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Bone-Implant Adhesion in Implants


• Bonding via: 

a) bone cement (durability often poor)

b) rough/porous surface, into which bone tissue

grows (post-operative period critical)


oosening at bone-implant interface 
Caused by: 
•	 poor interfacial adhesion 
•	 stress shielding 

(inhibits straining of the bone) 

Cementless & Cemented 

Stems (Smith & Nephew)


Image removed due to copyright restrictions. L



Strain Regulated Bone Modelling (Formation) and 

Remodelling (Resorption) (H.M. Frost 1987)


Healthy bone growth is stimulated by mechanical strain. 
Physiologically benefits start at ~ 1 millistrain. 



Use of Porous Metals for Prosthesis


Image removed due to copyright restrictions. 

Canine femur after incorporation 
of a Ti mesh (Oka et al, J. Bone 
& Joint Surgery, 1997;79:1003-1007) 

•• Porous metals have often been proposedPorous metals have often been proposed 
for prosthesesfor prostheses

•• Pores ~ 100Pores ~ 100--300300 µµm & biocompatiblem & biocompatible 
surfacesurface -- bone tissue inbone tissue in--growth does occurgrowth does occur

• Fibre Network Materials 
Good Potential for Control over: 
(a) Material (fibre diameter, section shape) 
(b) Architecture (porosity, fibre orientation 

distribution, inter-joint spacing) 

Image removed due to copyright restrictions. 



Magneto-Mechanical Actuation of Bonded Fibre
Networks: A New Approach to Bone Growth Stimulation
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Moment acting on a Single Ferromagnetic Fibre in an 

Applied Magnetic Field
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Measured and Predicted Deflections of a Single 

Ferromagnetic Fibre


L = 50 mm, x = 45 mm 
D = 375 µm, θ = 29° 

M 
s
 = 1.6 106 A m-1 

E
f
 = 210 GPa 

-15 

-10 

-5 

0 

Experiment (ramping up) 
Experiment (ramping down) 
Theory 

R
el

at
iv

e 
de

fle
ct

io
n 

tra
ns

ve
rs

e 
to

 fi
el

d,
∆r

 / 
r (

%
) 

0 0.05 0.1 0.15 0.2

Applied field, B (Tesla)




Magnetically-induced Deflection of a Welded 

Parallelogram


Experimental Set-Up 
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Measured and Predicted Deflections of a Welded 

Parallelogram
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Magneto-Mechanical Induction of an Isotropic Fibre

Network Material
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Magneto-Mechanical Induction of a Transversely Isotropic 

Fibre Network Material using X-ray Tomography


3-D tomographic reconstruction


0.01 

0.1 

1 

10 

0 5 10 15 20 25 30 35 40 

Predicted ∆R (-ive) 
Predicted ∆Z (+ive) 
Experiment ∆Z (+ive) 

R
el

at
iv

e 
di

m
en

si
on

al
 c

ha
ng

e 
(%

) 

Fibre segment aspect ratio, L/D (-) 

M s = 1.6 106 A m-1 

Ef = 210 GPa 
B = 1 Tesla 

n n


i i i i
500 µm	
∆Z ⎛ 4M s B⎞ ⎛ L ⎞ 

2 ∑ 
i

Nθ sin2 θ
∆R ⎛ 4M s B⎞ ⎛ L ⎞ 

2 ∑ 
i

Nθ sinθi cosθ

Z 
= 

⎝⎜ 3Ef ⎠⎟ ⎝⎜ D ⎠⎟ 
∑ 

n

Nθ cosθi
R 

= 
⎝⎜

− 
3Ef ⎠⎟ ⎝⎜ D ⎠⎟ 

∑ 
n

Nθ sinθii	 i

i	 i




Effect of the presence of an Environment (Compliant 

Matrix) on Network Straining




100 

Predicted Peak Strains in a Surrounding Environment, as 

a function of its Stiffness
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Measured and Predicted Magnetic Straining with 

Surrounding Environments (Matrices)
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Predicted and Measured Stiffness for an Isotropic 

Fibre Network
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Concept of an Integrated Prosthetic Design


•• Treatment by Exposure to Applied Field during PostTreatment by Exposure to Applied Field during Post--operative Period
operative Period
•• Only MagnetoOnly Magneto--Active Layer will respond to Applied FieldActive Layer will respond to Applied Field
•• MagnetoMagneto--Active Layer could be Graded, Anisotropic etcActive Layer could be Graded, Anisotropic etc
•• All Materials could be BiocompatibleAll Materials could be Biocompatible
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Fibre Biocompatibility and Topography


ECM 

chondrocytes 

Freeze dried Critically point dried 
Cartilage Cells (chondrocytes) cultured on a 446 (ferritic) stainless steel 

fibre network 



Network ofFerromagnetic Fibres Deforms Elastically in 
Magnetic Field, inducing Strain in any Matrix present 

An Analytical Model has been Developed describirg this Process 
and has been Eqerimental& Validated for Simple Fibre 
configurations 

Model Predictions suggest that Physiologically Beneficial Strains 
could be induced in in-Growing Bone Tissue using Magnetic 
Fields already employed for Diagnostic Purposes 

In Wtro Experirnentationc is needed to explore the Wabitiv Of 
the cone* 




