CP2-4

The problems in this problem set cover lectures C2, C3 , and C4.
1.

Part a. Write an algorithm to check if a user entered string is a palindrome.
Assume:
i. Maximum string length is 80 characters
ii. The actual string length is input dependent

Part b. Implement your algorithm as an Ada95 program.
Turn in a hard copy of your algorithm and code listing; and an electronic copy of your code.
2. Modify the program above to read inputs from a text file and store the reversed string in an output text file. The program should:
a. If the line of text is a palindrome, store it in the output file.
b. If it is not a palindrome, reverse the line of text and store the reversed line of text in the output file.
c. Repeat the above steps until there are no more inputs to be processed from the input file.

Assume:
i. Input file name is my_program_input.txt
ii. Output file name is my_program_output.txt

Turn in a hard copy of your algorithm and code listing and an electronic copy of your code.
3.
a. Compare and contrast stacks and queues.

Hint: Summarize the operations on stacks and queues using a table and use a diagram to show the difference between basic operations.
b. Modify the expression conversion algorithm shown in class to include unary operators.

Hint:
i. Unary operators operate on only one argument. $-5,+9$ etc
ii. How do you distinguish between a unary and binary operator? (Think about the number of arguments)
iii. Use the following test expression $-5+9+-6+2$ to see if the conversion works.

Assume:
i. The unary operators are only ' + ' and ' - '.
ii. Inputs are user input strings of maximum length 80 .
c. Implement your algorithm as an Ada95 program.

Turn in a hard copy of your algorithm and code listing, and an electronic copy of your code.

