.9) 

We can rewrite Eq. (27.4.9) as 

P(r + dr) − P(r) = ρrω 2 , (27.4.10)
dr 

and take the limit dr → 0 resulting in 

dP = ρrω 2 . (27.4.11)
dr 

We can integrate Eq. (27.4.11) between an arbitrary distance r from the rotation axis and 
the open-end located at r0 , where the pressure P(r0 ) = 1atm , 

P(r0 ) r′=r0 

dP = ρω 2 r d r′ . (27.4.12)′∫ ∫ 
P(r ) r′=r 

Integration yields 
1 2 − rP(r0 ) − P(r) = ρω 2(r0 

2 ) . (27.4.13)
2 

The pressure at a distance r from the rotation axis is then 

1 2 − r0P(r) = P(r0 ) + ρω 2(r 2 ) . (27.4.14)
2 

27.5 Compressibility of a Fluid 

When the pressure is uniform on all sides of an object in a fluid, the pressure will squeeze 
the object resulting in a smaller volume. When we increase the pressure by ΔP on a 
material of volume V0 , then the volume of the material will change by ΔV < 0 and 
consequently the density of the material will also change. Define the bulk stress by the 
increase in pressure change 

≡ ΔP . (27.5.1)σ B 

Define the bulk strain by the ratio 
ΔV≡ . (27.5.2)ε B V0 
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For many materials, for small pressure changes, the bulk stress is linearly proportional to 
the bulk strain, 

ΔVΔP = −B , (27.5.3)
V0 

where the constant of proportionality B is called the bulk modulus. The SI unit for bulk 
modulus is the pascal. If the bulk modulus of a material is very large, a large pressure 
change will result in only a small volume change. In that case the material is called 
incompressible. In Table 27.2, the bulk modulus is tabulated for various materials. 

27-9 



  

   
 

    
   

   
   

   
   

   
   

   
   

  
   

 
   

 
 

  

 
 

  
 

           
   

 
       

 

 
  

  

 
        

      
 

 

     
 

        
          

         
     

     

Table 27.2 Bulk Modulus for Various Materials 

Material Bulk Modulus, Y, (Pa) 
Diamond 4.4 ×1011 

Iron 1.6 ×1011 

Nickel 1.7 ×1011 

Steel 1.6 ×1011 

Copper 1.4 ×1011 

Brass 6.0 ×1010 

Aluminum 7.5×1010 

Crown Glass 5.0 ×1010 

Lead 4.1×1010 

Water (value increases 
at higher pressure) 

2.2 ×109 

Air (adiabatic bulk 
modulus) 

1.42 ×105 

Air (isothermal bulk 
modulus) 

1.01×105 

Example 27.3 Compressibility of Water 

Determine the percentage decrease in a fixed volume of water at a depth of 4 km where 
the pressure difference is 40 MPa , with respect to sea level. 

Solution: The bulk modulus of water is 2.2 ×109 Pa . From Eq. (27.5.3), 

ΔV ΔP 40 ×106 Pa = − = − = −0.018 ; (27.5.4)
B 2.2 ×109 Pa V0 

there is only a 1.8% decrease in volume. Water is essentially incompressible even at great 
depths in ocean, justifying our assumption that the density of water is uniform in the 
ocean in Example 27.1. 

27.6 Archimedes’ Principle: Buoyant Force 

When we place a piece of solid wood in water, the wood floats on the surface. The 
density of most woods is less than the density of water, and so the fact that wood floats 
does not seem so surprising. However, objects like ships constructed from materials like 
steel that are much denser than water also float. In both cases, when the floating object is 
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at rest, there must be some other force that exactly balances the gravitational force. This 
balancing of forces also holds true for the fluid itself. 

Consider a static fluid with uniform density ρ f . Consider an arbitrary volume element of 

the fluid with volume V and mass mf = ρ fV . The gravitational force acts on the volume 
 

element, pointing downwards, and is given by Fg = −ρ fV g k̂ , where k̂ is a unit vector 
pointing in the upward direction. The pressure on the surface is perpendicular to the 
surface (Figure 27.6). Therefore on each area element of the surface there is a 
perpendicular force on the surface. 

Figure 27.7: Free-body force diagramFigure 27.6: Forces due to pressure on on volume element showingsurface of arbitrary volume fluid element gravitational force and buoyant force 

 
Let FB denote the resultant force, called the buoyant force, on the surface of the volume 
element due to the pressure of the fluid. The buoyant force must exactly balance the 
gravitational force because the fluid is in static equilibrium (Figure 27.7), 

    
0 = FB + Fg = FB − ρ f V g k̂ . (27.6.1) 

Therefore the buoyant force is therefore 

F
 

B ˆ= ρ fV g k . (27.6.2) 

The buoyant force depends on the density of the fluid, the gravitational constant, and the 
volume of the fluid element. This macroscopic description of the buoyant force that 
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results from a very large number of collisions of the fluid molecules is called 
Archimedes’ Principle. 

We can now understand why when we place a stone in water it sinks. The density of the 
stone is greater than the density of the water, and so the buoyant force on the stone is less 
than the gravitational force on the stone and so it accelerates downward. 

Place a uniform object of volume V and mass M with density ρ o = M / V within a fluid. 
If the density of the object is less than the density of the fluid, ρ , the object will o < ρ f 
float on the surface of the fluid. A portion of the object that is a beneath the surface, 
displaces a volume V1 of the fluid. The portion of the object that is above the surface 
displaces a volume V2 = V −V1 of air (Figure 27.8). 

Figure 27.8: Floating object on surface of fluid 

Because the density of the air is much less that the density of the fluid, we can neglect the 
buoyant force of the air on the object. 

Figure 27.9: Free-body force diagram on floating object 

 
The buoyant force of the fluid on the object, Ff 

B 
,o = ρ fV1gk̂ , must exactly balance the 
 

gravitational force on the object due to the earth, F e
g 
,o (Figure 27.9), 

   
Fg0 = Ff 

B 
,o + e,o = ρ fV1 g k̂ − ρ oV g k̂ = ρ fV1 g k̂ − ρ o (V1 +V2 ) g k̂ . (27.6.3) 

Therefore the ratio of the volume of the exposed and submerged portions of the object 
must satisfy 
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ρ f = ρ +V2 ) . (27.6.4)V1 o (V1 

We can solve Eq. (27.6.4) and determine the ratio of the volume of the exposed and 
submerged portions of the object 

− ρ )V2 
(ρ f o= . (27.6.5)

ρV1 o 

We now also can understand why a ship of mass M floats. The more dense steel 
displaces a volume of water Vs but a much larger volume of water Vw is displaced by air. 
The buoyant force on the ship is then 

 
F s 

B = ρ f (Vs +Vw ) g k̂ . (27.6.6) 

If this force is equal in magnitude to Mg , the ship will float. 

Example 27.4 Archimedes’ Principle: Floating Wood 

Consider a beaker of uniform cross-sectional area A , filled with water of density ρ w . 
When a rectangular block of wood of cross sectional area A2 , height, and mass Mb is 
placed in the beaker, the bottom of the block is at an unknown depth z below the surface 
of the water. (a) How far below the surface z is the bottom of the block? (b) How much 
did the height of the water in the beaker rise when the block was placed in the beaker? 

Solution: We neglect the buoyant force due to the displaced air because it is negligibly 
small compared to the buoyant force due to the water. The beaker, with the floating block 
of wood, is shown in Figure 27.10. 

Figure 27.10 Block of wood floating in a beaker of water 

(a) The density of the block of wood is ρb = / Vb / Abh . The volume of the Mb = Mb 

submerged portion of the wood is V1 = Abz . The volume of the block above the surface is 
given by V2 = (h − z) . We can apply Eq. (27.6.5), and determine thatAb 
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(h − z) (h − z) (ρ )V2 Ab w − ρb= = = . (27.6.7)
Abz zV1 ρb 

We can now solve Eq. (27.6.7) for the depth z of the bottom of the block 

/ Abh)ρb ( Mb Mbz = h = h = . (27.6.8)
ρ ρ ρ w w w Ab 

(b) Before the block was placed in the beaker, the volume of water in the beaker is 
Vw = Asi , where si is the initial height of water in the beaker. When the wood is floating 
in the beaker, the volume of water in the beaker is equal to V = − Abz , where s f isw As f 

the final height of the water, in the beaker and Abz is the volume of the submerged 
portion of block. Because the volume of water has not changed 

Asi = Asf − Abz . (27.6.9) 

We can solve Eq. (27.6.9) for the change in height of the water Δs = s f , in terms of − si 

the depth z of the bottom of the block, 

Ab= z . (27.6.10)Δs = s f − si A 

We now substitute Eq. (27.6.8) into Eq. (27.6.10) and determine the change in height of 
the water 

Mb= . (27.6.11)Δs = s f − si ρ A w 

Example 27.5 Rock Inside a Floating Salad Bowl 

A rock of mass mr and density ρr is placed in a salad bowl of mass mb . The salad bowl 
and rock float in a beaker of water of density ρw . The beaker has cross sectional area A . 
The rock is then removed from the bowl and allowed to sink to the bottom of the beaker. 
Does the water level rise or fall when the rock is dropped into the water? 
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Figure 27.11: Rock in a floating salad bowl 

Solution: When the rock is placed in the floating salad bowl, a volume V of water is  
displaced. The buoyant force FB = ρ wVg k̂ balances the gravitational force on the rock 
and salad bowl, 

(m + mb )g = ρ Vg = ρ )g . (27.6.12)r w w (V1 +V2 

where V1 is the portion of the volume of displaced water that is necessary to balance just 
the gravitational force on the rock, m g r = ρ wV1g , and V2 is the portion of the volume of 
displaced water that is necessary to balance just the gravitational force on the bowl, 
mbg = ρ g , Therefore V1 must satisfy the condition that V1 = m g / ρ . The volume of wV2 r w 

the rock is given by V = m / ρ . In particularr r r 

ρ r= V . (27.6.13)V1 rρ w 

Because the density of the rock is greater than the density of the water, ρ r > ρ w , the rock 
displaces more water when it is floating than when it is immersed in the water, V1 > Vr . 
Therefore the water level drops when the rock is dropped into the water from the salad 
bowl. 

Example 27.6 Block Floating Between Oil and Water 

A cubical block of wood, each side of length l = 10 cm , floats at the interface between air 
and water. The air is then replaced with d = 10 cm of oil that floats on top of the water. 

a) Will the block rise or fall? Briefly explain your answer. 

After the oil has been added and equilibrium established, the cubical block of wood floats 
at the interface between oil and water with its lower surface h = 2.0×10−2 m below the 
interface. The density of the oil is ρ o = 6.5 ×102 kg ⋅m−3 . The density of water is 

ρ w = 1.0 ×103 kg ⋅m−3 . 
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b) What is the density of the block of wood? 

Solution: (a) The buoyant force is equal to the gravitational force on the block. Therefore 

gV + ρ g(V −V1) , (27.6.14)ρb = ρ wgV1 a 

where V1 is the volume of water displaced by the block, V2 = V −V1 is the volume of air 
displaced by the block V is the volume of the block, ρb is the density of the block of 
wood, and ρ a is the density of air (Figure 27.12(a)). 

Figure 27.12: (a) Block floating on water, (b) Block floating on oil-water interface 

We now solve Eq. (27.6.14) for the volume of water displaced by the block 

− ρ )(ρb a= V . (27.6.15)V1 (ρ w − ρ a ) 

When the oil is added, we can repeat the argument leading up to Eq. (27.6.15) replacing 
ρ a by ρ o , (Figure 27.12(b)), yielding 

gV = ρ g ′+ ρ g ′ , (27.6.16)ρb w V1 o V2 

where V1 ′ is the volume of water displaced by the block, V2 ′ is the volume of oil 
displaced by the block, V is the volume of the block, and ρb is the density of the block 
of wood. Because V2 ′ = V −V1 ′ , we rewrite Eq. (27.6.16) as 

ρbgV = ρ wgV1 ′+ ρ og(V −V1 ′) , (27.6.17) 

We now solve Eq. (27.6.17) for the volume of water displaced by the block, 
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− ρ )V(ρb o′= . (27.6.18)V1 (ρ w − ρ o ) 

Because ρ o >> ρ a , comparing Eqs. (27.6.18) and (27.6.15), we conclude that V1 ′> V1 . 
The block rises when the oil is added because more water is displaced. 

(b) We use the fact that V1 ′= l2h , V2 ′ = l2(l − h) , and V = l3 , in Eq. (27.6.16) and solve for 
the density of the block 

′ ρ l2h + ρ l2(l − h) hρ wV1 ′+ ρ oV2 w oρb = = 
l3 = (ρ w − ρ o ) + ρ o . (27.6.19)

V l 

We now substitute the given values from the problem statement and find that the density 
of the block is 

(2.0×10−2 m) −3)= ((1.0 ×103 kg ⋅m−3) − (6.5 ×102 kg ⋅ m−3)) + (6.5×102 kg ⋅mρb (1.0×10−1m) (27.6.20) 
= 7.2 ×102 kg ⋅ m−3.ρb 

Because ρb > ρ o , the above analysis is valid. 
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 Chapter 28 Fluid Dynamics
 

28.1 Ideal Fluids 

An ideal fluid is a fluid that is incompressible and no internal resistance to flow (zero 
viscosity). In addition ideal fluid particles undergo no rotation about their center of mass 
(irrotational). An ideal fluid can flow in a circular pattern, but the individual fluid 
particles are irrotational. Real fluids exhibit all of these properties to some degree, but we 
shall often model fluids as ideal in order to approximate the behavior of real fluids. When 
we do so, one must be extremely cautious in applying results associated with ideal fluids 
to non-ideal fluids. 

28.2 Velocity Vector Field 

When we describe the flow of a fluid like water, we may think of the movement of 
individual particles. These particles interact with each other through forces. We could 
then apply our laws of motion to each individual particle in the fluid but because the 
number of particles is very large, this would be an extremely difficult computation 
problem. Instead we shall begin by mathematically describing the state of moving fluid 
by specifying the velocity of the fluid at each point in space and at each instant in time. 
For the moment we will choose Cartesian coordinates and refer to the coordinates of a 
point in space by the ordered triple (x, y, z) and the variable t to describe the instant in 
time, but in principle we may chose any appropriate coordinate system appropriate for 
describing the motion. The distribution of fluid velocities is described by the vector function v(x, y, z,t) . This represents the velocity of the fluid at the point (x, y, z) at the 

instant t . The quantity v(x, y, z,t) is called the velocity vector field. It can be thought of 
at each instant in time as a collection of vectors, one for each point in space whose 
direction and magnitude describes the direction and magnitude of the velocity of the fluid 
at that point (Figure 28.1). This description of the velocity vector field of the fluid refers 
to fixed points in space and not to moving particles in the fluid. 

Figure 28.1: Velocity vector field for fluid flow at time t 

We shall introduce functions for the pressure P(x, y, z,t) and the density ρ(x, y, z,t) of 
the fluid that describe the pressure and density of the fluid at each point in space and at 
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each instant in time. These functions are called scalar fields because there is only one 
number with appropriate units associated with each point in space at each instant in time. 

In order to describe the velocity vector field completely we need three functions 
v (x, y, z,t) , v (x, y, z,t) , and v (x, y, z,t) to describe the components of the velocity x y z 

vector field 
 v(x, y, z,t) = v (x, y, z,t) î + v (x, y, z,t) ĵ+ v (x, y, z,t)k̂ . (28.2.1)x y z 

The three component functions are scalar fields. The velocity vector field is in general 
quite complicated for a three-dimensional time dependent flow. We can sometimes make 
some simplifying assumptions that enable us to model a complex flow, for example 
modeling the flow as a two-dimensional flow or even further assumptions that one 
component function of a two-dimensional flow is negligible allowing us to model the 
flow as one-dimensional. 

For most flows, the velocity field varies in time. For some special cases we can model the 
flow by assuming that the velocity field does not change in time, a case we shall refer to 
as steady flow, 

∂v(x, y, z,t)  = 0 (steady flow) . (28.2.2)
∂t 

For steady flows the velocity field is independent of time, 

 v(x, y, z) = v (x, y, z) î + v (x, y, z) ĵ+ v (x, y, z)k̂ (steady flow) . (28.2.3)x y z 

For a non-ideal fluid, the differential equations satisfied by these velocity component 
functions are quite complicated and beyond the scope of this discussion. Instead, we shall 
primarily consider the special case of steady flow of a fluid in which the velocity at each 
point in the fluid does not change in time. The velocities may still vary in space (non-
uniform steady flow). 

v(B) v(B) . v(A) v(A) .. 
B . v(C) . B
$

A C A 

(a) trajectory of particle that is located at: (b) trajectory of particle 2 that is located at: 
point A at time  t1 ; point B at time t2 ; and point A at time  t 2 ; and point B at time t 3 . 
point C at time t3 . 

Figure 28.2: (a) trajectory of particle 1, (b) trajectory of particle 2 

Let’s trace the motion of particles in an ideal fluid undergoing steady flow during a 
succession of intervals of duration Δt . Consider particle 1 located at point A with 

! !coordinates (xA , yA , zA ) . At the instant t1 , particle 1 has velocity v(xA , yA , zA ) = v(A) . 
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During the time [t1,t2] , where t2 , the particle moves to point B arriving there at = t1 + Δt1 
! !the instant t2 . At point B , the particle now has velocity v(xB, yB, zB ) = v(B) . During the 

next interval [t2 ,t3] , where t3 + Δt , particle 1 will move to point C arriving there at = t2 
! !instant t3 , where it has velocity v(xC, yC, zC ) = v(C) . (Figure 28.2(a)). Because the flow 

has been assumed to be steady, at instant t2 , a different particle, particle 2, is now located 
!at point A but it has the same velocity v(xA , yA , zA ) as particle 1 had at point A and 

hence will arrive at point B at the end of the next interval, at the instant t3 (Figure 
28.2(b)). In this way every particle that lies on the trajectory that our first particle traces 
out in time will follow the same trajectory. This trajectory is called a streamline. The 
particles in the fluid will not have the same velocities at points along a streamline 
because we have not assumed that the velocity field is uniform. 

28.3 Mass Continuity Equation 

A set of streamlines for an ideal fluid undergoing steady flow in which there are no 
sources or sinks for the fluid is shown in Figure 28.3. 

end-cap 1 

end-cap 2 

Figure 28.4: Flux Tube associated with 
Figure 28.3: Set of streamlines for an set of streamlines 

ideal fluid flow 

We also show a set of closely separated streamlines that form a flow tube in Figure 28.4 
We add to the flow tube two open surface (end-caps 1 and 2) that are perpendicular to 
velocity of the fluid, of areas A1 and A2 , respectively. Because all fluid particles that 
enter end-cap 1 must follow their respective streamlines, they must all leave end-cap 2. If 
the streamlines that form the tube are sufficiently close together, we can assume that the 
velocity of the fluid in the vicinity of each end-cap surfaces is uniform. 
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Figure 28.5: Mass flow through flux tube 

Let v1 denote the speed of the fluid near end-cap 1 and v2 denote the speed of the fluid 
near end-cap 2. Let ρ1 denote the density of the fluid near end-cap 1 and ρ2 denote the 
density of the fluid near end-cap 2. The amount of mass that enters and leaves the tube in 
a time interval dt can be calculated as follows (Figure 28.5): suppose we consider a 
small volume of space of cross-sectional area A1 and length dl1 = v1dt near end-cap 1. 
The mass that enters the tube in time interval dt is 

dm1 = ρ1dV1 A1dl1 A1v1dt . (28.3.1)= ρ1 = ρ1 

In a similar fashion, consider a small volume of space of cross-sectional area A2 and 
length dl2 = v2dt near end-cap 2. The mass that leaves the tube in the time interval dt is 
then 

dm2 = ρ2dV2 A2dl2 A2v2dt . (28.3.2)= ρ2 = ρ2 

An equal amount of mass that enters end-cap 1 in the time interval dt must leave end-cap 
2 in the same time interval, thus dm1 = dm2 . Therefore using Eqs. (28.3.1) and (28.3.2), 
we have that ρ1 A1v1dt = ρ2 A2v2dt . Dividing through by dt implies that 

(steady flow) . (28.3.3)ρ1 A1v1 = ρ2 A2v2 

Eq. (28.3.3) generalizes to any cross sectional area A of the thin tube, where the density 
is ρ , and the speed is v , 

ρ Av = constant (steady flow) . (28.3.4) 

Eq. (28.3.3) is referred to as the mass continuity equation for steady flow. If we assume 
the fluid is incompressible, then Eq. (28.3.3) becomes 

(incompressable fluid, steady flow) . (28.3.5)A1v1 = A2v2 
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Consider the steady flow of an incompressible with streamlines and closed surface 
formed by a streamline tube shown in Figure 28.5. According to Eq. (28.3.5), when the 
spacing of the streamlines increases, the speed of the fluid must decrease. Therefore the 
speed of the fluid is greater entering end-cap 1 then when it is leaving end-cap 2. When 
we represent fluid flow by streamlines, regions in which the streamlines are widely 
spaced have lower speeds than regions in which the streamlines are closely spaced. 

28.4 Bernoulli’s Principle 

Let’s again consider the case of an ideal fluid that undergoes steady flow and apply 
energy methods to find an equation of state that relates pressure, density, and speed of the 
flow at different points in the fluid. Let’s examine the case of a steady horizontal flow in 
as seen in the overhead view shown in Figure 28.6. We represent this flow by streamlines 
and a flow tube associated with the streamlines. Let’s consider the motion of a fluid 
particle along one streamline passing through points A and B in Figure 28.6. The cross-
sectional area of the flow tube at point A is less than the cross-sectional area of the flow 
tube at point B . 

Figure 28.6 Overhead view of steady horizontal flow: in regions where spacing of the 
streamlines increases, the speed of the fluid must decrease 

According to Eq. (28.3.5), the particle located at point A has a greater speed than a fluid 
particle located at point B . Therefore a particle traveling along the streamline from point 
A to point B must decelerate. Because the streamline is horizontal, the force 
responsible is due to pressure differences in the fluid. Thus, for this steady horizontal 
flow in regions of lower speed there must be greater pressure than in regions of higher 
speed. 

Now suppose the steady flow of the ideal fluid is not horizontal, with the y -representing 
the vertical directi. The streamlines and flow tube for this steady flow are shown in 
Figure 28.7. 

28-5 



  

 
 

  
 

     
            

          
          

            
            

    

       
         

                   
   

 
  

         
          

              
           

 
    

 
             

             
 

 
      
  

           
          

    

 

  

 

  

  

 

   

 

Figure 28.7: Non-horizontal steady flow 

In order to determine the equation relating the pressure, speed and height difference of 
the tube, we shall use the work-energy theorem. We take as a system the mass contained 
in the flow tube shown in Figure 28.7. The external forces acting on our system are due 
to the pressure acting at the two ends of the flow tube and the gravitational force. 
Consider a streamline passing through points 1 and 2 at opposite ends of the flow tube. 
Let’s assume that the flow tube is narrow enough such that the velocity of the fluid is 
uniform on the cross-sectional areas of the tube at points 1 and 2 . At point 1 , denote the 
speed of a fluid particle by v1 , the cross-sectional area by A1 , the fluid pressure by P1 , 
and the height of the center of the cross-sectional area by y1 . At point 2 , denote the 
speed of a fluid particle by v2 , the cross-sectional area by A2 , the fluid pressure by P2 , 
and the height of the center of the cross-sectional area by y2 . 

Consider the flow tube at time t as illustrated in Figure 28.7. At the left end of the flow, 
in a time interval dt , a particle at point 1 travels a distance dl1 = v1dt . Therefore a small 
volume dV1 = A1dl1 = A1v1dt of fluid is displaced at the right end of the flow tube. In a 
similar fashion, at particle at point 2 , travels a distance dl2 = v2dt . Therefore a small 
volume of fluid dV2 = A2dl2 = A2v2dt is also displaced to the right in the flow tube during 
the time interval dt . Because we are assuming the fluid is incompressible, by Eq.(28.3.5), 
these volume elements are equal, dV ≡ dV1 = dV2 . 

There is a force of magnitude F = P A in the direction of the flow arising from the fluid 1 1 1 

pressure at the left end of the tube acting on the mass element that enters the tube. The 
work done displacing the mass element is then 

dW1 = F1dl1 A1dl1 = P1dV . (28.4.1)= P1 

There is also a force of magnitude F = P A in the direction opposing the flow arising 2 2 2 

from the fluid pressure at the right end of the tube. The work done opposing the 
displacement of the mass element leaving the tube is then 
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dW1 = −F2dl2 = − P2 A2dl2 = −P2dV . (28.4.2) 

Therefore the external work done by the force associated with the fluid pressure is the 
sum of the work done at each end of the tube 

dW ext = dW1 + dW2 = (P1 − P2 )dV . (28.4.3) 

In a time interval dt , the work done by the gravitational force is equal to 

dW g = −dm g( y2 − y1) = −ρdVg( y2 − y1) . (28.4.4) 

Because we only chose the mass in the flow tube as our system, and we assumed that the 
fluid was ideal (no frictional losses due to viscosity) the change in the potential energy of 
the system is 

dU = −W g = ρdVg( y2 − y1) . (28.4.5) 

At time t , the kinetic energy of the system is the sum of the kinetic energy of the small 
mass element of volume dV = A1dl1 moving with speed v1 and the rest of the mass in the 
flow tube. At time t + dt , the kinetic energy of the system is the sum of the kinetic energy 
of the small mass element of volume dV = A2dl2 moving with speed v2 and the rest of 
the mass in the flow tube. The change in the kinetic energy of the system is due to the 
mass elements at the two ends and therefore 

1 2 − 
1 2 1 2 − v1dK = dm2v2 dm1v1 = ρdV (v2 

2 ) . (28.4.6)
2 2 2 

The work-energy theorem dW ext = dU + dK for system is then 

1 2 − v1− P2 )dV = ρdV (v2 
2 ) + ρg( y2 − y1)dV . (28.4.7)(P1 2 

We now divide Eq. (28.4.7) through by the volume dV and rearrange terms, yielding 

1 2 1 2+ ρgy1 + + ρgy2 + . (28.4.8)P1 ρv1 = P2 ρv22 2 

Because points 1 and 2 were arbitrarily chosen, we can drop the subscripts and write 
Eq. (28.4.8) as 

1 2P + ρgy + ρv = constant (ideal fluid, steady flow) . (28.4.9)
2 
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Eq. (28.4.9) is known as Bernoulli’s Equation. 

28.5 Worked Examples: Bernoulli’s Equation 

Example 28.1 Venturi Meter 

Figure 28.8 shows a Venturi Meter, a device used to measure the speed of a fluid in a 
pipe. A fluid of density ρ f is flowing through a pipe. A U-shaped tube partially filled 

with mercury of density ρHg lies underneath the points 1 and 2. 

Figure 28.8: Venturi Meter 

The cross-sectional areas of the pipe at points 1 and 2 are A1 and A2 respectively. 
Determine an expression for the flow speed at the point 1 in terms of the cross-sectional 
areas A1 and A2 , and the difference in height h of the liquid levels of the two arms of 
the U-shaped tube. 

Solution: 

Figure 28.8: Coordinate system for Venturi tube 
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We shall assume that the pressure and speed are constant in the cross-sectional areas A1 

and A2 . We also assume the fluid is incompressible so the density ρ f is constant 
throughout the tube. The two points 1 and 2 lie on the streamline passing through the 
midpoint of the tube so they are at the same height. Using y1 in Eq. (28.4.8), the= y2 

pressure and flow speeds at the two points 1 and 2 are related by 

1 2 1 2+ + . (28.4.10)P1 ρ f v1 = P2 ρ f v22 2 

We can rewrite Eq. (28.4.10) as 
2 − v1 = 

1 (v2 
2 ) . (28.4.11)P1 − P2 ρ f2 

Let h1 and h2 denote the heights of the liquid level in the arms of the U-shaped tube 
directly beneath points 1 and 2 respectively. Pascal’s Law relates the pressure difference 
between the two arms of the U-shaped tube according to in the left arm of the U-shaped 
tube according to 

Pbottom = P1 + ρ f gd1 + ρHg gh1 . (28.4.12) 

In a similar fashion, the pressure at point 2 is given by 

Pbottom = P2 + ρ f gd2 + ρHg gh2 . (28.4.13) 

Therefore, setting Eq. (28.4.12) equal to Eq. (28.4.13), we determine that the pressure 
difference on the two sides of the U-shaped tube is 

P1 − P2 = ρ f g(d2 − d1) + ρHg g(h2 − h1). (28.4.14) 

From Figure 28.8, d2 + h1 , therefore d2 = −h . We can rewrite 
Eq. (28.4.14) as 

+ h2 = d1 − d1 = h1 − h2 

P1 − P2 = (ρHg − ρ f )gh. (28.4.15) 

Substituting Eq. (28.4.11) into Eq. (28.4.15) yields 

1 (v2
2 − v1 )gh . (28.4.16)

2 
ρ f 

2 ) = (ρHg − ρ f 

The mass continuity condition (Eq.(28.3.5)) implies that v2 = ( A1 / A2 and so we can )v1 

rewrite Eq. (28.4.16) as 
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1 2
 

2 
ρ f (( A1 / A2 )

2 −1)v1 = (ρHg − ρ f )gh . (28.4.17)
 

We can now solve Eq. (28.4.17) for the speed of the flow at point 1; 

v1 = 
2(ρHg − ρ f )gh 
ρ f (( A1 / A2 )

2 −1) 
. (28.4.18)
 

Example 28.2 Water Pressure 

A cylindrical water tower of diameter 3.0 m supplies water to a house. The level of 
water in the water tower is 35 m above the point where the water enters the house 
through a pipe that has an inside diameter 5.1cm . The intake pipe delivers water at a 

3 ⋅s−1maximum rate of 2.0 ×10−3 m . The pipe is connected to a narrower pipe leading to 
the second floor that has an inside diameter 2.5 cm . What is the pressure and speed of the 
water in the narrower pipe at a point that is a height 5.0 m above the level where the pipe 
enters the house? 

Figure 28.9: Example 28.2 (not to scale) 

Solution: We shall assume that the water is an ideal fluid and that the flow is a steady 
flow and that the level of water in the water tower is constantly maintained. Let’s choose 
three points, point 1 at the top of the water in the tower, point 2 where the water just 
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enters the house, and point 3 in the narrow pipe at a height h2 = 5.0 m above the level 
where the pipe enters the house. 

We begin by applying Bernoulli’s Equation to the flow from the water tower at point 1, 
to where the water just enters the house at point 2. Bernoulli’s equation (Eq. (28.4.8)) 
tells us that 

1 2 1 2P1 + ρgy1 + ρv1 = P2 + ρgy2 + ρv2 . (28.4.19)
2 2 

We assume that the speed of the water at the top of the tower is negligibly small due to 
the fact that the water level in the tower is maintained at the same height and so we set 

= 0 . The pressure at point 2 is thenv1 

1 2+ ρg( y1 − y2 ) − . (28.4.20)P2 = P1 ρv22 

In Eq. (28.4.20) we use the value for the density of water ρ = 1.0 ×103 kg ⋅ m−3 , the 
change in height is ( y1 − y2 ) = 35 m , and the pressure at the top of the water tower is 

= 1atm . The rate R that the water flows at point 1 satisfies R = A1 / 2)2P1 v1 = π (d1 v1 . 
Therefore, the speed of the water at point 1 is 

3 ⋅s−1R 2.0 ×10−3 m −1= = = 2.8 ×10−4 m ⋅s , (28.4.21)v1 / 2)2 π (1.5 m)2π (d1 

which is negligibly small and so we are justified in setting v1 = 0 . Similarly the speed of 
the water at point 2 is 

3 ⋅s−1R 2.0 ×10−3 m −1= = = 1.0 m ⋅s , (28.4.22)v2 / 2)2 π (2.5×10−2 m)2π (d2 

We can substitute Eq. (28.4.21) into Eq. (28.4.22), yielding 

= (d1
2 / d2

2 )v1 , (28.4.23)v2 

a result which we will shortly find useful. Therefore the pressure at point 2 is 

1 −1)2= 1.01×105 Pa + (1.0 ×103 kg ⋅m−3)(9.8 m ⋅s−2 )(35 m) − (1.0 ×103 kg ⋅m−3)(1.0 m ⋅sP2 2 
P2 = 1.01×105 Pa + 3.43×105 Pa − 5.1×102 Pa = 4.4 ×105 Pa. 
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(28.4.24)
 

The dominant contribution is due to the height difference between the top of the water 
tower and the pipe entering the house. The quantity (1/ 2)ρv2

2 is called the dynamic 
pressure due to the fact that the water is moving. The amount of reduction in pressure 
due to the fact that the water is moving at point 2 is given by 

1 2 1 −1)2= (1.0 ×103 kg ⋅ m−3)(1.0 m ⋅s = 5.1×103 Pa , (28.4.25)ρv22 2 

which is much smaller than the contributions from the other two terms. 

We now apply Bernoulli’s Equation to the points 2 and 3, 

P2 + 
1 ρv2

2 + ρgy2 = P3 + 
1 ρv3

2 + ρgy3 . (28.4.26)
2 2 

Therefore the pressure at point 3 is 

1 2 − v3+ ρ(v2 
2 ) + ρg( y2 − y3) . (28.4.27)P3 = P2 2 

The change in height y2 = −5.0 m . The speed of the water at point 3 is− y3 

3 ⋅s−1R 2.0 ×10−3 m −1v3 = = = 3.9 m ⋅s , (28.4.28)
/ 2)2 π (1.27 ×10−2 m)2π (d3 

Then the pressure at point 3 is 

1 −1)2 )= (4.4 ×105 Pa) + (1.0 ×103 kg ⋅m−3)((1.0 m ⋅s−1)2 − (3.9 m ⋅sP3 2
 
−(1.0 ×103 kg ⋅ m−3)(9.8 m ⋅s−2 )(5.0 m)
 

. (28.4.29) 
= (4.4 ×105 Pa) − (7.1×103 Pa) − 4.9 ×104 Pa
 

= 3.8 ×105 Pa
 

Because the speed of the water at point 3 is much greater than at point 2, the dynamic 
pressure contribution at point 3 is much larger than at point 2. 

28.6 Laminar and Turbulent Flow 
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28.6.1 Introduction 

During the flow of a fluid, different layers of the fluid may be flowing at different speeds 
relative to each other, one layer sliding over another layer. For example consider a fluid 
flowing in a long cylindrical pipe. For slow velocities, the fluid particles move along 
lines parallel to the wall. Far from the entrance of the pipe, the flow is steady (fully 
developed). This steady flow is called laminar flow. The fluid at the wall of the pipe is at 
rest with respect to the pipe. This is referred to as the no-slip condition and is 
experimentally holds for all points in which a fluid is in contact with a wall. The speed 
of the fluid increases towards the interior of the pipe reaching a maximum, v max , at the 
center. The velocity profile across a cross section of the pipe exhibiting fully developed 
flow is shown in Figure 28.10. This parabolic velocity profile has a non-zero velocity 
gradient that is normal to the flow. 

v max 

Figure 28.10 Steady laminar flow in a pipe with a non-zero velocity gradient 

28.6.2 Viscosity 

Due to the cylindrical geometry of the pipe, cylindrical layers of fluid are sliding with 
respect to one another resulting in tangential forces between layers. The tangential force 
per area is called a shear stress. The viscosity of a fluid is a measure of the resistance to 
this sliding motion of one layer of the fluid with respect to another layer. A perfect fluid 
has no tangential forces between layers. A fluid is called Newtonian if the shear forces 
per unit area are proportional to the velocity gradient. For a Newtonian fluid undergoing 
laminar flow in the cylindrical pipe, the shear stress, σ S , is given by 

dv = η , (28.4.30)σ S dr 

where η is the constant of proportionality and is called the absolute viscosity, r is the 
radial distance form the central axis of the pipe, and dv / dr is the velocity gradient 
normal to the flow. 

The SI units for viscosity are poise = 10−1 Pa ⋅s . Some typical values for viscosity for 
fluids at specified temperatures are given in Table 1. 

Table 1: Coefficients of absolute viscosity 
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fluid Coefficient of absolute viscosity η 
oil 1−10 poise 
Water at 0o 

1.79 ×10−2 poise 
Water at 100o 

0.28 ×10−2 poise 
Air at 20o 

1.81×10−4 poise 

At a certain flow rate, this resistance suddenly increases and the fluid particles no 
longer follow straight lines but appear to move randomly although the average motion is 
still along the axis of the pipe. This type of flow is called turbulent flow. Osbourne 
Reynolds was the first to experimentally measure these two types of flow. He was able to 
characterize the transition between these two types of flow by a parameter called the 
Reynolds number that depends on the average velocity of the fluid in the pipe, the 
diameter, and the viscosity of the fluid. The transition point between flows corresponds to 
a value of the Reynolds number that is associated with a sudden increase in the friction 
between layers of the fluid. Much after Reynolds initial observations, it was 
experimentally noted that a small disturbance in the laminar flow could rapidly grow and 
produce turbulent flow. 

Example 28.3 Couette Flow 

Consider the flow of a Newtonian fluid between two very long parallel plates, each plate 
of width w , length s , and separated by a distance d . The upper plate moves with a 
constant relative speed v0 with respect to the lower plate, (Figure 28.11). 

l 

v0 

d 
x 

F(x) 

F0 

Figure 28.11 Laminar flow between two plates moving with relative speed v0 

Choose a reference frame in which the lower plate, located on the plane at x = 0 , is at 
rest. Choose a volume element of length l and cross sectional area A , with one side in 
contact with the plate at rest, and the other side located a distance x from the lower plate. 
The velocity gradient in the direction normal to the flow is dv / dx . The shear force on 
the volume element due to the fluid above the element is given by 

dv
F(x) = η A . (28.4.31)

dx 
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The shear force is balanced by the shear force F0 of the lower plate on the element, such 
that F(x) = F0 . Hence 

dv = η A . (28.4.32)F0 dx 

The velocity of the fluid at the lower plate is zero. The integral version of this differential 
equation is then 

x′= x v′= v( x ) 

dx′ = dv′ . (28.4.33)1 
∫ F0 ∫η A x′= 0 v′= 0 

Integration yields 
F0 x = v(x) . (28.4.34)
η A 

The velocity of the fluid at the upper plate is v0 , therefore the constant shear stress is 
given by 

F0 

A 
= 
ηv0 

d 
, (28.4.35) 

hence the velocity profile is 

v(x) = 
v0 

d 
x . (28.4.36) 

This type of flow is known as Couette flow. 

Example 28.4 Laminar flow in a cylindrical pipe. 

Let’s consider a long cylindrical pipe of radius r0 in which the fluid undergoes laminar 
flow with each fluid particle moves in a line parallel to the pipe axis. Choose a cylindrical 
volume element of length dl and radius r , centered along the pipe axis as shown in 
Figure 28.12. There is a pressure drop dp < 0 over the length of the volume element 
resulting in forces on each end cap. Denote the force on the left end cap by FL = p / A 
and the force on the right end cap by FR = ( p + dp) / Aon the right end cap, where 

A = πr 2 is the cross sectional area of the end cap. 
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r0 

cylindrical volume element 

l 

r 

FL 
= p / A FR 

= ( p + dp) / A 

d 

Figure 28.12 Volume element for steady laminar flow in a pipe 

The forces on the volume element sum to zero and are due to the pressure difference and 
the shear stress; hence 

2πrdl = 0 . (28.4.37)FL − FR +σ S 

Using our Newtonian model for the fluid (Eq. (28.4.30) and expressing the force in terms 
of pressure, Eq. (28.4.37) becomes 

dp dv r = . (28.4.38)
2ηdl dr 

Eq. (28.4.38) can be integrated by the method of separation of variables with boundary 
conditions v(r = 0) = v max and v(r = r0 ) = 0 . (Recall that for laminar flow of a Newtonian 
fluid the velocity of a fluid is always zero at the surface of a solid.) 

v′(r=r0 )=0r ′=r0dp r d′ r ′ = dv′ . (28.4.39)∫ ∫
2ηdl r ′=r v′=v(r ) 

Integration then yields 
dp 2 − rv(r) = − (r0 

2 ) . (28.4.40)
4ηdl 

Recall that the pressure drop dp < 0 . The maximum velocity at the center is then 
dp 2v = v(r = 0) = − . (28.4.41)max r04ηdl 

To determine the flow rate through the pipe, choose a ring of radius r and thickness r , 
oriented normal to the flow. The flow through the ring is then 

dpπ 2 − rv(r)2πrdr = − (r0 
2 )rdr . (28.4.42)

2ηdl 

Integrating over the cross sectional area of the pipe yields 
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r=r0 

Q = v(r)2πr dr ∫ 
r=0 (28.4.43)

r=r0 4dpπ 2 − r dpπ 2 r=r0 
πr0Q = − (r0 

2 )r dr = − r 2 / 2 − r 4 / 4) = dp∫ (r02ηdl r=0 2ηdl r=0 8ηdl 

The average velocity is then 
Q dp 2v = = − (28.4.44)ave 2 r0πr0 8ηdl 

Notice that the pressure difference and the volume flow rate are related by 

8ηdldp = 4 Q (28.4.45)
πr0 

which is equal to one half the maximum velocity at the center of the pipe. We can rewrite 
Eq. (28.4.45) in terms of the average velocity as 

8ηdl 64ηdl 2dp = Q = v (28.4.46)4 ave v 2d 2πr0 ave 

where d = 2r0 is the diameter of the pipe. For a pipe of length l and pressure difference 
Δp , the head loss in a pipe is defined as the ratio 

Δp 64 vave 
2 l = = , (28.4.47)hf ρg (ρvave d / η) 2g d 

where we have extended Eq. (28.4.46) for the entire length of the pipe. Head loss is also 
written in terms of a loss coefficient k according to 

2v ave = k , (28.4.48)hf 2g 

For a long straight cylindrical pipe, the loss coefficient can be written in terms of a factor 
f times an equivalent length of the pipe 

lk = f . (28.4.49)
d 

The factor f can be determined by comparing Eqs. (28.4.47)-(28.4.49) yielding 
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64 64f = = , (28.4.50)
(ρvave d / η) Re 

where Re is the Reynolds number and is given by 

Re = ρvave d / η . (28.4.51) 

28-18 



        
        

 

  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
 


 

 

Chapter 29: Kinetic Theory of Gases:
 
Equipartition of Energy and the Ideal Gas Law
 

29.1 Introduction: Gas.................................................................................................. 1
 

29.1.1 Macroscopic vs. Atomistic Description of a Gas ......................................... 1
 

29.1.2 Atoms, Moles, and Avogadro’s Number...................................................... 1
 

29.2 Temperature and Thermal Equilibrium ............................................................ 2
 

29.2.1 Thermometers and Ideal-Gas Temperature ............................................... 2
 

29.2.3 Ideal-Gas Temperature ................................................................................. 4
 

29.2.4 Temperature Scales ....................................................................................... 4
 

29.3 Internal Energy of a Gas ...................................................................................... 5
 

29.3.1 Degrees of Freedom ....................................................................................... 5
 

29.3.2 Equipartition of Energy ................................................................................ 6
 

Example 29.1: Diatomic Nitrogen Gas.................................................................... 7
 

29.4 Ideal Gas ................................................................................................................ 7
 

29.4.1 Internal Energy of a Monatomic Gas........................................................... 7
 

29.4.2 Pressure of an Ideal Gas................................................................................ 8
 

29.5 Atmosphere.......................................................................................................... 12
 

29.5.1 Isothermal Ideal Gas Atmosphere.............................................................. 14
 

Example 29.2 Ideal Gas Atmospheric Pressure ................................................... 15
 

29.5.2 Earth’s Atmosphere..................................................................................... 16
 



     

       
       

 
   

  
          

  

          
       

           
       

     
 

 
   

  
           

         
     

      
          

       
        

           
          

           
 

 
   

 
         

       
       

      
             

            
          

   
 
     
 

        
         

              


 

 

  

 

 

Chapter 29: Kinetic Theory of Gases:
 
Equipartition of Energy and the Ideal Gas Law
 

29.1 Introduction: Gas 

A gas consists of a very large number of particles (typically 1024 or many orders of 
magnitude more) occupying a volume of space that is very large compared to the size 
(10−10 m ) of any typical atom or molecule. The state of the gas can be described by a few 
macroscopically measurable quantities that completely determine the system. The volume 
of the gas in a container can be measured by the size the container. The pressure of a gas 
can be measured using a pressure gauge. The temperature can be measured with a 
thermometer. The mass, or number of moles or number of molecules, is a measure of the 
quantity of matter. 

29.1.1 Macroscopic vs. Atomistic Description of a Gas 

How can we use the laws of mechanics that describe the motions and interactions of 
individual atomic particles to predict macroscopic properties of the system such as 
pressure, volume, and temperature? In principle, each point-like atomic particle can be 
specified by its position and velocity (neglecting any internal structure). We cannot know 
exactly where and with what velocities all the particles are moving so we must take 
averages. In addition, we need quantum mechanical laws to describe how particles 
interact. In fact, the inability of classical mechanics to predict how the heat capacity of a 
gas varies with temperature was the first experimental suggestion that a new set of 
principles (quantum mechanics) operates at the scale of the size of atoms. However, as a 
starting point we shall use classical mechanics to deduce the ideal gas law, with only a 
minimum of additional assumptions about the internal energy of a gas. 

29.1.2 Atoms, Moles, and Avogadro’s Number 

Avogadro’s number was originally defined as the number of molecules in one gram of 
hydrogen. The number was then redefined to be the number of atoms in 12 grams of the 
carbon isotope carbon-12. The results of many experiments have determined that there 
are 6.02214129 ×1023 ± 0.00000027 ×1023 ≡ 6.02214129(27) ×1023 molecules in one 
mole of carbon-12 atoms. Recall that the mole is a base unit in the SI system of units that 
is a unit for an amount of substance with symbol [mol] . The mole is defined as the 
amount of any substance that contains as many atoms as there are in 12 grams of carbon-
12. The number of molecules per mole is called the Avogadro constant, and is 

N A = 6.0221415 ×1023 mol−1 . (29.1.1) 

As experiment improved the determination of the Avogadro constant, there has been a 
proposed change to the SI system of units to define the Avogadro constant to be exactly 

= 6.02214X ×1023 mol−1 where the X means one or more final digits yet to be agreedN A 
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upon. Avogadro’s number is a dimensionless number but in the current SI system, the 
Avogadro constant has units of [mol−1] and its value is equal to Avogadro’s number. 

29.2 Temperature and Thermal Equilibrium 

On a cold winter day, suppose you want to warm up by drinking a cup of tea. You start 
by filling up a kettle with water from the cold water tap (water heaters tend to add 
unpleasant contaminants and reduce the oxygen level in the water). You place the kettle 
on the heating element of the stove and allow the water to boil briefly. You let the water 
cool down slightly to avoid burning the tea leaves or creating bitter flavors and then pour 
the water into a pre-heated teapot containing a few teaspoons of tea; the tea leaves steep 
for a few minutes and then you enjoy your drink. 

When the kettle is in contact with the heating element of the stove, energy flows 
from the heating element to the kettle and then to the water. The conduction of energy is 
due to the contact between the objects. The random motions of the atoms in the heating 
element are transferred to the kettle and water via collisions. We shall refer to this 
conduction process as ‘energy transferred thermally’. We can attribute different degrees 
of “hotness” (based on our experience of inadvertently touching the kettle and the water). 
Temperature is a measure of the “hotness” of a body. When two isolated objects that are 
initially at different temperatures are put in contact, the “colder” object heats up while the 
“hotter” object cools down, until they reach the same temperature, a state we refer to as 
thermal equilibrium. Temperature is that property of a system that determines whether or 
not a system is in thermal equilibrium with other systems. 

Consider two systems A and B that are separated from each other by an adiabatic 
boundary (adiabatic = no heat passes through) that does not allow any thermal contact. 
Both A and B are placed in thermal contact with a third system C until thermal 
equilibrium is reached. If the adiabatic boundary is then removed between A and B, no 
energy will transfer thermally between A and B. Thus 

Two systems in thermal equilibrium with a third system are in thermal 
equilibrium with each other. 

29.2.1 Thermometers and Ideal-Gas Temperature 

Any device that measures a thermometric property of an object, for instance the 
expansion of mercury, is called a thermometer. Many different types of thermometers can 
be constructed, making use of different thermometric properties; for example: pressure of 
a gas, electric resistance of a resistor, thermal electromotive force of a thermocouple, 
magnetic susceptibility of a paramagnetic salt, or radiant emittance of blackbody 
radiation. 

29.2.2 Gas Thermometer 
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The gas thermometer measures temperature based on the pressure of a gas at constant 
volume and is used as the standard thermometer, because the variations between different 
gases can be greatly reduced when low pressures are used. A schematic device of a gas 
thermometer is shown in Figure 29.1. The volume of the gas is kept constant by raising or 
lowering the mercury reservoir so that the mercury level on the left arm in Figure 29.1 
just reaches the point I . When the bulb is placed in thermal equilibrium with a system 
whose temperature is to be measured, the difference in height between the mercury levels 
in the left and right arms is measured. The bulb pressure is atmospheric pressure plus the 
pressure in mercury a distance h below the surface (Pascal’s Law). A thermometer needs 
to have two scale points, for example the height of the column of mercury (the height is a 
function of the pressure of the gas) when the bulb is placed in thermal equilibrium with 
ice water and in thermal equilibrium with standard steam. 

Figure 29.1 Constant volume gas thermometer 

At constant volume, and at ordinary temperatures, the pressure of gases is proportional to 
the temperature, 

T ∝ P . (29.1.2) 

We define a linear scale for temperature based on the pressure in the bulb by 

T = a P (29.1.3) 

where a is a positive constant. In order to fix the constant a in Eq. (29.1.3), a standard 
state must be chosen as a reference point. The standard fixed state for thermometry is the 
triple point of water, the state in which ice, water, and water vapor coexist. This state 
occurs at only one definite value of temperature and pressure. By convention, the 
temperature of the triple point of water is chosen to be exactly 273.16 K on the Kelvin 
scale, at a water-vapor pressure of 610 Pa . Let PTP be the value of the pressure P at the 
triple point in the gas thermometer. Set the constant a according to 

273.16 K a = . (29.1.4)
PTP 
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Hence the temperature at any value of P is then 

273.16 KT P P  P . (29.1.5)( )  = a = 
PTP 

The ratio of temperatures between any two states of a system is then measured by the 
ratio of the pressures of those states, 

T1 P1= . (29.1.6)
T2 P2 

29.2.3 Ideal-Gas Temperature 

Different gases will have different values for the pressure P , hence different 
temperatures ( )T P . When the pressure in the bulb at the triple point is gradually reduced 
to near zero, all gases approach the same pressure reading and hence the same 
temperature. The limit of the temperature T (P) as PTP → 0 is called the ideal-gas 
temperature and is given by the equation 

273.16 KT P( ) = lim P . (29.1.7)
P →0TP PTP 

This definition of temperature is independent of the type of gas used in the gas 
thermometer. The lowest possible temperatures measured in gas thermometers use 3He , 
because this gas becomes a liquid at a lower temperature than any other gas. In this way, 
temperatures down to 0.5 K can be measured. We cannot define the temperature of 
absolute zero, 0 K , using this approach. 

29.2.4 Temperature Scales 

The commonly used Celsius scale employs the same size for each degree as the Kelvin 
scale, but the zero point is shifted by 273.15 degrees so that the triple point of water has 

a Celsius temperature of 0.01C , 

T (C) = θ(K) − 273.15C , (29.1.8) 

and the freezing point of water at standard atmospheric pressure is 0C . The Fahrenheit 
scale is related to the Celsius scale by 

9T (F) = T (C) + 32F . (29.1.9)
5 
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The freezing point of pure water at standard atmospheric pressure occurs at 0C and 

32F . The boiling point of pure water at standard atmospheric pressure is 100C and 

212F . 

29.3 Internal Energy of a Gas 

The internal energy of a gas is defined to be the total energy of the gas when the center of 
mass of the gas is at rest. The internal energy consists of the kinetic energy, K , of the 
center-of-mass motions of the molecules; the potential energy U inter associated with the 
intermolecular interactions, U inter ; and the potential energy U intra associated with the 
intramolecular interactions such as vibrational motion; 

E K U U . (29.3.1)= + +internal inter intra 

Generally, the intermolecular force associated with the potential energy is repulsive for 
small r and attractive for large r , where r is the separation between molecules. At low 
temperatures, when the average kinetic energy is small, the molecules can form bound 
states with negative energy < 0 and condense into liquids or solids. TheEinternal 

intermolecular forces act like restoring forces about an equilibrium distance between 
atoms, a distance at which the potential energy is a minimum. For energies near the 
potential minimum, the atoms vibrate like springs. For larger (but still negative) energies, 
the atoms still vibrate but no longer like springs and with larger amplitudes, undergoing 
thermal expansion. At higher temperatures, due to larger average kinetic energies, the 
internal energy becomes positive, Einternal > 0 . In this case, molecules have enough energy 
to escape intermolecular forces and become a gas. 

29.3.1 Degrees of Freedom 

Each individual gas molecule can translate in any spatial direction. In addition, the 
individual atoms can rotate about any axis. Multi-atomic gas molecules may undergo 
rotational motions associated with the structure of the molecule. Additionally, there may 
be intermolecular vibrational motion between nearby gas particles, and vibrational 
motion arising from intramolecular forces between atoms that form the molecules.  
Further, there may be more contributions to the internal energy due to the internal 
structure of the individual atoms. Any type of motion that contributes a quadratic term in 
some generalized coordinate to the internal energy is called a degree of freedom. 
Examples include the displacement x of a particle undergoing one-dimensional simple 
harmonic motion position with a corresponding contribution of (1/ 2) kx2 to the potential 
energy, the x -component of the velocity vx for translational motion with a 

corresponding contribution of (1/ 2) mv x 
2 to the kinetic energy, and z -component of 
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angular velocity ω z for rotational motion with a corresponding contribution of 

(1/ 2) I ω 2 to the rotational kinetic energy where I is the moment of inertia about the z z z 

z -axis. A single atom can have three translational degrees of freedom and three 
rotational degrees of freedom, as well as internal degrees of freedom associated with its 
atomic structure. 

29.3.2 Equipartition of Energy 

We shall make our first assumption about how the internal energy distributes itself 
among N gas molecules, as follows: 

Each independent degree of freedom has an equal amount of energy equal to (1/ 2) kT , 

where the constant k is called the Boltzmann constant and is equal to 

k = 1.3806505×10-23  J ⋅  K−1 . 

The total internal energy of the ideal gas is then 

Einternal = N (# of degrees of freedom) 
1 kT . (29.3.2)
2 

This equal division of the energy is called the equipartition of the energy. The 
Boltzmann constant is an arbitrary constant and fixes a choice of temperature scale. Its
value is chosen such that the temperature scale in Eq. (29.3.2) closely agrees with the 
temperature scales discussed in Section 29.2. 

According to our classical theory of the gas, all of these modes (translational, rotational, 
vibrational) should be equally occupied at all temperatures but in fact they are not. This 
important deviation from classical physics was historically the first instance where a 
more detailed model of the atom was needed to correctly describe the experimental 
observations. 

Not all of the three rotational degrees of freedom contribute to the energy at all 
temperatures. As an example, a nitrogen molecule, N2 , has three translational degrees of 
freedom but only two rotational degrees of freedom at temperatures lower than the 
temperature at which the diatomic molecule would dissociate (the theory of quantum 
mechanics in necessary to understand this phenomena). Diatomic nitrogen also has an 
intramolecular vibrational degree of freedom that does not contribute to the internal 
energy at room temperatures. As discussed in Section 29.6, N2 constitutes most of the 
earth’s atmosphere (  78% ). 
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Example 29.1: Diatomic Nitrogen Gas 

What is the internal energy of the diatomic N2 gas? 

Solution: At room temperature, the internal energy is due to only the five degrees of 
freedom associated with the three translational and two rotational degrees of freedom, 

Einternal = N 5 kT . (29.3.3)
2 

As discussed above, at temperatures well above room temperature, but low enough for 
nitrogen to form diatomic molecules, there is an additional vibrational degree of freedom. 
Therefore there are six degrees of freedom and so the internal energy is 

Einternal = N (# of degrees of freedom) 
1 kT = 3N kT . (29.3.4)
2 

29.4 Ideal Gas 

Consider a gas consisting of a large number of molecules inside a rigid container. We 
shall assume that the volume occupied by the molecules is small compared to the volume 
occupied by the gas, that is, the volume of the container (dilute gas assumption). We also 
assume that the molecules move randomly and satisfy Newton’s Laws of Motion. The 
gas molecules collide with each other and the walls of the container. We shall assume 
that all the collisions are instantaneous and any energy converted to potential energy 
during the collision is recoverable as kinetic energy after the collision is finished. Thus 
the collisions are elastic and have the effect of altering the direction of the velocities of 
the molecules but not their speeds. We also assume that the intermolecular interactions 
contribute negligibly to the internal energy. 

29.4.1 Internal Energy of a Monatomic Gas 

An ideal monatomic gas atom has no internal structure, so we treat it as point particle. 
Therefore there are no possible rotational degrees of freedom or internal degrees of 
freedom; the ideal gas has only three degrees of freedom, and the internal energy of the 
ideal gas is 

Einternal = N 3 kT . (29.4.1)
2 

Eq. (29.4.1) is called the thermal equation of state of a monatomic ideal gas. The average 
kinetic energy of each ideal gas atom is then 
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1 m(v2 ) = 
3 kT (29.4.2)

2 ave 2 

where (v2 )ave is the average of the square of the speeds and is given by 

(v2 ) = 
3kT . (29.4.3)ave m 

The temperature of this ideal gas is proportional to the average kinetic of the ideal gas 
molecule. It is an incorrect inference to say that temperature is defined as the mean 
kinetic energy of gas. At low temperatures or non-dilute densities, the kinetic energy is 
no longer proportional to the temperature. For some gases, the kinetic energy depends on 
number density and a more complicated dependence on temperature than that given in 
Eq. (29.4.2). 

29.4.2 Pressure of an Ideal Gas 

Consider an ideal gas consisting of a large number N of identical gas molecules, each of 
of mass m , inside a container of volume V and pressure P . The number of gas 
molecules per unit volume is then n = N / V . The density of the gas is ρ = nm . The gas 
molecules collide elastically with each other and the walls of the container. The pressure 
that the gas exerts on the container is due to the elastic collisions of the gas molecules 
with the walls of the container. We shall now use concepts of energy and momentum to 
model collisions between the gas molecules and the walls of the container in order to 
determine the pressure of the gas in terms of the volume V , particle number N and 
Kelvin temperature T . 

Figure 29.2 Collision of a gas molecule with a wall of a container 

We begin by considering the collision of one molecule with one of the walls of the 
container, oriented with a unit normal vector pointing out of the container in the positive 
î -direction (Figure 29.2). Suppose the molecule has mass m and is moving with velocity 
 v = v î + v ĵ+ v k̂ . Because the collision with the wall is elastic, the y -and z -x y z 

components of the velocity of the molecule remain constant and the x -component of the 
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velocity changes sign (Figure 29.2), resulting in a change of momentum of the gas 
molecule; 

 Δp = p − p = −2mv î . (29.4.4)m m, f m,i x 

Therefore the momentum transferred by the gas molecule to the wall is 

Δp = 2mv î . (29.4.5)w x 

Now, let’s consider the effect of the collisions of a large number of randomly moving 
molecules. For our purposes, “random” will be taken to mean that any direction of 
motion is possible, and the distribution of velocity components is the same for each 
direction. 

Figure 29.3 Small volume adjacent to the wall of container 

Consider a small rectangular volume ΔV = AΔx of gas adjacent to one of the walls of the 
container as shown in Figure 29.3. There are nAΔx gas molecules in this small volume. 
Let each group have the same x -component of the velocity. Let nj denote the number of 

jth gas molecules in the group with x -component of the velocity vx , j . Because the gas 
molecules are moving randomly, only half of the gas molecules in each group will be 
moving towards the wall in the positive x -direction. Therefore in a time interval 
Δt j = Δx / vx , j , the number of gas molecules that strike the wall with x -component of the 

velocity vx , j is given by 

Δnj = 
1 

nj AΔx . (29.4.6)
2 

(During this time interval some gas molecules may leave the edges of the box, but 
because the number that cross the area per second is proportional to the area, in the limit 
as Δx → 0 , the number leaving the edges also approaches zero.) The number of gas 
molecules per second is then 
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Δnj 1 Δx 1 = nj A = nj Av x , j . (29.4.7)
Δt j 2 Δt j 2 

The momentum per second that the gas molecules in this group deliver to the wall is 

Δ p j Δnj 2= 2mv î = njmAv î . (29.4.8)x , j x , jΔt j Δt j 

By Newton’s Second Law, the average force on the wall due to this group of molecules is 
equal to the momentum per second delivered by the gas molecules to the wall; 


 Δp j 2(Fj ,w )ave = = njmAv x , j ̂i . (29.4.9)

Δt j 

The pressure contributed by this group of gas molecules is then 

 
(Fj w )ave ,Pj = = njmv x 

2
, j . (29.4.10)

A 

The pressure exerted by all the groups of gas molecules is the sum 

j= Ng j= Ng 

P = ∑ (Pj )ave = m ∑ nj vx
2 
, j . (29.4.11) 

j=1 j=1 

The average of the square of the x -component of the velocity is given by 

j= Ng 
2(v2 ) = 

1 ∑ nj v , (29.4.12)x ave x , jn j=1 

where n is the number of gas molecules per unit volume in the container. Therefore we 
can rewrite Eq. (29.4.11) as 

P = mn(v2 ) = ρ(v2 ) , (29.4.13)x ave x ave 

where ρ is the density of the gas. Because we assumed that the gas molecules are 
moving randomly, the average of the square of the x -, y - and z -components of the 
velocity of the gas molecules are equal, 

(v2 ) = (v2 ) = (v2 ) . (29.4.14)x ave y ave z ave 
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The average of the square of the speed (v2 )ave is equal to the sum of the average of the 
squares of the components of the velocity, 

(v2 ) = (v2 ) + (v2 ) + (v2 ) . (29.4.15)ave x ave y ave z ave 

Therefore 
(v2 ) = 3(v2 ) . (29.4.16)ave x ave 

Substituting Eq. (29.4.16) into Eq. (29.4.13) for the pressure of the gas yields 

1P = 
3 
ρ(v2 )ave . (29.4.17) 

The square root of (v2 )ave is called the root-mean-square (“rms”) speed of the 
molecules. 

Substituting Eq. (29.4.3) into Eq. (29.4.17) yields 

P = 
ρkT 
m 

. (29.4.18) 

Recall that the density of the gas 

ρ = 
M 
V 

= 
Nm 
V 

. (29.4.19) 

Therefore Eq. (29.4.18) can be rewritten as 

P = 
NkT . (29.4.20)
V 

Eq. (29.4.20) can be re-expressed as 
PV = N kT . (29.4.21) 

Eq. (29.4.21) is known as the ideal gas equation of state also known as the Perfect Gas 
Law or Ideal Gas Law. 

The total number of molecules in the gas N n= N where n is the number of moles m A m 

and NA is the Avogadro constant. The ideal gas law becomes 

PV = n N kT . (29.4.22)m A 

The universal gas constant is R = k N A = 8.31J ⋅ K−1 ⋅ mol−1 . The ideal gas law can be re-
expressed as 

PV = n RT . (29.4.23)m 
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Although we started with atomistic description of the collisions of individual gas 
molecules satisfying the principles of conservation of energy and momentum, we ended 
up with a relationship between the macroscopic variables pressure, volume, number of 
moles, and temperature that are measurable properties of the system. 

One important consequence of the Ideal Gas Law is that equal volumes of different ideal 
gases at the same temperature and pressure must contain the same number of molecules, 

N = 
1 PV . (29.4.24)
k T 

When gases combine in chemical reactions at constant temperature and pressure, the 
numbers of each type of gas molecule combine in simple integral proportions. This 
implies that the volumes of the gases must always be in simple integral proportions. 
Avogadro used this last observation about gas reactions to define one mole of a gas as a 
unit for large numbers of particles. 

29.5 Atmosphere 

The atmosphere is a very complex dynamic interaction between many different species of 
atoms and molecules. The average percentage compositions of the eleven most abundant 
gases in the atmosphere up to an altitude of 25 km are shown in Table 1. 

Table 1: Average composition of the atmosphere up to an altitude of 25 km. 

Gas Name Chemical Formula Percent Volume 
Nitrogen N2 78.08% 
Oxygen O2 20.95% 
*Water H2O 0 to 4% 
Argon Ar 0.93% 
*Carbon Dioxide CO2 0.0360% 
Neon Ne 0.0018% 
Helium He 0.0005% 
*Methane CH4 0.00017% 
Hydrogen H2 0.00005% 
*Nitrous Oxide N2O 0.00003% 
*Ozone O3 0.000004% 

* variable gases 
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In the atmosphere, nitrogen forms a diatomic molecule with molar mass 
= 28.0 g ⋅ mol−1 and oxygen also forms a diatomic molecule O2 with molar mass MN2 

= 32.0 g ⋅ mol−1 . Since these two gases combine to form 99% of the atmosphere, the MO2 

average molar mass of the atmosphere is 

Matm  (0.78)(28.0 g ⋅mol−1) + (0.21)(32.0 g ⋅mol−1) = 28.6 g ⋅mol−1 . (29.5.1). 

The density ρ of the atmosphere as a function of molar mass , the volume V , and M atm 

number of moles nm contained in the volume is given by 

M total m  molar  ρ = = 
n M . (29.5.2)

V V 

How does the pressure of the atmosphere vary a function of height above the surface of 
the earth? In Figure 29.4, the height above sea level in kilometers is plotted against the 
pressure. (Also plotted on the graph as a function of height is the density in kilograms per 
cubic meter.) 

Figure 29.4 Total pressure and density as a function of geometric altitude 
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29.5.1 Isothermal Ideal Gas Atmosphere 

Let’s model the atmosphere as an ideal gas in static equilibrium at constant temperature 
5T = 250 K . The pressure at the surface of the earth is P0 = 1.02×10 Pa . The pressure of 

an ideal gas, using the ideal gas equation of state (Eq. (29.4.23)) can be expressed in 
terms of the pressure P , the universal gas constant R , molar mass of the atmosphere 

, and the temperature T ,M atm 

total T M  RT  RTP n R  (29.5.3)m V V M M 
= = = ρ . 

atm atm 

Thus the equation of state for the density of the gas can be expressed as 

ρ = 
M atm P . (29.5.4)
RT 

We use Newton’s Second Law determine the condition on the forces that are acting on a 
small cylindrical volume of atmosphere (Figure 29.5a) in static equilibrium of cross 
section area A located between the heights z and z + Δz . 

Figures 29.5 (a) (left), mass element of atmosphere, and 
(b) (right), force diagram for the mass element 

The mass contained in this element is the product of the density ρ and the volume 
element ΔV = AΔz , 

Δm = ρΔV = ρ AΔz . (29.5.5) 

The force due to the pressure on the top of the cylinder is directed downward and is equal  
to F(z + Δz) = −P(z + Δz) A k̂ (Figure 29.5(b)) where k̂ is the unit vector directed 
upward. The force due to the pressure on the bottom of the cylinder is directed upward  
and is equal to F(z) = P(z) A k̂ . The pressure on the top P(z + Δz) and bottom P(z) of 
this element are not equal but differ by an amount ΔP = P(z + Δz) − P(z) . The force 
diagram for this element is shown in the Figure 29.5b. 
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Because the atmosphere is in static equilibrium in our model, the sum of the forces on the 
volume element are zero,  

F
total = Δm a =
 

0
.
 (29.5.6)
 

Thus the condition for static equilibrium of forces in the z -direction is 

−P(z + Δz) A + P(z) A − Δmg = 0 . (29.5.7) 

The change is pressure is then given by 

ΔPA = −Δmg . (29.5.8) 

Using Eq. (29.5.5) for the mass Δm , substitute into Eq. (29.5.8), yielding 

Matm gΔP A = −ρ AΔz g = − AΔz P . (29.5.9)
RT 

The derivative of the pressure as a function of height is then linearly proportional to the 
pressure, 

dP ΔP Matm g= lim = − P . (29.5.10)
dz Δz→0 Δz RT 

This is a separable differential equation; separating the variables, 

dP Matm g= − dz . (29.5.11)
P RT 

Integrate Eq. (29.5.11) to yield 

P( z ) dP ⎛ P(z)⎞ z M g M gatm atm = ln dz = − z . (29.5.12)∫P0 P ⎝⎜ P0 ⎠⎟ 
= −∫0 RT RT 

Exponentiate both sides of Eq. (29.5.12) to find the pressure P(z) in the atmosphere as a 
function of height z above the surface of the earth, 

⎛ Matm g ⎞
P(z) = P0 exp − z 

⎠⎟ 
. (29.5.13)

⎝⎜ RT 

Example 29.2 Ideal Gas Atmospheric Pressure 

What is the ratio of atmospheric pressure at z = 9.0 km to the atmospheric pressure at the 
surface of the earth for our ideal-gas atmosphere? 
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P(9.0 km) ⎛ (28.6 × 10−3 kg ⋅ mol−1 )(9.8 m ⋅ s −2 ) ⎞ 
=exp − (9.0 × 103 m) 

P0 ⎝⎜ (8.31 J ⋅ K −1 ⋅ mol−1 )(250 K) ⎠⎟ (29.5.14) 

= 0.30. 

29.5.2 Earth’s Atmosphere 

We made two assumptions about the atmosphere, that the temperature was uniform and 
that the different gas molecules were uniformly mixed. The actual temperature varies 
according to the specific region of the atmosphere. A plot of temperature as a function of 
height is shown in Figure 29.6. 

Figure 29.6 Temperature-height profile for U.S. Standard Atmosphere 

In the troposphere, the temperature decreases with altitude; the earth is the main heat 
source in which there is absorption of infrared (IR) radiation by trace gases and clouds, 
and there is convection and conduction of thermal energy. In the stratosphere, the 
temperature increases with altitude due to the absorption of ultraviolet (UV) radiation 
from the sun by ozone. In the mesosphere, the temperature decreases with altitude. The 
atmosphere and earth below the mesosphere are the main source of IR that is absorbed by 
ozone. In the thermosphere, the sun heats the thermosphere by the absorption of X-rays 
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and UV by oxygen. The temperatures ranges from 500 K to 2000 K depending on the 
solar activity. 

The lower atmosphere is dominated by turbulent mixing which is independent of the 
molecular mass. Near 100 km, both diffusion and turbulent mixing occur. The upper 
atmosphere composition is due to diffusion. The ratio of mixing of gases changes and the 
mean molar mass decreases as a function of height. Only the lightest gases are present at 
higher levels. The variable components like water vapor and ozone will also affect the 
absorption of solar radiation and IR radiation from the earth. The graph of height vs. 
mean molecular weight is shown in Figure 29.7. The number density of individual 
species and the total number density are plotted in Figure 29.8. 

Figure 29.7 Mean molecular weight Figure 29.8 Number density of 
as a function of geometric height individual species and total number 

as a function of geometric altitude. 

(Note that in the above axis label and caption for Figure 29.8, the term “molecular 
weight” is used instead of the more appropriate “molecular mass” or “molar mass.”) 
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