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VII.C Renormalization Group for the Coulomb Gas

The two partition functions in eq.(VIL.58) are independent and can be calculated
separately. As the Gaussian partition function is analytic, any phase transitions of the
XY model must originate in the Coulomb gas. As briefly discussed earlier, in the low
temperature phase the charges appear only in the small density of tightly bound dipole
pairs. The dipoles dissociate in the high temperature phase, forming a plasma. The
two phases can be distinguished by examining the interaction between two external test
charges at a large separation X. In the absence of any internal charges (for yo = 0) in
the medium, the two particles interact by the bare Coulomb interaction C'(X). A finite
density of internal charges for small yy partially screens the external charges, and reduces
the interaction between the test charges to C(X)/e, where € is an effective dielectric
constant. There is an insulator to metal transition at sufficiently large yo. In the metallic
(plasma) phase, the external charges are completely screened and their effective interaction
decays exponentially.

To quantify the above picture, we shall compute the effective interaction between two
external charges at x and x’, perturbatively in the fugacity yo. To lowest order, we need

to include configurations with two internal charges (at y and y’), and
BV (x—x") _ —4r’KC(x—x)
[1 + 2 [ d2yd?y’ e~ 4T KC(y—y)+4n K[C(x—y) =C(x—y")=C(y' —x)+C(x'=y")] | (’)(yé)}
[1+yg [ d?yd?y’ e 4™ KC=y) + O(yg)]
_ o—4m?KO(x—x') [1 +y§ /d2yd2y/e—4ﬂ'2KC’(y—y') (647r2KD(x,x’;y,y’) _ 1) n O(yé)} ’
(VIL60)

where D(x,x’;y,y’) is the interaction between the internal and external dipoles. The

direct interaction between internal charges tends to keep the separation r =y’ — y small.
Using the center of mass R = (y +y’)/2, we can change variables to y = R —r/2 and
y' =R +1r/2, and expand the dipole-dipole interaction for small r as

D (x,x";y,y’") :C<X—R+g> _C<X_R_g>_C<X/—R+g>+0<x'—R—g>

=—r-VrC(x—R)+r- VRC(X/ —R) + O(Ts)'
(VIL.61)

To the same order
AT EDEXY YY) | = _4n?Kr- VR (C(x — R) — C(x' — R))

, (VIL62)
+87*K?[r- Vr (C(x —R) — C(X' = R))]” + O(r?).
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After the change of variables [ d’yd’y’ — i d?’rd?R, the effective interaction becomes

e—BV(x—x’) — e—47r2KC(x—x’){ 1+y3/d2rd2Re—47r2KC(r)X

( — 47°Kr - Vg (C(x —R) — C(x¥ = R)) + 87*K2[r - Vg (C(x — R) — C(¥' = R))’

(VIL.63)
Following the angular integrations in d?r, the term linear in r vanishes, while the angular
average of (r- VrC)? is r?|VrC|?/2. Hence eq.(VIL.63) simplifies to

+0(%)) + Oy})

e—ﬁV(x—x') _ 6—471'2KC’(x—x')><

{1 + 3 / (2rrdr)e 47 KO gt 2 g / PR (VR (C(x—R) —C(x' —R)))* + O(r‘*)} .

(VIL.64)
The remaining integral can be evaluated by parts,
/ &R [Vg (C(x —R) - C(x' —R))J’
=— [ PR (C(x—R)-C(x'—R))(VC(x—R)-V?’C(x —R
[ R (€O R) O R (VO R) - VO R)

:_/fR@@_m_c@_R»wa—m—ﬁw—Rn
=2C(x — x/) —2C(0).

The short distance divergence can again be absorbed into a proper cutoff with C(z) —
In(z/a)/2m, and

eV x—x') _ —am? KC(ex) [1 +16m°K2y3C0(x — x) / drr?e TR 1+ O(y5) |
(VIL66)

The second order term can be exponentiated to give an effective interaction fV(x — x') =
4 KogC(x — x'), with

Keg = K — 4 K%y2a*™K / drr3 2™ 1 O(yd). (VIL67)

a

We have thus evaluated the dielectric constant of the medium, ¢ = K/K.g, pertur-
batively to order of y3. However, the perturbative correction is small only as long as

the integral in r converges at large r. The breakdown of the perturbation theory for
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K < K. = 2/m, occurs precisely at the point where the free energy of an isolated vortex
changes sign. This breakdown of perturbation theory is reminiscent of that encountered
in the Landau—Ginzburg model for d < 4. Using the experience gained from that problem,
we shall reorganize the perturbation series into a renormalization group for the parameters
K and .

To construct an RG for the Coulomb gas, note that the partition function for the
system in eq.(VIL.59), involves two parameters (K, ), and has an implicit cutoff a, related
to the minimum separation between vortices. As discussed earlier, the distinction between
regions inside and outside the core of a vortex are arbitrary. Increasing the core size to
ba modifies not only the core energy, hence yo, but also the interaction parameter K.
The latter is a consequence of the change in the dielectric properties of the medium due
to dipoles of separations between a and ba. The change in fugacity is obtained from

eq.(VIL.46) by changing a to ba as
Jo(ba) = b* ™ yo(a) . (VIL68)

The modified Coulomb interaction due to dipoles of all size is given in eq.(VIL.67). (The
perturbative calculation at order of y2 incorporates only dipoles.) From dipoles in the size

range, a to ba, we obtain a contribution

ba
K=K [1 — (272K) / (2mrdr) <y§e—4ﬂ2KC <T>) 7“2] , (VIL69)
where the terms are grouped so as to make the similarity to standard computations of
the dielectric constant apparent. (The probability of creating a dipole is multiplied by its
polarizability; the role of 8 = (kgT)~! is played by 272K.)
By choosing an infinitesimal b = e ~ 1 + ¢, eq.(VIL.69) is converted to

dK
= AT K?a*y2 + O(yg) (VIL70)

Including the fugacity, the recursion relations are

dK -1
T =4ma’yg + O(yp)
g , (VILT1)
% =2 —7K)yo + O(y3)

originally obtained by Kosterlitz in 1975. While dK ~!/d¢ > 0, the recursion relation for yq

changes sign at K, 1 = m/2. At smaller values of K ! (high temperatures) yq is relevant,
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while at lower temperatures it is irrelevant. Thus the RG flows separate the parameter
space into two regions. At low temperatures and small yg, flows terminate on a fized line
at yo = 0 and Keg > 2/7. This is the insulating phase in which only dipoles of finite size
occur. (Hence the vanishing of yo under coarse graining.) The strength of the effective
Coulomb interaction is given by the point on the fixed line that the flows terminate on.
Flows not terminating on the fixed line asymptote to larger values of K ! and 79, where
perturbation theory breaks down. This is the signal of the high temperature phase with
an abundance of vortices.

The critical trajectory that separates the two regions of the phase diagram flows to a
fixed point at (K. ! = m/2,yo = 0). To find the critical behavior at the transition, expand
the recursion relations in the vicinity of this point by setting x = K~! —7/2, and y = yoa?.

To lowest order, eqs.(VIL.71) simplify to

d
d—gé =4r%y? + O(zy?, y*)
(VILT2)
& zéwy + O(z%y, y°)
¢ ’

The recursion relations are inherently nonlinear in the vicinity of the fixed point. This is
quite different from the linear recursion relations that we have encountered so far, and the
resulting critical behavior is non-standard. First note that eqs.(VIL.72) imply

dx? L dy? d

T 8yl =7 TR = i (932 — 7r4y2) =0, = z*-—alyi=c  (VILT3)

The RG flows thus proceed along hyperbolas characterized by different values of ¢. For
¢ > 0, the focus of the hyperbola is along the y-axis, and the flows proceed to (z,y) — co.
The hyperbolas with ¢ < 0 have foci along the x-axis, and have two branches in the half
plane, y > 0: the branches for x < 0 flow to the fixed line, while those in the x > 0
quadrant flow to infinity. The critical trajectory separating flows to zero and infinite y
corresponds to ¢ = 0, i.e. z. = —72y,.. Therefore, a small but finite fugacity yo reduces
the critical temperature to K, ! = /2 — n2yga® + O(y3).

In terms of the original XY model, the low temperature phase is characterized by a line
of fixed points with K¢ = limy_ o K(¢) > 2/m. There is no correlation length at a fixed
point, and indeed the correlations in this phase decay as a power law, (cos (6, — cosfp)) ~
1/r", withn = 1/(2nKeg) < 1/4. Since the parameter c is negative in the low temperature
phase, and vanishes at the critical point, we can set it to ¢ = —b*(T, — T) close to the

transition. In other words, the trajectory of initial points tracks a line (zo(7),y0(T)).
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The resulting ¢ = 23 — m4y2 o (T. — T) is a linear measure of the vicinity to the phase

transition. Under renormalization, such trajectories flow to a fixed point at y = 0, and
x = —by/T.—T. Thus in the vicinity of transition, the effective interaction parameter

2 4 2 4b
Keff = - — — hm QZ(Z) = ; + — V Tc - T, (VII74)

T T2 l—oco

has a square root singularity.

The stiffness Keg, can be measured in experiments on superfluid films. In the super-
fluid phase, the order parameter is the condensate wavefunction 1 (x) = We?®. Variations
in the phase 0, lead to a superfluid kinetic energy,

2 2
H = /ddxzp* <—h Vz) ) = hov /ddx(VO)z, (VIL75)

2m 2m

where m is the particle (helium 4) mass. The corresponding XY model has a stiffness
K = h?p,/(2mkpT), where p, = U2 is the superfluid density. The density p, is measured
by examining the changes in the inertia of a torsional oscillator; the superfluid fraction,
psm, experiences no friction and does not oscillate. Bishop and Reppy (1978) examined
ps for a variety of superfluid films (of different thickness, helium 3 concentration, etc.)
wrapped around a torsional cylinder. They constructed the effective stiffness K as a
function of temperature, and found that for all films it undergoes a wuniversal jump of
2/m at the transition. The behavior of K for T' < T, was consistent with a square root
singularity.

Correlations decay exponentially in the high temperature phase. How does the corre-
lation length &, diverge at T.? The parameter ¢ = 22 — ny? = b?(T — T,) is now positive

all along the hyperbolic trajectory. The recursion relation for x,
4 9 o
— =Ar%y? = = (* + V(T - T.)), (VILT76)

can be integrated to give

du = édz, —

1 T
22+02(T-T.) 7 by/T — T, byT — TC>

The contribution of the initial point to the left hand side of the above equation can be left

4
=20, (VILTT)
™

arctan <

out if zg ox (T'— T.) < 1. The integration has to be stopped when z(¢) ~ y(¢) ~ 1, since
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the perturbative calculation is no longer valid beyond this point. This occurs for a value
of

N 7r 7r
T AT T, 2
where we have used arctan(1/b\/T —T,.) ~ arctan(oco) = m/2. The resulting correlation
length is

0 (VILT8)

2

o 7r
~ ~ — . VIL.79
£~ ae a exp (Sbm) ( )

Unlike any of the transitions encountered so far, the divergence of the correlation length
is not through a power law. This is a consequence of the nonlinear nature of the recursion
relations in the vicinity of the fixed point.

Vortices occur in bound pairs for distances smaller than &, while there can be an excess
of vortices of one sign or the other at larger separations. The interactions between vor-
tices at large distances can be obtained from the Debye-Hiickel theory of polyelectrolytes.
According to this theory the free charges screen each other leading to a screened Coulomb
interaction, exp(—r/£)C(r). On approaching the transition from the high temperature

side, the singular part of the free energy,

_ w2
fsing. < § ? o exp <—m) ) (VIIL.80)

has only an essential singularity. All derivatives of this function are finite at 7,.. Thus the
predicted heat capacity is quite smooth at the transition. Numerical results based on the
RG equations (Berker and Nelson) indicate a smooth maximum in the heat capacity at a
temperature higher than T, corresponding to the point at which the majority of dipoles
unbind.

The Kosterlitz-Thouless picture of vortex unbinding has found numerous applications
in two dimensional systems such as superconducting and superfluid films, thin liquid crys-
tals, Josephson junction arrays, electrons on the surface of helium films, etc. Perhaps more
importantly, the general idea of topological defects has had much impact in understanding
the behavior of many systems. The theory of two dimensional melting developed in the

next section is one such example.
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