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I.C Phase Transitions

The most spectacular consequence of interactions among particles is the appearance
of new phases of matter whose collective behavior bears little resemblance to that of a few
particles. How do the particles then transform from one macroscopic state to a completely
different one. From a formal perspective, all macroscopic properties can be deduced from
the free energy or the partition function. Since phase transitions typically involve dramatic
changes in various response functions they must correspond to singularities in the free
energy. The canonical partition function for a finite collection of particles is always an
analytical function. Hence phase transitions, and their associated non—analyticities, are
only obtained for infinitely many particles, i.e. in the thermodynamic limit, N — oo. The
study of phase transitions is thus related to finding the origin of various singularities in
the free energy and characterizing them.

The classical example of a phase transition is the condensation of a gas into a liquid.
Some important features of the liquid—gas condensation transition are:

(1) In the temperature/pressure plane, (T, P), the phase transition occurs along a line
that terminates at a critical point (T, P.).

(2) In the volume/pressure plane, (P,v = V/N), the transition appears as a coezistence
interval, corresponding to a mixture of gas and liquids of densities p, = 1/v,, and
o1 = 1/v;, at temperatures T < T..

(3) Due to the termination of the coexistence line, it is possible to go from the gas phase to
the liquid phase continuously (without a phase transition) by going around the critical
point. Thus there are no fundamental differences between liquid and gas phases.

From a mathematical perspective, the free energy of the system is an analytical func-
tion in the (P, T) plane, except for some form of branch cut along the phase boundary.
Observations in the vicinity of the critical point further indicate that:

(4) The difference between the densities of coexisting liquid and gas phases vanishes on
approaching T, i.e. pliquid — Pgas; as T — T, .

(5) The pressure versus volume isotherms become progressively more flat on approaching
Tc from the high temperature side. This implies that the isothermal compressibility,
kr = — OV/IP|; /V, diverges as T — TF.

(6) The fluid appears “milky” close to criticality. This phenomenon, known as critical
opalescence, suggests collective fluctuations in the gas at long enough wavelengths to
scatter visible light. These fluctuations must necessarily involve many particles, and

a coarse graining procedure may thus be appropriate to their description.
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A related, but possibly less familiar, phase transition occurs between paramagnetic
and ferromagnetic phases of certain substances such as iron or nickel. These materials
become spontaneously magnetized below a Curie temperature T,.. There is a discontinuity
in magnetization of the substance as the magnetic field h, goes through zero for T' < T..
The phase diagram in the (h,T) plane, and the magnetization isotherms M (h), have
much in common with their counterparts in the condensation problem. In both cases a
line of discontinuous transitions terminates at a critical point, and the isotherms exhibit
singular behavior in the vicinity of this point. The phase diagram of the magnet is simpler
in appearance, because the symmetry h — —h ensures that the critical point occurs at
he =M. =0.

I.D Critical Behavior

The singular behavior in the vicinity of a critical point is characterized by a set of
critical exponents. These exponents describe the non—analyticity of various thermodynamic
functions. The most commonly encountered exponents are listed below:

e The Order Parameter: By definition, there is more than one equilibrium phase on
a coexistence line. The order parameter is a thermodynamic function that is different
in each phase, and hence can be used to distinguish between them. For a magnet, the

magnetization

m(T) = o lim M(,T)

serves as the order parameter. In zero field, m vanishes for a paramagnet and is non—zero

in a ferromagnetic, i.e.

0 for T >T,,

it|? for T <T,, (1.20)

m(T,h:O)oc{

where t = (T, — T)/T. is the reduced temperature. The singular behavior of the order
parameter along the coexistence line is therefore indicated by the exponent 3. The singular
behavior of m along the critical isotherm is indicated by another exponent 9, defined
through

m(T = T,, h) < h'/°. (1.21)

The two phases along the liquid—gas coexistence line are differentiated by their density,
and the density difference p — p., where p. is the critical density, serves the role of the

order parameter.
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e Response Functions: The critical system is quite sensitive to external perturbations,
as typified by the infinite compressibility at the liquid—gas critical point. The divergence
in the response of the order parameter to a field conjugate to it is indicated by an exponent

~. For example, in a magnet,
X+ (T,h =0) o |t] 77+, (1.22)

where in principle two exponents 4 and y_ are necessary to describe the divergences on
the two sides of the phase transition. Actually in almost all cases, the same singularity
governs both sides and v = v_ = 7. The heat capacity is the thermal response function,

and its singularities at zero field are described by the exponent «, i.e.
Cy(T,h =0) o [t|”**. (1.23)

e Long-range Correlations: Since the response functions are related to equilibrium
fluctuations, their divergence in fact implies that fluctuations are correlated over long dis-
tances. We shall prove this statement by considering the magnetic susceptibility. Starting
from the (Gibbs) partition function in a field h, Z(h) = tr{exp|—(Ho + ShM]}, the mag-
netization can be computed as (M) = 0ln Z/0(0h) = tr{M exp[—FHo + ShM]}/Z. The

susceptibility is then related to the variance of magnetization by

X=%n =P z" Z

7 () - ).

The overall magnetization is obtained by adding contributions from different parts of

oM =0 { L [M2 exp (—BHo + BhM)]| — % tr [M exp (—0Ho + ﬁhM)]z}
(1.24)

the system, i.e.
M= / 0 7m(7). (1.25)

(For the time being we treat the magnetization as a scalar quantity.) Substituting the

above into eq.(1.24) gives

kpT x = /d3fd3f’(<m(F)m(F’)> — (m(7)) (m(7))) (1.26)

Translational symmetry of a homogeneous system implies that (m(7")) = m is a constant,

=/

while (m/(7)m(7")) = G(¥ — ') depends only on the separation. We can express the result

in terms of the connected correlation function, defined as

(m(F)m(i")). = (m(7) — (m(7))) (m(7") — (m(7")))) = G(F = 7") —m*. (1.27)
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Integrating over the center of mass coordinates in eq.((I.26)) results in a factor of volume

V', and the susceptibility is given by

X = ﬁV/d?’F (m(7)m(0)), . (1.28)

The connected correlation function is a measure of how the local fluctuations in one
part of the system effect those of another part. Typically such influences occur over a
characteristic distance £, called the correlation length. (It can be shown rigorously that
this function must decay to zero at large separations; in many cases G¢(7") = (m/(7)m(0)),,
decays as exp(—|7|/£) at separations || > £.) Let g denote a typical value of the correla-
tion function for || < £. It then follows from eq.(I.28) that kgTx/V < g&3; and x — oo,
necessarily implies £ — oo. This divergence of the correlation length also explains the ob-
servation of critical opalescence. The correlation function can be measured by scattering
probes and its divergence

€4 (T h = 0) oc [+, (1.29)

is controlled by exponents vy =v_ = .
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II. THE LANDAU-GINZBURG APPROACH

II.A Introduction

We noted in the previous section that the singular behavior of thermodynamic func-
tions at a critical point (the termination of a coexistence line) can be characterized by
a set of critical exponents {a, 3,7, --}. Experimental observations indicate that these
exponents are quite universal, i.e. independent of the material under investigation, and
to some extent, of the nature of the phase transition. For example, the vanishing of the
coexistence boundary in the condensation of COy has the same singular behavior as that
of the phase separation of protein solutions into dilute and dense components. This univer-
sality of behavior needs to be explained. We also noted that the divergence of the response
functions, as well as direct observations of fluctuations via scattering studies, indicate that
the correlations become long ranged in the vicinity of the critical point. Such correlated
fluctuations involve many particles (£ > a, where a is a typical inter-particle spacing), and
a coarse graining approach, in the spirit of the theory of elasticity, may be appropriate to
their description. Here we shall construct such a statistical field theory.

We shall frame the discussion in the language of a magnetic system, whose symmetries
are more transparent, although the results are of more general applicability. Consider a
metal, say iron, close to its Curie point. The microscopic origin of magnetism is quantum
mechanical, involving such elements as itinerant electrons, their spin, and the exclusion
principle. Clearly a microscopic approach is rather complicated, and material dependent.
Such a theory is necessary to find out which elements are likely to produce ferromagnetism.
However, given that there is such behavior, the microscopic theory is not necessarily useful
to describe its disappearance as a result of thermal fluctuations. This is because the
(quantum) statistical mechanics of the collection of interacting electrons is excessively
complicated. The important degrees of freedom close to the Curie point, whose statistical
mechanics is responsible for the phase transition, are long wavelength collective excitations
of spins (much like the long wavelength phonons that dominate the heat capacity at low
temperatures). We can thus coarse grain the magnet to a scale much larger than the
lattice spacing, and define a magnetization field m(x), which represents the average of the
elemental spins in the vicinity of a point x. It is important to emphasize that while x is

treated as a continuous variable, the functions m do not exhibit any variations at distances
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of the order of the lattice spacing, i.e. their Fourier transforms involve only wave-numbers
less than some upper cutoff A ~ 1/a.

In describing other types of phase transitions, the role of 7i(x) is played by the appro-
priate order parameter density. It is then useful to examine a generalized magnetization

for n-component spins, existing in d-dimensional space, i.e.
R d - .
x = (21,22,...,2q) €ER (space) , m = (mqi,ma,..,my) €RN" (spin).

Some specific problems covered in this framework are:
n = 1 describes liquid—gas transitions, binary mixtures, as well as uniaxial magnets;
n = 2 applies to superfluidity, superconductivity, and planar magnets;
n = 3 corresponds to classical magnets.
While most physical situations occur in three-dimensional space (d = 3), there are also
important phenomena on surfaces (d = 2), and in wires (d = 1). Relativistic field theory
is described by a similar structure, but in d = 4.

As in the case of a deformed solid, we construct a local effective Hamiltonian gH[m] =
[ d?x®[(x)], on the basis of appropriate symmetries. We shall assume that the material
is uniform and isotropic, so that all locations and directions in x space are equivalent. In
the absence of an external magnetic field, all directions for magnetization are equivalent,
and hence H[R,m(x)] = H[m(x)], where R,, is a rotation in the n-dimensional space.
Some of the terms consistent with these symmetries that can appear in the expansion of

O[mi(x)] are

~~

m?(x) = m

x)-ﬁ’L(x)EZmi(x)mi(x) , m4(x)5(m2(x))2 , mG(x) L

Including a small magnetic field f_i, that breaks the rotational symmetry, the lowest order

terms in the expansion of ® lead to,
dy, [t 2 4 K 2 P
fH = | dx ™M (x) +um (x)-l—?(Vm) +---—h-mx)|, (I1.1)

which is known as the Landau—Ginzburg Hamiltonian. (The magnetic field also generates
terms proportional to m?m - fz, which are of higher order, and actually less important than

the um? term.)
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Eq.(IL.1) is constructed on the basis of symmetry alone, and depends on a set of phe-
nomenological parameters {t,u, K,---}. These parameters are non-universal functions of
microscopic interactions, as well as external parameters such as temperature and pressure.
It is essential to fully appreciate the latter point, which is usually the source of much con-
fusion. The probability for a particular configuration of the field is given by the Boltzmann
weight exp{—FH[n(x)]}. This does not imply that all terms in the exponent are propor-
tional to (kpT)~!. Such dependence holds only for the true microscopic Hamiltonian.
The Landau-Ginzburg Hamiltonian is more correctly an effective free energy obtained by
integrating over (coarse graining) the microscopic degrees of freedom, while constraining
their average to m(x). It is precisely because of the difficulty of carrying out such a first
principles program that we postulate the form of the resulting effective free energy on the
basis of symmetries alone. The price paid is that the phenomenological parameters have
an unknown functional dependence on the original microscopic parameters, as well as such
on external constraints as temperature (since we have to account for the entropy of the

short distance fluctuations lost in the coarse graining process).

II.B Saddle Point Approximation, and Mean—Field Theory

The original problem has been simplified considerably by focusing only on the coarse
grained magnetization field described by the Landau—Ginzburg Hamiltonian in eq.(IL.1).
Various thermodynamic functions (and their singular behavior) can now be obtained from

the associated partition function

7z - / Dii(x) exp{—BH [ (x)]}. (11.2)

Since the degrees of freedom appearing in the Hamiltonian are functions of x, the symbol
[ Dni(x) refers to a functional integral. In actuality, the functional integral should be
regarded as a limit of discrete integrals. After discretizing the coordinate z into a lattice

of N points 7, at a distance a from each other,

N

ox a

—00 .
=1

(There are some mathematical concerns regarding the existence of functional integrals.
The problems are associated with having too many degrees of freedom at short distances,

allowing rather badly behaved functions. These issues need not concern us since we know

16



that the underlying problem has a well defined lattice spacing that restricts the short
distance behavior.)

It is still difficult to calculate the Landau—Ginzburg partition function. As a first step,
we perform a saddle point approrimation in which the integral in eq.(I.2) is replaced by
the maximum value of the integrand. The natural tendency of interactions in a magnet
is to keep the magnetizations vectors parallel, and hence we expect the parameter K in
eq.(IL.1) to be positive. The configuration of 7 that maximizes the integrand is then
uniform, and

BF = —InZ ~ Vmin{¥(m)},. (I1.3)

The uniform magnetization occurs for m(x) = mh, which minimizes

U(m) = =m? +um* + - - — hn. (IL.4)

N

In the vicinity of the critical point, m is a small quantity, and it is justified to keep
only the lowest powers in the expansion of W(m). (We can later check self consistently that
the terms left out are indeed small corrections.) The behavior of W(m) depends strongly
on the sign of the parameter ¢.

(1) For t > 0, we can ignore the quartic term, and the minimum occurs for 17 = h/t. The
vanishing of magnetization as h—0 signals paramagnetic behavior. The susceptibility

x = 1/t, diverges as t — 0.

(2) For t < 0, a quartic term with a positive value of u is required to insure stability

(i.e. a finite magnetization). The function ¥(m) now has degenerate minima, at

a non—zero value of m. There is thus a spontaneous magnetization, even at h =

0 indicating ferromagnetic behavior. The direction of the m is determined by the

systems preparation, and can be realigned by an external field h.

Thus a saddle point evaluation of the Landau—Ginzburg partition function results in
paramagnetic behavior for ¢ > 0, and ferromagnetic behavior for ¢ < 0. Hence we can map

the phase diagram of the Landau—Ginzburg Hamiltonian to that of a magnet by setting

t(T,--) =a(T — T.) + O(T — T.)?,

U(T, te ) =u + Ul(T — Tc) —+ (’)(T _ Tc>2, (115)

where a and u are unknown positive constants, dependent upon material properties. The
basic idea is that the phenomenological parameters are functions of temperature that can

be expanded in a Taylor series in T'—T,.. The minimal conditions needed to reproduce the
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experimental phase diagram are contained in egs.(I1.5). It is of course possible that some

other terms in the expansion, e.g. a or u are also zero. However, these are non-generic

situations which can presumably be removed by changing some other system parameter.
We now examine the singular behaviors predicted by egs.(I1.3) and (I1.4).

e Magnetization: In zero field, from OV /dm = tim + 4um® = m(t + 4um?) = 0, and we

obtain

m =

(I1.6)

—t for t < 0.

0 for t > 0,
4y

We thus find a universal exponent 5 = 1/2, while the amplitude is material dependent.

e Heat Capacity: The free—energy is given by (h = 0)

pE . [0 for t > 0,
;= min U(m) = { _1%_2u for £ < 0. (I1.7)
Since t = a(T —T¢) +--+; 0/0T x 0/0t, and
0% f 0% ([ BF 0 for t > 0,
C:_TEE“_QECV):{i for ¢ < 0. (IL8)

We observe a discontinuity, rather than a divergence, in the heat capacity. If we insist
upon describing the singularity by a power law, we have to choose the exponent o = 0.
e Susceptibility: In the presence of k, we expect 77 = m(h)h, and from OU/dm = 0, we

obtain tm + 4um?3 = h. Hence

t for t > 0,
—2t for t < 0.

1 oh
Xy = 8—_

(IL.9)
mip—o

=t + 12um? = {
Thus the singularity in susceptibility is describable by x4+ ~ Ay |t|™7%, with v, = vy_ =
1. Although the amplitudes A, are material dependent, their ratio is predicted to be
universal, with A; /A_ = 2. (As we shall see later, what we have calculated so far is a
longitudinal susceptibility. There is also a transverse susceptibility that is always infinite
below T.)
e Equation of State: On the critical isotherm ¢ = 0, the magnetization behaves as
m = (h/4u)/3, i.e.

m(t=0,h) ~h'/% with §=3. (I1.10)
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