Problem M9 (Materials and Structures)

In the truss shown below determine the deflection of point D under the 10 kN load shown (horizontal and vertical components). The force-displacement relationship for the bars (in the absence of any temperature change) is given by $\square=\frac{\mathrm{FL}}{\mathrm{AE}}$ where \square is the bar extension, L , the length of the bar, A, the bar cross-section and E the Young's Modulus. For the bars in this problem $\mathrm{A}=500 \times 10^{-6} \mathrm{~m}^{2}, \mathrm{E}=70 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$. Assume that the deformations of the bars are small compared to their length.

Angles $B A C$ and $A C D$ are both right angles, $B C$ and $A D$ are parallel to each other.

