## **Unified Engineering**

## Fall 2003

Problem M13 (Materials and Structures)

a) The state of axial stress through the thickness of a beam in pure bending (i.e. loaded only by a moment) is given by:



M is the bending moment (which is constant in  $x_1$ ), and I is the second moment of area of the cross-section of the beam (which is also constant). If  $\sigma_{12} = \sigma_{32} = \sigma_{22} = \sigma_{33} = 0$  what can you say about the variation of the shear stress  $\sigma_{13}$  with  $x_1$ ,  $x_2$  and  $x_3$ ?

b) The bending moment M now varies as a function of  $x_1$  according to  $M = cx_1$  The axial stress is still give by  $\sigma_{11} = \left(\frac{M}{I}\right)x_3$ . Again,  $\sigma_{12} = \sigma_{32} = \sigma_{22} = \sigma_{33} = 0$ . How does  $\sigma_{13}$  vary with  $x_1, x_2$  and  $x_3$ ? Note  $\sigma_{13} = 0$  for  $-h = x_3$  and  $x_3 = +h$  (the top and bottom surfaces of the bean are free surfaces and do not have any stress acting on them).