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8.334: Statistical Mechanics II Spring 2008	 Test 1


Review Problems & Solutions 

The test is ‘closed book,’ but if you wish you may bring a one-sided sheet of formulas. 

The intent of this sheet is as a reminder of important formulas and definitions, and not as 

a compact transcription of the answers provided here. If this privilege is abused, it will be 

revoked for future tests. The test will be composed entirely from a subset of the following 

problems. Thus if you are familiar and comfortable with these problems, there will be no 

surprises! 

******** 

1. The binary alloy: A binary alloy (as in β brass) consists of NA atoms of type A, and 

NB atoms of type B. The atoms form a simple cubic lattice, each interacting only with its 

six nearest neighbors. Assume an attractive energy of −J (J > 0) between like neighbors 

A − A and B − B, but a repulsive energy of +J for an A − B pair. 

(a) What is the minimum energy configuration, or the state of the system at zero temper­

ature? 

• The minimum energy configuration has as little A-B bonds as possible. Thus, at zero 

temperature atoms A and B phase separate, e.g. as indicated below. 

A B 

(b) Estimate the total interaction energy assuming that the atoms are randomly distributed 

among the N sites; i.e. each site is occupied independently with probabilities pA = NA/N 

and pB = NB/N . 

•	 In a mixed state, the average energy is obtained from 

E	 = (number of bonds) × (average bond energy) 

= 3N 
( 

A − Jp2 
) 

−Jp2 
B + JpApB· 

( )2 

= −3JN 
NA − NB 

. 
N 

1 



( ) 

( ) 

( ) 

(c) Estimate the mixing entropy of the alloy with the same approximation. Assume 

NA, NB ≫ 1. 

• From the number of ways of randomly mixing NA and NB particles, we obtain the 

mixing entropy of 
N ! 

S = kB ln . 
NA!NB! 

Using Stirling’s approximation for large N (lnN ! ≈ N lnN −N), the above expression can 

be written as 

S ≈ kB (N lnN − NA lnNA − NB lnNB) = −NkB (pA ln pA + pB ln pB) . 

(d) Using the above, obtain a free energy function F (x), where x = (NA−NB)/N . Expand 

F (x) to the fourth order in x, and show that the requirement of convexity of F breaks 

down below a critical temperature Tc. For the remainder of this problem use the expansion 

obtained in (d) in place of the full function F (x). 

• In terms of x = pA − pB , the free energy can be written as 

F = E − TS 
{( ) ( ) ( ) ( )} 

= −3JNx2 + NkBT 
1 + x 

ln 
1 + x 

+
1 − x 

ln 
1 − x

. 
2 2 2 2 

Expanding about x = 0 to fourth order, gives 

kBT 2 NkBT 4F ≃ −NkBT ln 2 + N − 3J x + x . 
2 12 

Clearly, the second derivative of F , 

∂2F 
= N (kBT − 6J) + NkBTx2 ,

∂x2 

becomes negative for T small enough. Upon decreasing the temperature, F becomes 

concave first at x = 0, at a critical temperature Tc = 6J/kB. 

(e) Sketch F (x) for T > Tc, T = Tc, and T < Tc. For T < Tc there is a range of 

compositions x < (T ) where F (x) is not convex and hence the composition is locally |xsp |
unstable. Find xsp(T ). 

The function F (x) is concave if ∂2F/∂x2 < 0, i.e. if • 

6J2 x < . 
kBT 

− 1 

2 



√ 

{ } 

F(x)/NJ


T>Tc 

T=Tc 

T<Tc 

T=0 

x 
+1-1 

xsp(T) 

This occurs for T < Tc, at the spinodal line given by 

6J 
xsp (T ) = 

kBT 
− 1, 

as indicated by the dashed line in the figure below. 

(f) The alloy globally minimizes its free energy by separating into A rich and B rich phases 

of compositions ±xeq(T ), where xeq(T ) minimizes the function F (x). Find xeq(T ). 

Setting the first derivative of dF (x) /dx = Nx (kBT − 6J) + kBTx2/3 , to zero yields • 
the equilibrium value of 

 
√ 

xeq (T ) = 

 
 ±

√
3 

6J 

kBT 
− 1 for T < Tc 

. 
 
 0 for T > Tc 

(g) In the (T, x) plane sketch the phase separation boundary ±xeq(T ); and the so called 

spinodal line ±xsp(T ). (The spinodal line indicates onset of metastability and hysteresis 

effects.) 

• The spinodal and equilibrium curves are indicated in the figure above. In the interval 

between the two curves, the system is locally stable, but globally unstable. The formation 

of ordered regions in this regime requires nucleation, and is very slow. The dashed area is 

locally unstable, and the system easily phase separates to regions rich in A and B. 

******** 

2. The Ising model of magnetism: The local environment of an electron in a crystal


sometimes forces its spin to stay parallel or anti-parallel to a given lattice direction. As


a model of magnetism in such materials we denote the direction of the spin by a single


3




∑ ∑ 

∑ 

( ) 

∑ 

T


x1�1 

Tc 

xeq(T) 

xsp(T) 

unstable 

meta­
stable 

meta­
stable 

variable σi = ±1 (an Ising spin). The energy of a configuration {σi} of spins is then given 

by 
N

1 H =
2 

Jijσiσj − h σi ; 
i,j=1 i 

where h is an external magnetic field, and Jij is the interaction energy between spins at 

sites i and j.


(a) For N spins we make the drastic approximation that the interaction between all spins is


the same, and Jij = −J/N (the equivalent neighbor model). Show that the energy can now


be written as E(M, h) = −N [Jm2/2+hm], with a magnetization m = 
∑N 

σi/N = M/N .
i=1 

• For Jij = −J/N , the energy of each configuration is only a function of m = σi/N ,i 

given by 

J 
N 
∑ N 

∑ 
E (M, h) = −

2N 
i,j=1 

σiσj − h 
i=1 

σi 

  
J 
( 

N 
∑ 

) 
N 
∑ 

( 
N 
∑ 

) 

= −N σi/N  σj/N  − Nh σi/N 
2 

i=1 j=1 i=1 

J 2 = −N m + hm . 
2 

(b) Show that the partition function Z(h, T ) = exp(−βH) can be re-written as {σi}

4




∑ 

∑ 

∑ 

∑ 

Z = exp[−βF (m, h)]; with F (m, h) easily calculated by analogy to problem (1). For M 

the remainder of the problem work only with F (m, h) expanded to 4th order in m. 

• Since the energy depends only on the number of up spins N+, and not on their config­

uration, we have 

Z (h, T ) = exp (−βH) 
{σi} 

N 

= (number of configurations with N+ fixed) exp [−βE (M, h)] · 
N+ =0


N [ ]

∑ N ! 

= 
N+! (N − N+)! 

exp [−βE (M, h)] 
N+ =0 

N { [ ( )]} 
∑ N ! 

= exp −β E (M, h) − kBT ln 
N+! (N − N+)! 

N+ =0 

= exp [−βF (m, h)] . 
M 

By analogy to the previous problem (N+ NA, m x, J/2 3J), ↔ ↔ ↔

F (m, h) 1 2 kBT 4 
( 

5
) 

= −kBT ln 2 − hm + (kBT − J) m + m + O m . 
N 2 12 

(c) By saddle point integration show that the actual free energy F (h, T ) = −kT lnZ(h, T ) 

is given by F (h, T ) = min[F (m, h)]m. When is the saddle point method valid? Note that 

F (m, h) is an analytic function but not convex for T < Tc, while the true free energy 

F (h, T ) is convex but becomes non-analytic due to the minimization. 

Let m ∗ (h, T ) minimize F (m, h), i.e. min [F (m, h)]m = F (m ∗, h). Since there are N• 
terms in the sum for Z, we have the bounds 

exp (−βF (m ∗ , h)) ≤ Z ≤ N exp (−βF (m ∗ , h)) , 

or, taking the logarithm and dividing by −βN , 

F (m ∗, h) F (h, T ) F (m ∗, h) lnN 

N 
≥ 

N 
≥ 

N 
+ 

N
. 

Since F is extensive, we have therefore 

F (m ∗, h) F (h, T ) 
= 

N N 

5 
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∣ 

∣ 

√ 

∣ ∣ 

∣ ∣ 
∣ 

∣ 

in the N → ∞ limit. 

(d) For h = 0 find the critical temperature Tc below which spontaneous magnetization 

appears; and calculate the magnetization m(T ) in the low temperature phase. 

• From the definition of the actual free energy, the magnetization is given by 

1 ∂F (h, T ) 
m = ,−

N ∂h 

i.e. 
1 dF (m, h) 1 ∂F (m, h) ∂F (m, h) ∂m 

m = = + .−
N dh 

−
N ∂h ∂m ∂h 

∗Thus, if m minimizes F (m, h), i.e. if ∂F (m, h)/∂m m ∗ = 0, then |

1 ∂F (m, h) ∣ ∗ m = ∣ = m .−
N ∂h m ∗ 

For h = 0, 
3 (J − kBT )∗2 m = ,

kBT 

yielding 
J 

Tc = ,
kB 

and 
 

m = 

 
± 3 (J

k

−
BT

kBT ) 
if T < Tc . 

 

 
 

0 if T > Tc 

(e) Calculate the singular (non-analytic) behavior of the response functions 

∂E ∣ ∂m ∣ 
C = ∣ , and χ = . 

∂T h=0 ∂h h=0 

• The hear capacity is given by 

 
∂E 

∣

∣ NJ ∂m∗2 3NJTc 
if T < Tc

C = 
∂T 
∣ = − 

2 ∂T 
= 
 

2T 2 , 
h=0,m=m ∗ 0 if T > Tc 

i.e. α = 0, indicating a discontinuity. To calculate the susceptibility, we use 

kBT 3h = (kBT − J)m + m . 
3 
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∣ 
∣ 
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∑ 

∫ 

( ) 
∏ ∏ ∑ 

Taking a derivative with respect to h, 

( ) ∂m 
1 = kBT − J + kBTm 2 ,

∂h 

which gives 
 

1 
 

∣  if T < Tc 
 

χ = 
∂m 

=
2kB (Tc − T ) 

. 
∂h  1 

h=0  
 if T > Tc

kB (T − Tc) 

From the above expression we obtain γ± = 1, and A+/A− = 2. 

******** 

3. The lattice–gas model: Consider a gas of particles subject to a Hamiltonian 

N 
∑ p�i 

2 1 ∑ 
H =

2m 
+

2 
V(�ri − �rj), in a volume V. 

i=1 i,j 

(a) Show that the grand partition function Ξ can be written as 

  
∞ ( 

βµ 
)N ∫ N 

∑ 1 e ∏ β ∑ 
Ξ = d3�ri exp − V(�ri − �rj) . 

N ! λ3 2 
N=0 i=1 i,j 

• The grand partition function is calculated as 

∞ 
eNβµ 

Ξ = ZN
N ! 

N=0 

∞ Nβµ N 
∑ e ∏ d3pid

3ri −βH
= e

N ! h3 

N=0 i=1 
  

∞ Nβµ N ∫ ∫ N 

i= 
∑ e

N ! 

d

h

3

3 

pi 
e −βp2 /2m d3 ri exp − β 

2 
Vij 
 

N=0 i=1 i=1 i,j 
  

N 
∑ ∞ 

1 
( 

eNβ 
)N ∫

∏ β ∑ 
= 

N ! λ3 
d3 ri exp −

2 
Vij 
 , 

N=0 i=1 i,j 

where λ−1 = 
√

2πmkBT/h. 

(b) The volume V is now subdivided into N = V/a3 cells of volume a3, with the spacing a 

chosen small enough so that each cell α is either empty or occupied by one particle; i.e. the 

7




∑ 

∑ 

( ) ∑ 

∑ ( ) 

∑ 

∑ ∑ 

cell occupation number nα is restricted to 0 or 1 (α = 1, 2, ,N ). After approximating 
∫ 

3 
∑N 

· · · 
the integrals d3�r by sums a α=1, show that 

  
( ) nα N 

∑ eβµa3 α β ∑ 
Ξ ≈ 

λ3 
exp −

2 
nαnβV(�rα − �rβ) . 

{nα=0,1} α,β=1 

Since • 
    

∫ N ′ 
 N 

 
∏ β ∑ ∑ β ∑ 

d3 ri exp −
2 

Vij 
 ≈ a 3N exp 



−
2 

nαnβV (�rα − �rβ) 
 

· N !, 
i=1 i,j α,β=1 

where the primed sum is over the configurations {nα = 0, 1} with fixed N , and 

N 

N = nα, 
α=1 

we have 
  
 

∑ eβµa3 α 
nα 

β ∑ N 
 

Ξ ≈ 
λ3 

exp 


−
2 

nαnβV (�rα − �rβ) 
 

. 
{nα=0,1} α,β=1 

(c) By setting nα = (1 + σα)/2 and approximating the potential by V(�rα − �rβ) = −J/N , 

show that this model is identical to the one studied in problem (2). What does this imply 

about the behavior of this imperfect gas? 

• With nα = (1 + σα) /2, and V (�rα − �rβ) = −J/N , 

  
N ( ) N ( )( ) 

( )  
∑ a ∑ 1 + σα βJ ∑ 1 + σα 1 + σβ

Ξ = exp βµ + 3 ln + . 
{nα=0,1} 

 λ 
α=1 

2 2N
α,β=1 

2 2  

Setting m ≡ σα/N , h ′ = 1 µ + 3 ln a + J , and J ′ = J/4, the grand partition α 2 β λ 2 

function is written 

Ξ = const. exp 
{ 
Nβ 

( 
J ′ m 2/2 + h ′ m 

)} 
. 

{nα=0,1} 

The phase diagram of the lattice-gas can thus be mapped onto the phase diagram of the 

Ising model of problem 2. In particular, at a chemical potential µ such that h ′ = 0, there 

is a continuous “condensation” transition at a critical temperature Tc = J/4kB. (Note 

that 

m = σα/N = (2nα − 1) /N = 2a 3ρ − 1, 
α α 

8 



∏ ∑ 

where ρ = N/V is the density of the gas.) 

• The manifest equivalence between these three systems is a straightforward consequence 

of their mapping onto the same (Ising) Hamiltonian. However, there is a more subtle 

equivalence relating the critical behavior of systems that cannot be so easily mapped onto 

each other due to the Universality Principle. 

******** 

4. Surfactant condensation: N surfactant molecules are added to the surface of water 

over an area A. They are subject to a Hamiltonian 

N 2 
∑ p�i 1 ∑ 

H =
2m 

+
2 

V(�ri − �rj), 
i=1 i,j 

where �ri and p�i are two dimensional vectors indicating the position and momentum of 

particle i.


(a) Write down the expression for the partition function Z(N, T, A) in terms of integrals


over �ri and p�i, and perform the integrals over the momenta.


• The partition function is obtained by integrating the Boltzmann weight over phase space, 

as 
  

∫
∏N N

d2p�id
2�qi 

∑ p2 
∑ 

i=1 iZ(N, T, A) = 
N !h2N 

exp −β 
2m 

− β V(�qi − q�j) , 
i=1 i<j 

with β = 1/(kBT ). The integrals over momenta are simple Gaussians, yielding 

  
∫ N

1 1 
Z(N, T, A) = 

λ2N 
d2�qi exp −β V(�qi − �qj) ,

N ! 
i=1 i<j 

where as usual λ = h/
√

2πmkBT denotes the thermal wavelength. 

The inter–particle potential V(�r) is infinite for separations �r < a, and attractive for 
∫ ∞ 

| |
|�r | > a such that 

a 
2πrdrV(r) = −u0. 

(b) Estimate the total non–excluded area available in the positional phase space of the 

system of N particles. 

• To estimate the joint phase space of particles with excluded areas, add them to the 

system one by one. The first one can occupy the whole area A, while the second can 

explore only A − 2Ω, where Ω = πa2 . Neglecting three body effects (i.e. in the dilute 

limit), the area available to the third particle is (A − 2Ω), and similarly (A − nΩ) for the 

n-th particle. Hence the joint excluded volume in this dilute limit is 

A(A − Ω)(A − 2Ω) (A − (N − 1)Ω) ≈ (A − NΩ/2)N ,· · · 

9 



∑ ∫ 

∫ 

∣ 
∣ 

where the last approximation is obtained by pairing terms m and (N − m), and ignoring 

order of Ω2 contributions to their product. 

(c) Estimate the total potential energy of the system, assuming a uniform density n = N/A. 

Using this potential energy for all configurations allowed in the previous part, write down 

an approximation for Z. 
¯• Assuming a uniform density n = N/A, an average attractive potential energy, U , is 

estimated as 

Ū =
1 Vattr.(q�i − �qj) =

1 
d2�r1d

2�r2n(�r1)n(�r2)Vattr.(�r1 − �r2)
2 2 

i,j 

n2 N2


≈
2 

A d2�r Vattr.(�r ) ≡ − 
2A

u0.


Combining the previous results gives 

Z(N, T, A) ≈ 1 1
(A − NΩ/2)N exp 

[ 
βu0N

2 ] 

. 
N ! λ2N 2A 

(d) The surface tension of water without surfactants is σ0, approximately independent of 

temperature. Calculate the surface tension σ(n, T ) in the presence of surfactants. 

• Since the work done is changing the surface area is dW = σdA, we have dF = −TdS + 

σdA + µdN , where F = −kBT lnZ is the free energy. Hence, the contribution of the 

surfactants to the surface tension of the film is 

∂ lnZ 
∣

∣ NkBT u0N
2 

σs = = + ,− 
∂A 

−
A − NΩ/2 2A2 

T,N 

which is a two-dimensional variant of the familiar van der Waals equation. Adding the 

(constant) contribution in the absence of surfactants gives 

∂ lnZ ∣
∣ 

NkBT u0N
2 

σ(n, T ) = σ0 − 
∂A 

∣

∣ = −
A − NΩ/2

+ 
2A2 

. 
T,N 

(e) Show that below a certain temperature, Tc, the expression for σ is manifestly incorrect. 

What do you think happens at low temperatures? 

• Thermodynamic stability requires δσδA ≥ 0, i.e. σ must be a monotonically increasing 

function of A at any temperature. This is the case at high temperatures where the first 

term in the equation for σs dominates, but breaks down at low temperatures when the term 

10




∣ 

∣ 

∣ ∣ 
∣ ∣ 
∣ ∣ 

∣ ∣ ∣ 
∣ ∣ ∣ 

∫ [ ] 

from the attractive interactions becomes significant. The critical temperature is obtained 

by the usual conditions of ∂σs/∂A = ∂2σs/∂A2 = 0, i.e. from 

 
 ∂σs ∣ NkBT u0N

2 


∣ = = 0 
 ∂A ∣ T (A − NΩ/2)2 

− 
A3 

 ∂2σs 

∣

∣ 2NkBT 3u0N
2 

, 
 


 = + = 0 
∂A2 ∣ −

(A − NΩ/2)3 A4 
T 

The two equations are simultaneously satisfied for Ac = 3NΩ/2, at a temperature 

8u0
Tc = . 

27kBΩ 

As in the van der Waals gas, at temperatures below Tc, the surfactants separate into a 

high density (liquid) and a low density (gas) phase. 

(f) Compute the heat capacities, CA and write down an expression for Cσ without explicit 

evaluation, due to the surfactants. 

• The contribution of the surfactants to the energy of the film is given by 

∂ lnZ kBT u0N
2 

Es = = 2N .− 
∂β 

× 
2 

− 
2A 

The first term is due to the kinetic energy of the surfactants, while the second arises from 

their (mean-field) attraction. The heat capacities are then calculated as 

dQ ∣ ∂E ∣ 
CA = = = NkB,

dT ∂T A A 

and 
dQ ∣ ∂E ∣ ∂A ∣ 

Cσ = 
dT ∣ σ 

= 
∂T ∣ σ 

− σ 
∂T ∣ σ 

. 

******** 

5. Cubic invariants: When the order parameter m, goes to zero discontinuously, the 

phase transition is said to be first order (discontinuous). A common example occurs in 

systems where symmetry considerations do not exclude a cubic term in the Landau free 

energy, as in 

βH = dd x 
K 

2
(∇m)2 +

2 

t
m 2 + cm 3 + um 4 (K, c, u > 0). 

11 



�
(a) By plotting the energy density Ψ(m), for uniform m at various values of t, show that 

as t is reduced there is a discontinuous jump to m = 0 for a positive t in the saddle–point 

approximation. 

• To simplify the algebra, let us rewrite the energy density Ψ(m), for uniform m, in terms 

of the rescaled quantity 
u 

mr = m. 
c 

In this way, we can eliminate the constant parameters c, and u, to get the expression of 

the energy density as 
1 2 3 4Ψr(mr) =
2 
trmr + mr + mr, 

where we have defined 
( 

4 ) 
( ) c u 

Ψr = Ψ, and tr = t. 
u3 c2 

To obtain the extrema of Ψr, we set the first derivative with respect to mr to zero, i.e. 

dΨr(mr) ( 
2
) 

= mr tr + 3mr + 4m = 0. 
dmr

r 

∗The trivial solution of this equation is m = 0. But if tr ≤ 9/16, the derivative vanishes r 
∗ ∗also at m = (−3 ± √

9 − 16tr)/8. Provided that tr > 0, m = 0 is a minimum of the r r 

function Ψr(mr). In addition, if tr < 9/16, Ψr(mr) has another minimum at 

3 +
√

9 − 16tr∗ mr = ,− 
8 

and a maximum, located in between the two minima, at 

−3 +
√

9 − 16tr∗ m = .r 8 

The accompanying figure depicts the behavior of Ψr(mr) for different values of tr. 

Fr 

m r 

1 2 3 412 

3 

4 

12




∗1. For tr > 9/16, there is only one minimum mr = 0 . 
∗2. For 0 < tr < tr < 9/16, there are two minima, but Ψr(mr) > Ψr(0) = 0. 

∗3. For 0 < tr = tr, Ψr(mr) = Ψr(0) = 0. 
∗4. For 0 < tr < tr, Ψr(mr) < Ψr(0) = 0. 

∗The discontinuous transition occurs when the local minimum at m < 0 becomes the r 
∗ ∗absolute minimum. There is a corresponding jump of mr, from mr = 0 to mr = mr, where 

∗ mr = mr(tr = tr).


(b) By writing down the two conditions that m and t must satisfy at the transition, solve


for m and t.


•	 To determine mr and tr, we have to simultaneously solve the equations 

dΨr(mr) 
= 0, and Ψr(mr) = Ψr(0) = 0. 

dmr 

∗Excluding the trivial solution mr = 0, from 
 
 tr + 3mr + 4mr 

2 = 0 

tr 2 
, 

 + mr + m = 0 
2 r 

we obtain tr = −mr = 1/2, or in the original units, 

2c	 c 
t = , and	 m = . 

2u	
−

2u 

(c) Recall that the correlation length ξ is related to the curvature of Ψ(m) at its minimum 

by Kξ−2 = ∂2Ψ/∂m2|eq.. Plot ξ as a function of t. 

• 

ξ 

ξ max 

t	 t
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( 

∣ 

( 

∫ [ ] 

Likewise, the equilibrium value of m = meq in the original units equals to 

 
2 

 c
 
 0 for t > t = ,

2u 
meq = √ 

 
 
 

− 
u

c ) 3 + 9 −
8

16ut/c2 

for t < t. 

The correlation length ξ, is related to the curvature of Ψ(m) at its equilibrium minimum 

by 
∂2Ψ ∣

∣ 

Kξ−2 = = t + 6cmeq + 12um 2 ,
∂m2 ∣ eq

meq 

which is equal to 


( )1/2 
 K 
 
 if t > t, 
 t 

ξ = 
 
 K 

)1/2 
 
 if t < t. −

2t + 3cmeq 

(To arrive to the last expression, we have useddΨ(m)/dm m=meq 
= 0.) |

√
2Ku 

ξmax = ξ(t) = . 
c 

A plot of ξ as a function of t is presented here. Note that the correlation length ξ, is finite 

at the discontinuous phase transition, attaining a maximum value of 

******** 

6. Tricritical point: By tuning an additional parameter, a second order transition can be 

made first order. The special point separating the two types of transitions is known as a 

tricritical point, and can be studied by examining the Landau–Ginzburg Hamiltonian 

βH = dd x 
K 

2
(∇m)2 +

2 

t
m 2 + um 4 + vm 6 − hm , 

where u can be positive or negative. For u < 0, a positive v is necessary to ensure stability. 

(a) By sketching the energy density Ψ(m), for various t, show that in the saddle–point 

approximation there is a first-order transition for u < 0 and h = 0. 

• If we consider h = 0, the energy density Ψ(m), for uniform m, is 

t 2 4 6Ψ(m) = m + um + vm . 
2 

As in the previous problem, to obtain the extrema of Ψ, let us set the first derivative with 
∗ respect to m to zero. Again, provided that t > 0, Ψ(m) has a minimum at m = 0. But 

14




the derivative also vanishes for other nonzero values of m as long as certain conditions are 

satisfied. In order to find them, we have to solve the following equation 

t + 4um 2 + 6vm 4 = 0, 

from which, 
2u 

√
4u − 6tv ∗2 m = .−

3v 
± 

6v 

Thus, we have real and positive solutions provided that 

2u2 

u < 0, and t < . 
3v 

Under these conditions Ψ(m) has another two minima at 

∗2 m = 
|u|

+ 

√
4u2 − 6tv 

,
3v 6v 

and two maxima at 
2 

m = 
|
3

u

v 

| −
√

4u

6v 

− 6tv 
, ∗2 

as depicted in the accompanying figure. 

F


m 

12 

3 

4 

1 
2 

3 

4 

15




∣ 

( 

The different behaviors of the function Ψ(m) are as follows: 

1. For t > 2u2/3v, there is only one minimum m ∗ = 0. 

2. For 0 < t < t < 2u2/3v, there are three minima, but Ψ(±m ∗) > Ψ(0) = 0. 

3. For 0 < t = t, Ψ(±m ∗) = Ψ(0) = 0. 

4. For 0 < t < t, Ψ(±m ∗) < Ψ(0) = 0. 

There is a thus discontinuous phase transition for u < 0, and t = t(u). 

(b) Calculate t and the discontinuity m at this transition. 

• To determine t, and m = m ∗(t = t), we again have to simultaneously solve the equations 

dΨ(m) 
= 0, and Ψ(m 2) = Ψ(0) = 0,

dm2 

or equivalently, 
 
 t + 2um 2 + 3vm 4 = 0 

2 ,
t 

 2 4 
 + um + vm = 0 

2 

from which we obtain 
2 

2t = 
u

2v
, and m = −

2

u

v 
= 

|
2

u

v 

|
. 

(c) For h = 0 and v > 0, plot the phase boundary in the (u, t) plane, identifying the phases, 

and order of the phase transitions. 

In the (u, t) plane, the line t = u2/2v for u < 0, is a first-order phase transition • 
boundary. In addition, the line t = 0 for u > 0, defines a second-order phase transition 

boundary, as indicated in the accompanying figure. 

(d) The special point u = t = 0, separating first– and second–order phase boundaries, is 

a tricritical point. For u = 0, calculate the tricritical exponents β, δ, γ, and α, governing 

the singularities in magnetization, susceptibility, and heat capacity. (Recall: C ∝ t−α; 

m(h = 0) ∝ tβ ; χ ∝ t−γ ; and m(t = 0) ∝ h1/δ.) 

• For u = 0, let us calculate the tricritical exponents α, β, γ, and δ. In order to calculate 

α and β, we set h = 0, so that 

Ψ(m) = 
t
m 2 + vm 6 . 

2 

Thus from 
∣ 

∂Ψ ∣ ( 
4
) 

∣ = m t + 6vm = 0,
∂m m 

we obtain, 
 
 0 for t > t = 0, 
 

m = t 
)1/4 , 

 
 for t < 0−

6v 
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first order 
boundary 

t 

u 

resulting in, 

m(h = 0) ∝ tβ , with β = 
1 

4 
. 

The corresponding free energy density scales as 

Ψ(m) ∼ m 6 ∝ (−t)3/2 . 

The tricritical exponent α characterizes the non-analytic behavior of the heat capacity 

C ∼ (∂2Ψ/∂T 2)|h=0,m, and since t ∝ (T − Tc), 

∂2Ψ ∣
∣ 

−α 1 
C ∼ 

∣ t , with α = . 
∂t2 

h=0,m 

∝
2 

To calculate the tricritical exponent δ, we set t = 0 while keeping h = 0, so that 

Ψ(m) = vm 6 − hm. 

Thus from 
∣ 

∂Ψ ∣ 5 
∣ = 6vm − h = 0,

∂m m 

we obtain, 

m ∝ h1/δ, with δ = 5. 
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� �
∣ 

∣ 
∣ 
∣ 

∫ 
| |

〈∫ 〉 

∫ 

√ 

= = √ = , 

( ) 

( ) 

Finally, for h = 0 and t = 0, 

∂Ψ ∣ 
∣ = tm + 6vm 5 = 0, 
∣ − h 

∂m m 

so that the susceptibility scales as 

∂m ∣ −1χ = t , for both t < 0 and t > 0,
∂h h=0 

∝ | |

i.e. with the exponents γ± = 1. 

******** 

7. Transverse susceptibility: An �n–component magnetization field m(x) is coupled to an 

external field �h through a term − 
∫ 

ddx �h m(x) in the Hamiltonian βH. If βH h = 0� for �· 
is invariant under rotations of � − lnZ/V ) only m(x); then the free energy density (f = 

depends on the absolute value of �h; i.e. f(�h) = f(h), where h = �h . 

(a) Show that mα = � ddxmα(x)�/V = −hαf ′ (h)/h. 

• The magnetic work is the product of the magnetic field and the magnetization density, 

and appears as the argument of the exponential weight in the (Gibbs) canonical ensemble. 

We can thus can “lower” the magnetization M = 
∫ 

ddxmα (x) “inside the average” by 

taking derivatives of the (Gibbs) partition function with respect to hα, as 

mα =
1 

dd xmα (x) =
1 
∫ 
Dm (x

∫ 
) 
(∫ 

ddx ′ mα (x ′ ) 
) 
e−βH 

V V Dm (x) e−βH 

1 1 1 ∂ 1 ∂ ∂f 
= 

V Z β ∂hα 
Dm (x) e −βH = 

βV ∂hα 
lnZ = −

∂hα 
. 

For an otherwise rotationally symmetric system, the (Gibbs) free energy depends only on 

the magnitude of h, and using 

∂h ∂ hβhβ 1 2δαβhβ hα 

∂hα ∂hα 2 hβhβ h 

we obtain 
∂f df ∂h ′ hα 

mα = −
∂hα 

= −
dh ∂hα 

= −f
h

. 

(b) Relate the susceptibility tensor χαβ = ∂mα/∂hβ , to f ′′ (h), � h.m, and �

• The susceptibility tensor is now obtained as 

∂mα ∂ hα ′ ∂hα 1 ′ ∂h−1 
′ hα ∂f ′ 

χαβ = 
∂hβ 

= 
∂hβ 

−
h

f (h) = −
∂hβ h

f − 
∂hβ 

hαf − 
h ∂hβ 

′ hαhβ f hαhβ ′′ = − δαβ − 
h2 h 

− 
h2 

f . 
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( ) 

( ) 

( ) . 

∣ 
∣ 

′ In order to express f in terms of the magnetization, we take the magnitude of the result 

of part (a), 
′ ′ m = |f (h)| = −f (h) , 

from which we obtain 

hαhβ m hαhβ dm 
χαβ = δαβ − + . 

h2 h h2 dh 

(c) Show that the transverse and longitudinal susceptibilities are given by χt = m/h and 

χℓ = −f ′′ (h); m.where m is the magnitude of �

Since the matrix δαβ − hαhβ/h2 removes the projection of any vector along the mag­• 
netic field, we conclude 

 
dm 

 ′′ 
 χℓ = −f (h) = 

dh . 
m 

 
 χt = 

h 

Alternatively, we can choose the coordinate system such that hi = hδi1 (i = 1, . . . , d), to 

get 
 

h1h1 m h1h1 dm ′′ 
 χℓ = = f (h) = 
 χ11 δ11 − 

h2 h 
− 

h2 dh 

 h2h2 m h2h2 m 
 ′′ 
 χt = χ22 = δ11 − 

h2 h 
− 

h2 
f (h) = 

h 

(d) Conclude that χt diverges as �h 0, whenever there is a spontaneous magnetization. →
Is there any similar a priori reason for χℓ to diverge? 

Provided that limh→0 m = 0, the transverse susceptibility clearly diverges for h 0. • � → 
There is no similar reason, on the other hand, for the longitudinal susceptibility to diverge. 

In the saddle point approximation of the Landau–Ginzburg model, for example, we have 

tm + 4um 3 + h = 0, 

implying (since 4um2 = −t at h = 0, for t < 0) that 

( )−1
dh 

∣ −1 1 
χℓ|h=0 = 

dm ∣

∣ = (t − 3t) , i .e. χℓ =
2 t

, 

h=0 
| | 

at zero magnetic field, in the ordered phase (t < 0).


NOTE: Another, more pictorial approach to this problem is as follows. Since the Hamil­


tonian is invariant under rotations about h, m must be parallel to h, i.e.


hα 
mα = ϕ (h) ,

h 
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∣ 

∣ 

( ) 

∣ 
∣ 
∣ 

∑ 

∫ 
∏ 

where ϕ is some function of the magnitude of the magnetic field. For simplicity, let h = he1, 

with e1 a unit vector, implying that 

m = me1 = ϕ (h) e1. 

The longitudinal susceptibility is then calculated as 

χℓ = 
∂m1 ∣

∣ = 
dm 

= ϕ ′ (h) . 
∂h1 h=he1 

dh 

To find the transverse susceptibility, we first note that if the system is perturbed by a 

small external magnetic field δhe2, the change in m1 is, by symmetry, the same for δh > 0 

and δh < 0, implying 

m1 (he1 + δhe2) = m1 (he1) + O 
( 
δh2
) 
. 

Hence 
∣ 

∂m1 ∣ 
∣ = 0. 

∂h2 h=he1 

Furthermore, since m and h are parallel, 

m1 (he1 + δhe2) m2 (he1 + δhe2) 
= ,

h δh 

from which 

m2 (he1 + δhe2) = 
m1 (he1)

δh + O δh3 ,
h 

yielding 
∂m2 ∣ m 

χt = = . 
∂h2 h=he1 

h 

******** 

8. Spin waves: In the XY model of n = 2 magnetism, a unit vector �s = (sx, sy) (with 

s2 
x + s2 

y = 1) is placed on each site of a d–dimensional lattice. There is an interaction that 

tends to keep nearest–neighbors parallel, i.e. a Hamiltonian 

−βH = K �si �sj .· 
<ij> 

The notation < ij > is conventionally used to indicate summing over all nearest–neighbor 

pairs (i, j). 

(a) Rewrite the partition function Z = i d�si exp(−βH), as an integral over the set of 

angles {θi} between the spins {�si} and some arbitrary axis. 
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∫ 
∏ ∑ 

∫ 
∏ ∑ 

∫ 
∏ ∑ 

√ 

( ) 

• The partition function is


  

Z = d2�si exp K �si �sj
 δ 

( 
�si 

2 − 1 
) 
.· 

i �ij� 

Since �si �sj = cos (θi − θj), and d2�si = dsidθisi = dθi, we obtain · 
  

Z = dθi exp K cos (θi − θj) . 
i �ij� 

(b) At low temperatures (K ≫ 1), the angles {θi} vary slowly from site to site. In this 

case expand −βH to get a quadratic form in {θi}. 
• Expanding the cosines to quadratic order gives 

  

NbK K 2
Z = e dθi exp   ,−

2
(θi − θj)

i �ij� 

where Nb is the total number of bonds. Higher order terms in the expansion may be 

neglected for large K, since the integral is dominated by |θi − θj | ≈ 2/K. 

(c) For d = 1, consider L sites with periodic boundary conditions (i.e. forming a closed 

chain). Find the normal modes θq that diagonalize the quadratic form (by Fourier trans­

formation), and the corresponding eigenvalues K(q). Pay careful attention to whether the 

modes are real or complex, and to the allowed values of q. 

• For a chain of L sites, we can change to Fourier modes by setting 

∑ eiqj 

θj = θ (q) .√
L q 

Since θj are real numbers, we must have 

∗ 
θ (−q) = θ (q) , 

and the allowed q values are restricted, for periodic boundary conditions, by the require­

ment of 
L 

θj+L = θj , qL = 2πn, with n = 0,±1,±2, . . . , ± .⇒ 
2 

Using 
∑ iqj 

θj − θj−1 = θ (q) 
e√

L 
1 − e −iq , 

q 
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∑ 

∑ ∑ 

∑ ∑ ∑ ) 

∑ ∑ 

∑ 

∫ [ ] 
∏ 
√ 

the one dimensional Hamiltonian, βH = K 
∑ 

(θj − θj−1)
2 
, can be rewritten in terms of 2 j 

Fourier components as 

βH = 
K

θ (q) θ (q ′ ) 
e i(q+q ′)j 

1 − e −iq
( 
1 − e −iq ′ 

) 
. 

2 L 
q,q ′ j 

Using the identity 
∑ 

j e i(q+q ′)j = Lδq,−q ′ , we obtain 

2
βH = K |θ (q)| [1 − cos (q)] . 

q 

(d) Generalize the results from the previous part to a d–dimensional simple cubic lattice 

with periodic boundary conditions. 

• In the case of a d dimensional system, the index j is replaced by a vector 

j �→ j = (j1, . . . , jd) , 

which describes the lattice. We can then write 

K ( )2 
= ,βH

2 
θj − θj+eα 

j α 

where eα’s are unit vectors {e1 = (1, 0, , 0) , , ed = (0, , 0, 1)}, generalizing the one · · · · · · · · · 
dimensional result to 

′ 

βH = 
K 

2 
θ (q) θ (q ′ ) 

e i(q

L

+

d 

q ′ )·j 
( 
1 − e −iq·eα 

)

( 
1 − e −iq ·eα . 

′ q,q α j 

′ Again, summation over j constrains q and −q to be equal, and 

2
βH = K 

q 

|θ (q)| 
α 

[1 − cos (qα)] . 

(e) Calculate the contribution of these modes to the free energy and heat capacity. (Eval­

uate the classical partition function, i.e. do not quantize the modes.) 

• With K (q) ≡ 2K [1 − cos (qα)], α 

∏ 1 2 2π 
Z = dθ (q) exp K (q) θ (q) = ,−

2 
| | 

K (q)
q q 
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[ ] 
∑ 

[ ] 
∫ 

[ ] 

• 
∑ 

∣ ∣ 
∫ 

and the corresponding free energy is


1 
F = −kBT lnZ = −kBT constant − lnK (q) ,

2 
q 

d
or, in the continuum limit (using the fact that the density of states in q space is (L/2π) ), 

F = −kBT constant −
2

1 
Ld ddq 

d 
lnK (q) . 

(2π)

As K ∼ 1/T at T → ∞, we can write 

′ 1 
F = −kBT constant −

2 
Ld lnT , 

and the heat capacity per site is given by 

∂2F 1 kB
C = = .−T

∂T 2 
· 
Ld 2 

This is because there is one degree of freedom (the angle) per site that can store potential 

energy. 

(f) Find an expression for ��s0 · �sx� = ℜ�exp[iθx − iθ0]� by adding contributions from 

different Fourier modes. Convince yourself that for |x| → ∞, only q → 0 modes contribute 

appreciably to this expression, and hence calculate the asymptotic limit. 

We have 

θx − θ0 = θ (q) 
eiq

L

·x 

d/

−
2 

1 
, 

q 

and by completing the square for the argument of the exponential in 
〈 
ei(θx−θ0)

〉 
, i.e. for 

−
2

1 
K (q) |θ (q)| 2 

+ iθ (q) 
eiq·x − 1 

,
Ld/2 

it follows immediately that 

〈 
e i(θx−θ0) 

〉 
= exp 

{ 

L

1 
d 

∑ ∣eiq·x − 1∣ 
2 } 

= exp 

{ 
ddq 

d 

1 − cos (q · x) 
} 

.− 
2K (q) 

− 
(2π) K (q)

q 

For x larger than 1, the integrand has a peak of height ∼ x2/2K at q = 0 (as it is 

seen by expanding the cosines for small argument). Furthermore, the integrand has a first 

node, as q increases, at q ∼ 1/x. From these considerations, we can obtain the leading 

behavior for large x: 
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∫ ∫ 

∫ ∫ 

〈 〉 ( ) 

〈 〉 

∫ 

{ } 

{ } 
∫ 

In d = 1, we have to integrate ∼ x2/2K over a length ∼ 1/x, and thus • 

i(θx−θ0)e ∼ exp −
2

|x
K

| 
. 

In d = 2, we have to integrate ∼ x2/2K over an area ∼ (1/x)
2 
. A better approximation, • 

at large x, than merely taking the height of the peak, is given by 

ddq 1 − cos (q x) dqdϕq 1 − cos (qx cosϕ)· 
d 2

(2π) K (q) 
≈ 

(2π) Kq2 

dqdϕ 1 dqdϕ cos (qx cos ϕ) 
= ,2 2

(2π) Kq 
− 

(2π) Kq 

or, doing the angular integration in the first term, 

∫ 
ddq 1 − cos (q x) 

∫ 1/|x| dq 1 

(2π)
d K (q) 

· ≈ 
2π Kq 

+ subleading in x, 

resulting in 
x 1


e i(θx−θ0) ∼ exp 
ln | | 

= x
− 

, as x → ∞.
−
2πK 

| | 2πK 

In d ≥ 3, we have to integrate ∼ x2/2K over a volume ∼ (1/x)
3 
. Thus, as x → ∞, the • 

x dependence of the integral is removed, and 

e i(θx−θ0) constant,→

implying that correlations don’t disappear at large x. 

The results can also be obtained by noting that the fluctuations are important only for 

small q. Using the expansion of K(q) ≈ Kq2/2, then reduces the problem to calculation 

of the Coulomb Kernel 
∫ 

ddqeiq·x/q2, as described in the preceding chapter. 

(g) Calculate the transverse susceptibility from χt ∝ ddx��s0 �sx�c. How does it depend · 
on the system size L? 

We have • 
〈 〉 ∫ 

ddq 1 − cos (q x) 
e i(θx−θ0) = exp − 

(2π)
d K (q) 

· 
, 

and, similarly, 

〈 
iθx 
〉 ddq 1 

e = exp .
d

− 
(2π) 2K (q) 
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∫ ∫ { [ ] } 

∫ ∫ 

∫ 

∫ √ 

Hence the connected correlation function


��sx · �s0�c = e i(θx−θ0) 

c 
= e i(θx−θ0) − 

〈 
e iθx 

〉 〈 
e iθ0 

〉 
, 

is given by 

d q− 
d 

1 ddq cos (q x) ��sx · �s0�c = e (2π)d K(q) exp 
(2π)

d K (q

· 
) 

− 1 . 

In d ≥ 3, the x dependent integral vanishes at x → ∞. We can thus expand its exponential, 

for large x, obtaining 

ddq cos (q x) ddq cos (q x) 1 1 ��sx · �s0�c ∼ 
(2π) K (q

· 
) 

≈ 
(2π) Kq2 

· 
= 

K
Cd(x) ∼

K x
d−2 .d d | | 

Thus, the transverse susceptibility diverges as 

L2 

χt ∝ dd x ��sx · �s0�c ∼ K
. 

(h) In d = 2, show that χt only diverges for K larger than a critical value Kc = 1/(4π). 

• In d = 2, there is no long range order, ��sx� = 0, and 

��sx · �s0�c = ��sx · �s0� ∼ |x| −1/(2πK) 
. 

The susceptibility 
∫ L 

χt ∼ d2 x x
−1/(2πK) 

,| | 

thus converges for 1/(2πK) > 2, for K below Kc = 1/(4π). For K > Kc, the susceptibility 

diverges as 

χt ∼ L2−2Kc/K . 

******** 

9. Capillary waves: A reasonably flat surface in d–dimensions can be described by its 

height h, as a function of the remaining (d − 1) coordinates x = (x1, ...xd−1). Convince 

yourself that the generalized “area” is given by A = dd−1x 1 + (∇h)2 . With a surface 

tension σ, the Hamiltonian is simply H = σA. 

(a) At sufficiently low temperatures, there are only slow variations in h. Expand the energy 

to quadratic order, and write down the partition function as a functional integral. 
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∫ { } 

∫ ∫ { } 

∫ 

∫ ∫ { } 

• For a surface parametrized by the height function 

xd = h (x1, . . . , xd−1) , 

an area element can be calculated as 

1 
dA = dx1 dxd−1, 

cos α 
· · · 

where α is the angle between the dth direction and the normal 

1 ∂h ∂h 
�n = √ 

2 
−

∂x1 
, . . . , −

∂xd−1 
, 1 

1 + (∇h)

to the surface (n2 = 1). Since, cos α = nd = 
[ 
1 + (∇h)

2 
]−1/2 

≈ 1 − 1
2 (∇h)

2
, we obtain 

H = σA ≈ σ dd−1 x 1 + 
2

1
(∇h)

2 
, 

and, dropping a multiplicative constant, 

Z = Dh (x) exp −β
σ 

dd−1 x (∇h)
2 

. 
2 

(b) Use Fourier transformation to diagonalize the quadratic Hamiltonian into its normal 

modes {hq} (capillary waves). 

• After changing variables to the Fourier modes, 

h (x) = 
dd−

d

1

−

q 
1 h (q) e iq·x , 

(2π)

the partition function is given by 

σ dd−1q 2 2
Z = Dh (q) exp −β 

2 (2π)
d−1 q |h (q)| . 

(c) What symmetry breaking is responsible for these Goldstone modes? 

• By selecting a particular height, the ground state breaks the translation symmetry in 

the dth direction. The transformation h (x) h (x) + ξ (x) leaves the energy unchanged →
if ξ (x) is constant. By continuity, we can have an arbitrarily small change in the energy 

by varying ξ (x) arbitrarily slowly. 
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∫ 
( ) 

∫ 

〈 〉 

∫ 

〈 〉 

(d) Calculate the height–height correlations � 
( 
h(x) − h(x ′ ) 

)2 �. 
From • 

h (x) − h (x ′ ) =
(2

d

π

d−

)

1q
h (q) e iq·x − e iq·x ′ ,

d−1 

we obtain 

〈 〉 dd−1 dd−1 ′ ( )( ) 
(h (x) − h (x ′ ))

2 
= 

(2π)

q 

(2π)
d−

q 
1 �h (q) h (q ′ )� e iq·x − e iq·x ′ e iq ′ ·x − e iq ′ ·x ′ .

d−1 

The height-height correlations thus behave as 

G (x − x ′ ) ≡ (h (x) − h (x ′ ))2 

2 dd−1q 1 − cos [q x ′ )] 2 
= 

βσ (2π)
d−1 q2 

· (x −
= 

βσ 
Cd−1 (x − x ′ ) . 

(e) Comment on the form of the result (d) in dimensions d = 4, 3, 2, and 1. 
′ • We can now discuss the asymptotic behavior of the Coulomb Kernel for large |x − x |, 

either using the results from problem 1(f), or the exact form given in lectures. 

• In d ≥ 4, G (x − x ′ ) → constant, and the surface is flat. 

• In d = 3, G (x − x ′ ) ∼ ln |x − x ′ |, and we come to the surprising conclusion that there 

are no asymptotically flat surfaces in three dimensions. While this is technically correct, 

since the logarithm grows slowly, very large surfaces are needed to detect appreciable 

fluctuations. 

• In d = 2, G (x − x ′ ) ∼ |x − x ′ |. This is easy to comprehend, once we realize that the 

interface h(x) is similar to the path x(t) of a random walker, and has similar (x ∼
√

t) 

fluctuations. 

• In d = 1, G (x − x ′ ) ∼ |x − x ′ | 2 
. The transverse fluctuation of the ‘point’ interface are 

very big, and the approximations break down as discussed next. 

(f) By estimating typical values of ∇h, comment on when it is justified to ignore higher 

order terms in the expansion for A. 
2 • We can estimate (∇h) as 

(h (x) − h (x ′ ))2 

′ 1−d 

(x − x ′ )2 ∝ |x − x | . 

For dimensions d ≥ dℓ = 1, the typical size of the gradient decreases upon coarse-graining. 

The gradient expansion of the area used before is then justified. For dimensions d ≤ dℓ, 

the whole idea of the gradient expansion fails to be sensible. 
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10. Gauge fluctuations in superconductors: The Landau–Ginzburg model of supercon­

ductivity describes a complex superconducting order parameter Ψ(x) = Ψ1(x) + iΨ2(x), 

and the electromagnetic vector potential A�(x), which are subject to a Hamiltonian 

βH = d3 x 
2

t |Ψ|2 + u|Ψ|4 + 
K 

2 
DµΨDµ

∗ Ψ ∗ + 
L 

2
(∇× A)

2 
. 

The gauge-invariant derivative Dµ ≡ ∂µ − ieAµ(x), introduces the coupling between the


two fields. (In terms of Cooper pair parameters, e = e ∗c/h̄, K = h̄2/2m ∗.)


(a) Show that the above Hamiltonian is invariant under the local gauge symmetry:


1 
Ψ(x) �→ Ψ(x) exp (iθ(x)) , and Aµ(x) �→ Aµ(x) + 

e
∂µθ. 

• Under a local gauge transformation, βH �−→ 

d3 x 
2 

t |Ψ| 2 
+ u |Ψ| 4 

+ 
K 

2 

[ 
(∂µ − ieAµ − i∂µθ)Ψe iθ

] [ 
(∂µ + ieAµ + i∂µθ)Ψ ∗ e −iθ

] 

( )2 

+ 
L 

2 
∇× A� + ∇× 1 

e
∇θ . 

But this is none other than βH again, since 

(∂µ − ieAµ − i∂µθ)Ψe iθ = e iθ (∂µ − ieAµ) Ψ = e iθDµΨ, 

and 
1 ∇× 
e
∇θ = 0. 

(b) Show that there is a saddle point solution of the form Ψ(x) = Ψ, and A�(x) = 0, and 

find Ψ for t > 0 and t < 0. 

• The saddle point solutions are obtained from 

δ

δ

Ψ

H
∗ 

= 0, = ⇒ 
2 

t 
Ψ + 2uΨ |Ψ| 2 − K 

2 
DµDµΨ = 0, 

and 
δH 

= 0, = 
K ( −ieΨDµ

∗ Ψ ∗ + ieΨ ∗ DµΨ 
) 
− Lǫαβµǫαγδ∂β∂γAδ = 0. 

δAµ 
⇒ 

2 
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〈 〉 ( 

The ansatz Ψ (x) = Ψ, A� = 0, clearly solves these equations. The first equation then 

becomes 
∣ ∣2 

tΨ + 4uΨ	 ∣Ψ = 0, 
∣ ∣2 

yielding (for u > 0) Ψ = 0 for t > 0, whereas ∣Ψ∣ = −t/4u for t < 0. 

(c) For t < 0, calculate the cost of fluctuations by setting 

Ψ(x) = Ψ + φ(x) exp (iθ(x)) , 

Aµ(x) = aµ(x), (with ∂µaµ = 0 in the Coulomb gauge) 

and expanding βH to quadratic order in φ, θ, and �a. 

• For simplicity, let us choose Ψ to be real. From the Hamiltonian term 

DµΨD ∗ Ψ ∗ = 
[ 
(∂µ − ieaµ) 

( 
Ψ + φ 

) 
e iθ
] [ 

(∂µ + ieaµ) 
( 
Ψ + φ 

) 
e −iθ

] 
,µ

we get the following quadratic contribution 

Ψ 
2 
(∇θ)

2 
+ (∇φ)

2 − 2eΨ 
2 
aµ∂µθ + e 2Ψ 

2 |�a| 2 
. 

The third term in the above expression integrates to zero (as it can be seen by integrating 

by parts and invoking the Coulomb gauge condition ∂µaµ = 0). Thus, the quadratic terms 

read 
t 2 K 2 K 2 2

βH(2) = d3 x + 6uΨ φ2 + (∇φ) + Ψ (∇θ)
2	 2 2 

+ 
K 

2 
e 2Ψ 

2 |�a| 2 
+ 

L 

2
(∇× �a)

2 
. 

(d) Perform a Fourier transformation, and calculate the expectation values of |φ(q)|2 , 

|θ(q)|2 , and |�a(q)|2 .


In terms of Fourier transforms, we obtain


βH(2) =
2 

t 
+ 6uΨ 

2 
+ 

K 

2 
q 2 |φ (q)| 2 

+ 
K 

2
Ψ 

2 
q 2 |θ (q)| 2 

q 

K 2 2 L 2 
+

2 
e 2Ψ	 |�a (q)| +

2
(q × �a) . 

In the Coulomb gauge, q ⊥ �a (q), and so [q × �a (q)]
2 

= q2 |�a (q)| 2 
. This diagonal form 

then yields immediately (for t < 0) 

2 
)−1 1 |φ (q)| 2 

= t + 12uΨ + Kq2 = 
Kq2 − 2t

, 

〈 〉 ( 
2 
)−1 4u
|θ (q)| 2 

= KΨ q 2 = −
Ktq2 

,


2 
)−1 2 |�a (q)| 2 

= 2 Ke2Ψ + Lq2 = 
Lq2 − Ke2t/4u 

(�a has 2 components). 
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Note that the gauge field, “mass-less” in the original theory, acquires a “mass” Ke2t/4u 

through its coupling to the order parameter. This is known as the Higgs mechanism. 

******** 

11. Fluctuations around a tricritical point: As shown in a previous problem, the Hamil­

tonian 

βH = dd x 
K 

2
(∇m)2 +

2 

t
m 2 + um 4 + vm 6 , 

with u = 0 and v > 0 describes a tricritical point. 

(a) Calculate the heat capacity singularity as t 0 by the saddle point approximation. →
As already calculated in a previous problem, the saddle point minimum of the free • 

energy � = eℓ, can be obtained from m mˆ

∂Ψ ∣ ( ) 
∣ = m t + 6vm 4 = 0,

∂m m 

yielding, 
 
 0 for t > t = 0 
 
( )1/4m = t	 . 

 
	 for t < 0−

6v 

The corresponding free energy density equals to 
 
 0 for t > 0 

t 2 6 
 

Ψ(m) = m + vm = 1 (−t)3/2 . 
2  for t < 0

 −
3 (6v)1/2 

Therefore, the singular behavior of the heat capacity is given by 
 

∂2Ψ	 ∣
∣ 

 0 for t > 0 
C = Cs.p. ∼ −Tc 

∂t2 ∣ 
m 

= 
 Tc 

(−6vt)−1/2 for t < 0 
, 

4 

as sketched in the figure below. 

C


t 
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(b) Include both longitudinal and transverse fluctuations by setting


n 

� = 
( ) 

ˆ φα
t eα,m(x) m + φℓ(x) eℓ + (x)ˆ

α=2 

and expanding βH to quadratic order in φ. 

• Let us now include both longitudinal and transversal fluctuations by setting 

n 

φα m� (x) = (m + φℓ(x))êℓ + t (x)êα, 
α=2 

where êℓ and êα form an orthonormal set of n vectors. Consequently, the free energy βH 
is a function of φℓ and φt. Since mêℓ is a minimum, there are no linear terms in the 

expansion of βH in φ. The contributions of each factor in the free energy to the quadratic 

term in the expansion are 

n 

m)2 = (∇φℓ)
2 + (∇φα)2 ,(∇� ⇒ t 

α=2 
n 

(m� )2 = ⇒ (φℓ)
2 + (φt

α)2 , 
α=2 

n n 

(� = m)2)3 = (m 2 + 2mφℓ + φ2 
t )

2)3 = ⇒ 15m 4(φℓ)
2 + 3m 4 (φα

t .m)6 ((� ℓ + (φα )2 

α=2 α=2 

The expansion of βH to second order now gives 

K φ2 
( ) 

βH(φℓ, φ
α) = βH(0, 0) + dd x (∇φℓ)

2 + ℓ t + 30vm 4t 2 2 
n [ ] 

+ 
∑ K 

(∇φα)2 +
(φα

t )
2 
( 
t + 6vm 4

) 
. 

2 t 2 
α=2 

We can formally rewrite it as 

n 

βH(φℓ, φ
α
t ) = βH(0, 0) + βHℓ(φℓ) + βHtα

(φα
t ), 

α=2 

where βHi(φi), with i = ℓ, tα, is in general given by 

βHi(φi) = 
K 

2 
dd x 

[ 

(∇φi)
2 + 

φ

ξi 
2 
i 
2 ] 

, 
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with the inverse correlation lengths


 
t 

 
 for t > 0 

ξℓ 
−2 = K , 

 −4t 
 for t < 0 

K 

and 
 

t 
 for t > 0 

ξ−2 = K .tα 
 

0 for t < 0 

As shown in the lectures for the critical point of a magnet, for t > 0 there is no difference 

between longitudinal and transverse components, whereas for t < 0, there is no restoring 

force for the Goldstone modes φα
t due to the rotational symmetry of the ordered state. 

(c) Calculate the longitudinal and transverse correlation functions. 

• Since in the harmonic approximation βH turns out to be a sum of the Hamiltonians 

of the different fluctuating components φℓ, φ
α
t , these quantities are independent of each 

other, i.e. 

�φℓφ
α
t � = 0, and �φt

γφα
t � = 0 for α =� γ. 

To determine the longitudinal and transverse correlation functions, we first express the 

free energy in terms of Fourier modes, so that the probability of a particular fluctuation 

configuration is given by 

K 2 2 K 2 2P({φℓ, φt
α}) ∝ 

q,α 

exp −
2 

( 
q + ξℓ 

−2
) 
|φℓ,q| · exp −

2 

( 
q + ξt

−
α 

2
) 
|φt

α 
,q
| . 

Thus, as it was also shown in the lectures, the correlation function is 

δα,β 
∑ eiq·x δα,β �φα(x)φβ(0)� = 

V K 
( 
q2 + ξα 

−2
) = −

K
Id(x, ξα), 

q 

therefore, 
1 �φℓ(x)φℓ(0)� = −
K

Id(x, ξℓ), 

and 
β δα,β �φα

t (x)φt (0)� = −
K

Id(x, ξtα
). 

(d) Compute the first correction to the saddle point free energy from fluctuations.
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• Let us calculate the first correction to the saddle point free energy from fluctuations. 

The partition function is 

Z = e −βH(0,0) Dφ(x) exp − K 

2 
dd x 

[ 
(∇φ)2 + ξ−2φ2

] 

= e −βH(0,0) 
∏ 

dφq exp 
K ∑( 

q 2 + ξ−2
) 
φqφ ∗ q ,−

2 
q q 

= 
∏

[ 
K 
( 
q 2 + ξ−2

)]−1/2 
= exp − 1

2 

∑

( 
Kq2 + Kξ−2

) 

q q 

and the free energy density equals to 

 
 n ddq ( ) 
 
 ln Kq2 + t for t > 0 

βH(0, 0)  2 (2π)d

βf = + 
∫ ∫ . 

V  1 ddq ( ) ddq ( 
 n − 1 
 ln Kq2 + ln Kq2

) 
for t < 0

 
2 (2π)d

− 4t 
2 (2π)d 

Note that the first term is the saddle point free energy, and that there are n contributions 

to the free energy from fluctuations. 

(e) Find the fluctuation correction to the heat capacity. 

As C = −T (d2f/dT 2), the fluctuation corrections to the heat capacity are given by • 
 
 n ddq ( )−2 
 
 Kq2 + t for t > 0 
 2 (2π)d 

C − Cs.p. ∝


∫ 
dd

( 
. 

 
 16 q 

Kq2 
)−2 

for t < 0
 

2 (2π)d 
− 4t 

These integrals change behavior at d = 4. For d > 4, the integrals diverge at large q, 

and are dominated by the upper cutoff Δ ≃ 1/a. That is why fluctuation corrections to 

the heat capacity add just a constant term on each side of the transition, and the saddle 

point solution keeps its qualitative form. On the other hand, for d < 4, the integrals are 

proportional to the corresponding correlation length ξ4−d . Due to the divergence of ξ, the 

fluctuation corrections diverge as 

Cfl. = C − Cs.p. ∝ K−d/2 t d/2−2 .| |

(f) By comparing the results from parts (a) and (e) for t < 0 obtain a Ginzburg criterion, 

and the upper critical dimension for validity of mean–field theory at a tricritical point. 
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• To obtain a Ginzburg criterion, let us consider t < 0. In this region, the saddle point 

contribution already diverges as Cs.p. ∝ (−vt)−1/2, so that 

d−3Cfl. 
( v )1/2 

2 . 
Cs.p. 

∝ (−t) 
Kd 

Therefore at t < 0, the saddle point contribution dominates the behavior of this ratio 

provided that d > 3. For d < 3, the mean field result will continue being dominant far 

enough from the critical point, i.e. if 

( 
Kd
) ( 

Kd
)1/(d−3) 

(−t)d−3 ≫ 
v

, or |t| ≫ 
v

. 

Otherwise, i.e. if 
( 

Kd
)1/(d−3) 

|t| <
v 

, 

the fluctuation contribution to the heat capacity becomes dominant. The upper critical 

dimension for the tricritical point is then d = 3. 

(g) A generalized multicritical point is described by replacing the term vm6 with u2nm2n . 

Use simple power counting to find the upper critical dimension of this multicritical point. 

If instead of the term vm6 we have a general factor of the form u2nm2n, we can easily • 
generalize our results to 

m ∝ (−t)1/(2n−2) , Ψ(m) ∝ (−t)n/(n−1) , Cs.p. ∝ (−t)n/(n−1)−2 . 

Moreover, the fluctuation correction to the heat capacity for any value of n is the same as 

before 

Cfl. ∝ (−t)d/2−2 . 

Hence the upper critical dimension is, in general, determined by the equation 

d n 2n 

2 
− 2 = 

n − 1 
− 2, or du = 

n − 1 
. 

******** 
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