
Hw10 solutions
Solution in code form

The important differences between Gillespie's first reaction and direct methods:

In the direct method, we consider the time and identity of the next reaction
independently. First, we picked one random number (uniformly on (0,1)) to generate the
time of the next reaction (with exponential distribution parametrized by a = sum(a_i)):

 # how long until the next reaction
 r1 = random.random()
 tau = (1.0/(a+eps))*math.log(1.0/r1)

Then we picked a second random number uniformly on (0,a) and identified which
reaction's "bin" it fell into (where the width of each reactions's bin is equal to its current
propensity).

 r2a = random.random()*a
 a_sum = 0
 for i in a_i:
 if r2a < (a_i[i]+a_sum):
 mu = i
 break
 a_sum += a_i[i]

Where a_sum is the "right edge" of the current bin you're considering.

In the first reaction method, one picks a random number (uniform on 0,1) and uses it to
generate a a time (exponentially distributed with parameter a_i) for each reaction, and
selects the reaction with the smallest time to fire at that time. Tau's for all reactions are
recalculated at every step, never saved. Note that the behavior of the first and direct
methods is equivalent.

 mintau = t_max
 eps = math.exp(-200)
 # which reaction will happen first?
 # caluculate each reaction's time based on a different random number
 for rxn in a_i.keys():
 ai = a_i[rxn]
 ri = random.random()
 taui = (1.0/(ai+eps)) * math.log(1.0/ri)
 if taui < mintau: # "sort as you go"
 mu = rxn # the putative first rxn
 tau = taui # the putative first time
 mintau = tau # reset the min

This method of sorting seemed fastest to us, but here's another way of tackling the
problem:

http://web.mit.edu/%7Esoniat/Public/firstrxn.py

 tau_i = {}
 # which reaction will happen first?
 # caluculate each reaction's time based on a different random number
 for rxn in a_i.keys():
 ai = a_i[rxn]
 ri = random.random()
 taui = (1.0/(ai+eps)) * math.log(1.0/ri)
 tau_i[taui] = rxn
 tau = min(tau_i.keys())
 mu = tau_i[tau]
Retrieved from "http://openwetware.org/wiki/Hw10_solutions"

http://openwetware.org/wiki/Hw10_solutions

	Hw10 solutions

