Problem C5. (Unified Computers and programming)

1. Convert the following base 10 numbers into 8 -bit 2 's complement notation

$$
0,-1,-12
$$

2. Perform each of the following additions assuming that the bit strings represent values in 2's complement notation. Identify the cases in which the answer is incorrect because of overflow.

$$
\begin{array}{rrr}
1111 & 01111 & 01110 \\
+1111 & +10001 & +01010 \\
\hline
\end{array}
$$

Hint: The bit strings are only 5 bits long so your answer should also be 5 bits long.
3. Write an algorithm to convert a negative decimal number into a binary number in 2 's complement form. Assume that the number ranges from +127 to -128

Hint: You already know how to convert a positive decimal number into binary notation. Think about determining sign and inverting bit positions.
4. Implement your algorithm in Ada95. Turn in an electronic copy of your code listing and a hard copy of your code.

