F18. Wind with velocity V_{∞} is flowing over a mountain ridge have the shape $Y(x)=\sqrt{C x}$. The flow is to be modeled by superimposing a uniform flow with a source located at some location $x, y=(d, 0)$.

$$
\psi(x, y)=V_{\infty} y+\frac{\Lambda}{4 \pi} \ln \left[(x-d)^{2}+y^{2}\right]
$$

a) Determine both the source's location d, and the strength Λ, with the conditions:

$$
\begin{array}{lll}
u=0 & \text { at } & x, y=(0,0) \\
v / u=d Y / d x & \text { at } & x, y=(d, \sqrt{C d})
\end{array}
$$

The second condition simply requires that the flow direction on the ridge surface directly above the source is parallel to the ridge surface.
b) A sailplane flying in the slope lift upwind of the ridge requires a vertical velocity of at least $v \geq 1 \mathrm{~m} / \mathrm{s}$ to stay aloft. For a wind speed of $V_{\infty}=15 \mathrm{~m} / \mathrm{s}(33 \mathrm{mph})$ and ridge size scale $C=500 \mathrm{~m}$, determine the maximum flyable radius $r(\theta)$ inside which the sailplane can sustain flight. Plot the $r(\theta)$ boundary superimposed on a plot of the ridge.

