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III. The Scaling Hypothesis


III.A The Homogeneity Assumption 

In the previous chapters, the singular behavior in the vicinity of a continuous transi­

tion was characterized by a set of critical exponents {α, β, γ, δ, ν, η, · · ·}. The saddle–point 

estimates of these exponents were found to be unreliable due to the importance of fluctua­

tions. Since the various thermodynamic quantities are related, these exponents can not be 

independent of each other. The goal of this chapter is to discover the relationships between 

them, and to find the minimum number of independent exponents needed to describe the 

critical point. 

The non-analytical structure is a coexistence line for t < 0 and h = 0, that terminates 

at the critical point t = h = 0. The various exponents describe the leading singular be­

havior of a thermodynamic quantity Q(t, h), in the vicinity of this point. A basic quantity 

in the canonical ensemble is the free energy, which in the saddle–point approximation is 

given by 

 

t2 
 

[ ]
 − for h = 0, t < 0 

f(t, h) = min 
t
m 2 + um 4 − h.m ∝ 

 

u . (III.1) 
2  h4/3 

m  

 − for h 6 0, t = 0= 
u1/3 

The singularities in the free energy can in fact be described by a single homogeneous 

function† in t and h, as 

f(t, h) = |t|2 gf 

( 

h/|t|Δ
) 

. (III.2) 

The function gf only depends on the combination x ≡ h/|t|Δ, where Δ is known as the gap 

exponent. The asymptotic behavior of gf is easily obtained by comparing eqs.(III.1) and 

(III.2). The h = 0 limit is recovered if limx→0 gf (x) ∼ 1/u, while to get the proper power 

of h, we must set limx→∞ gf (x) ∼ x4/3/u1/3 . The latter implies f ∼ |t|2h4/3/(u1/3|t|4Δ/3). 

† In general, a function f(x1, x2, · · ·) is homogeneous if 

f (bp1 x1, b
p2 x2, · · ·) = bpf f(x1, x2, · · ·), 

for any rescaling factor b. With the proper choice of b one of the arguments can be removed, 

leading to a scaling forms used in this section. 
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Since f can have no t dependence along t = 0, the gap exponent (corresponding to 

Eq.(III.1) has the value 
3 

Δ = . (III.3) 
2 

The assumption of homogeneity is that, on going beyond the saddle–point approxima­

tion, the singular form of the free energy (and any other thermodynamic quantity) retains 

the homogeneous form 

fsing.(t, h) = |t|2−α gf 

( 

h/|t|Δ
) 

. (III.4) 

The actual exponents α and Δ depend on the critical point being considered. The depen­

dence on t is chosen to reproduce the heat capacity singularity at h = 0. The singular part 

of the energy is obtained from (say for t > 0) 

1−α ′ Esing. ∼ 
∂f 

∼ (2 − α)t gf 

( 

h/|t|Δ
) 

− Δht1−α−Δ gf 

( 

h/|t|Δ
) 

∂t 
[ 

( ) Δh ( )

] 

( ) 

(III.5) 
∼ t1−α (2 − α)gf h/|t|Δ − 

tΔ 
gf 
′ h/|t|Δ ≡ t1−α gE h/|t|Δ . 

Thus the derivative of one homogeneous function is another. Similarly, the second deriva­

tive takes the form (again for t > 0) 

Csing. ∼ − 
∂2f 

∼ t−α gC 

( 

h/|t|Δ
) 

, (III.6) 
∂t2 

reproducing the scaling Csing. ∼ t−α, as h → 0. 

It may appear that we have the freedom to postulate a more general form 

C±(t, h) = |t|−α±g± 

( 

h/|t|Δ± 
) 

, (III.7) 

with different functions and exponents for t > 0 and t < 0, that match at t = 0. However, 

this is ruled out by the condition that the free energy is analytic everywhere except on the 

coexistence line for h = 0 and t < 0, as proven as follows: Consider a point at t = 0 and 

finite h. By assumption, the function C is perfectly analytic in the vicinity of this point, 

expandable in a taylor series, 

C 
( 

t ≪ hΔ
) 

= A(h) + tB(h) + O(t2). (III.8) 

Furthermore, the same expansion should be obtained from both C+ and C−. But eq.(III.7) 

leads to the expansions, 

[ ( )p± 
( )q± 

] 

C± = |t|−α± A± 
|t|

h 
Δ± 

+ B± 
|t|

h 
Δ± 

+ · · · , (III.9) 
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{ 

where {p±, q±} are the leading powers in asymptotic expansions of g± for large arguments, 

and {A±, B±} are the corresponding pre-factors. Matching to the taylor series in eq.(III.8) 

requires p±Δ± = −α± and q±Δ± = −(1 + α±), and leads to 

C± 

( 

t ≪ hΔ
) 

= A±h−α±/Δ± + B±h−(1+α±)/Δ± |t| + · · · . (III.10) 

Continuity at t = 0 now forces α+/Δ+ = α−/Δ−, and (1 + α+)/Δ+ = (1 + α−)/Δ−, 

which in turn implies 
α+ = α− ≡ α 

. (III.11) 
Δ+ = Δ− ≡ Δ 

Despite using |t| in the postulated scaling form, we can still ensure the analyticity of 

the function at t = 0 for finite h by appropriate choice of parameters, e.g. by setting 

B− = −B+ to match Eq.(III.10) to the analytic form in Eq.(III.8). Having established 

this result, we can be somewhat careless henceforth in replacing |t| in the scaling equations 

with t. Naturally these arguments apply to any quantity Q(t, h). 

Starting from the free energy in eq.(III.4), we can compute the singular parts of other 

quantities of interest: 

• The magnetization is obtained from 

m(t, h) ∼ 
∂f 

∼ |t|2−α−Δ gm 

( 

h/|t|Δ
) 

. (III.12) 
∂h 

In the limit x → 0, gm(x) is a constant, and 

m(t, h = 0) ∼ |t|2−α−Δ , =⇒ β = 2 − α − Δ. (III.13) 

On the other hand, if x → ∞, gm(x) ∼ xp, and 

m(t = 0, h) ∼ |t|2−α−Δ 

( 

|t

h 

|Δ 

)p 

. (III.14) 

Since this limit is independent of t, we must have pΔ = 2 − α − Δ. Hence 

m(t, h = 0) ∼ h(2−α−Δ)/Δ , =⇒ δ = Δ/(2 − α − Δ) = Δ/β. (III.15) 

• Similarly, the susceptibility is computed as 

χ(t, h) ∼ 
∂m 

∂h 
∼ |t|2−α−2Δ gχ(h/|t|Δ), ⇒ χ(t, h = 0) ∼ |t|2−α−2Δ , ⇒ γ = 2Δ − 2 + α. 

(III.16) 
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Thus, the consequences of the homogeneity assumption are: 

(1) The singular parts of all critical quantities Q(t, h), are homogeneous, with the same 

exponents above and below the transition. 

(2) Because of the interconnections via thermodynamic derivatives, the same gap expo­

nent Δ, occurs for all such quantities. 

(3) All (bulk) critical exponents can be obtained from only two independent ones, e.g. α 

and Δ. 

(4) As a result of the above, there are a number of exponent identities. For example, 

eqs.(III.13), (III.15), and (III.16) imply 

α + 2β + γ = α + 2(2 − α − Δ) + (2Δ − 2 + α) = 2 (Rushbrooke ′ s Identity), 

Δ 2Δ − 2 + α γ 
δ − 1 = − 1 = = (Widom ′ s Identity). 

2 − α − Δ 2 − α − Δ β 
(III.17) 

These identities can be checked against the following table of critical exponents. The 

first three rows are based on a number of theoretical estimates in d = 3; the last row comes 

from an exact solution in d = 2. The exponent identities are completely consistent with 

these values, as well as with all reliable experimental data. 

α β γ δ ν η 

n = 1 0.11 0.32 1.24 4.9 0.63 0.04


n = 2 -0.01 0.35 1.32 4.7 0.67 0.04


n = 3 -0.11 0.36 1.39 4.9 0.70 0.04


n = 1 0 1/8 7/4 15 1 1/4 

III.B Divergence of the Correlation Length 

The homogeneity assumption relates to the free energy and quantities derived from 

it. It says nothing about the behavior of correlation functions. An important property of 

a critical point is the divergence of the correlation length, which is responsible for, and can 

be deduced from, diverging response functions. In order to obtain an identity involving 

the exponent ν for the divergence of the correlation length, we replace the homogeneity 

assumption for the free energy, with the following two conditions: 

(1) The correlation length ξ has a homogeneous form, 

ξ(t, h) ∼ |t|−ν g 
( 

h/|t|Δ
) 

. (III.18) 
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(For t = 0, ξ diverges as h−νh with νh = ν/Δ.) 

(2) Close to criticality, the correlation length ξ is the most important length in the system, 

and is solely responsible for singular contributions to thermodynamic quantities. 

The second condition determines the singular part of the free energy. Since lnZ(t, h) 

is extensive and dimensionless, it must take the form 

( )d ( )d
L L 

lnZ = × gs + × ga , (III.19) 
ξ a 

where gs and ga are non-singular functions of dimensionless parameters (a is an appropriate 

microscopic length). The singular part of the free energy comes from the first term, and 

behaves as 

fsing.(t, h) ∼ 
ln

Ld 

Z 
∼ ξ−d ∼ |t|dν gf 

( 

h/|t|Δ
) 

. (III.20) 

A simple interpretation of the above result is obtained by dividing the system into units 

of the size of the correlation length. Each unit is then regarded as an independent random 

variable, contributing a constant factor to the critical free energy. The number of units 

grows as (L/ξ)d, leading to eq.(III.19). 

The consequences of the above assumptions are: 

(1) The homogeneity of fsing.(t, h) emerges naturally. 

(2) We obtain the additional exponent relation 

2 − α = dν (Joshephson ′ s identity) . (III.21) 

Identities obtained from the generalized homogeneity assumption involve the space 

dimension d, and are known as hyperscaling relations. The relation between α and ν is 

consistent with the exponents in the above table. However, it does not agree with the 

saddle point values, α = 0 and ν = 1/2, which are valid for d > 4. Any theory of critical 

behavior must thus account for the validity of this relation in low dimension, and its 

breakdown for d > 4. 
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III.C Critical Correlation Functions and Self-Similarity 

One exponent that has not so far been accounted for is η, describing the decay of 

correlation functions at criticality. Exactly at the critical point, the correlation length 

is infinite, and there is no other length scale (except sample size) to cut off the decay 

of correlation functions. Thus all correlations decay as a power of the separation. As 

discussed in the previous chapter, the magnetization correlations fall off as 

Gc (x) ≡ 〈m(x)m(0)〉 − 〈m〉2 ∼ 1/|x|d−2+η . (III.22) m,m

Similarly, we can define an exponent η ′ for the decay of energy–energy correlations as 

Gc 
E,E(x) = 〈H(x)H(0)〉 − 〈H〉2 ∼ 1/|x|d−2+η ′ . (III.23) 

Away from criticality, the power laws are cut off for distances |x| ≫ ξ. As the response 

functions can be obtained from integrating the connected correlation functions, there are 

additional exponent identities, such as (Fisher’s identity) 
∫ ∫ ξ ddx 

χ ∼ dd xGc (x) ∼
|x|d−2+η 

∼ ξ2−η ∼ |t|−ν(2−η), =⇒ γ = (2−η)ν . (III.24) mm

Similarly, for the heat capacity,

∫ ∫ ξ ddx 

C ∼ dd xGc
EE(x) ∼

|x|d−2+η′ ∼ ξ2−η ′ ∼ |t|−ν(2−η ′ ) , =⇒ α = (2 − η ′ )ν . 

(III.25) 

As before, two independent exponents are sufficient to describe all singular critical behavior. 

An important consequence of these scaling ideas is that the critical system has an 

additional dilation symmetry. Under a change of scale, the critical correlation functions 

behave as 

Gcritical(λx) = λpGcritical(x). (III.26) 

This implies a scale invariance or self–similarity: if a snapshot of the critical system 

is blown up by a factor of λ, apart from a change of contrast (multiplication by λp), the 

resulting snapshot is statistically similar to the original one. Such statistical self–similarity 

is the hallmark of fractal geometry. As discussed by Mandelbrot, many naturally occurring 

forms (clouds, shore-lines, river basins, etc.) exhibit such behavior. The Landau–Ginzburg 

probability was constructed on the basis of local symmetries such as rotation invariance. If 

we could add to the list of constraints the requirement of dilation symmetry, the resulting 

probability would indeed describe the critical point. Unfortunately, it is not possible to 

directly see how such a requirement constrains the effective Hamiltonian. One notable 

exception is in d = 2, where dilation symmetry implies conformal invariance, and a lot 

of information can be obtained by constructing conformally invariant theories. We shall 

instead prescribe a less direct route of following the effects of the dilation operation on the 

effective energy; the renormalization group procedure. 
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