Fall 2003 I. Kristina Lundqvist

Problem C5. (Unified Computers and programming)

1. Convert the following base 10 numbers into 8-bit 2's complement notation

0, -1, -12

2. Perform each of the following additions assuming that the bit strings represent values in 2's complement notation. Identify the cases in which the answer is incorrect because of overflow.

1111	01111	01110
<u>+ 1111</u>	+10001	<u>+01010</u>

Hint: The bit strings are only 5 bits long so your answer should also be 5 bits long.

3. Write an algorithm to convert a negative decimal number into a binary number in 2's complement form. Assume that the number ranges from +127 to -128

Hint: You already know how to convert a positive decimal number into binary notation. Think about determining sign and inverting bit positions.

4. Implement your algorithm in Ada95. Turn in an electronic copy of your code listing and a hard copy of your code.