Problem M12 (Materials and Structures)

The figure below shows a triangular element in a two dimensional plane. The element is defined by an angle \square and the length of the opposite side $d x_{1}$. The element is of uniform thickness, dx . The element is acted on by a state of stress in the plane, $\square_{11}, \square_{22}$ and \square_{12}. Stresses \square_{11} and \square_{12} y corresponding to a rotated axis system, \tilde{x}_{\square}. By considering equilibrium of the forces acting on the triangular element drawn below show that:

$$
\begin{equation*}
\square_{11}=\cos ^{2} \square \square_{11}+\sin ^{2} \square \square_{22}+2 \cos \square \sin \square \square_{12} \tag{1}
\end{equation*}
$$

and
$\square_{12}=\square \cos \square \sin \square \square_{11}+\cos \square \sin \square \square_{22}+\left(\cos ^{2} \square \square \sin ^{2} \square\right) \square_{12}$

Find the values of \square that produce the maximum and minimum values of $\tilde{\square}_{11}$, what are the corresponding values of $\tilde{\square}_{12}$?. Do not try to distinguish between the maximum and minimum values.

Note: This is a "plane stress" problem, i.e. stresses only act in the plane of the drawing $\left(\square_{33}=\square_{13}=\square_{23}=0\right)$. This problem is at the heart of transforming stress, take the time to make sure that you understand the procedure.

