F18. Wind with velocity V_{∞} is flowing over a mountain ridge have the shape $Y(x) = \sqrt{Cx}$. The flow is to be modeled by superimposing a uniform flow with a source located at some location x, y = (d, 0).

a) Determine both the source's location d, and the strength Λ , with the conditions:

$$u = 0$$
 at $x, y = (0, 0)$
 $v/u = dY/dx$ at $x, y = (d, \sqrt{Cd})$

The second condition simply requires that the flow direction on the ridge surface directly above the source is parallel to the ridge surface.

b) A sailplane flying in the slope lift upwind of the ridge requires a vertical velocity of at least $v \ge 1$ m/s to stay aloft. For a wind speed of $V_{\infty} = 15$ m/s (33 mph) and ridge size scale C = 500m, determine the maximum flyable radius $r(\theta)$ inside which the sailplane can sustain flight. Plot the $r(\theta)$ boundary superimposed on a plot of the ridge.