
F22. A long rectangular wing has span b and chord c, and hence the wing area is S = bc.

a) The wing airfoil has certain lift and drag coefficients  $c_{\ell}$  and  $c_d$  which are constant across the span. Determine how these relate to the wing's overall  $C_L$  and  $C_D$ . (Hint: Determine L' and D', then get L and D, then from these determine  $C_L$  and  $C_D$ ).

The wing airfoil has a drag polar which can be approximated by

$$c_d \simeq 0.01 + 0.015 c_{\ell}^3$$

in the range  $c_{\ell} = 0.1...1.2$ . The propulsive power P needed to overcome drag D at flight speed  $V_{\infty}$  is given by



b) Determine the form of the  $P(V_{\infty})$  relation in level flight, and plot it for the range  $c_{\ell} = 0.1...1.2$ . Any constant multiplicative factors on the P and  $V_{\infty}$  axes are not important – only the shape of the curve is of interest. Hint: Simplest approach is to plot  $P(c_{\ell})$  versus  $V(c_{\ell})$  with  $c_{\ell}$  as a dummy parameter.

(Note: Using only the airfoil's  $c_d$  ignores other contributions such as induced drag, which become especially significant at low flight speeds!)

$$P = DV_{\infty}$$