Problem M15 (Materials and Structures)
i) By considering the change in volume of an infinitessimal element undergoing small elongational strains show that the volumetric strain $\frac{\square \square \mathrm{V}}{\square \square} \mathrm{V}=\square_{1}+\square_{2}+\square_{3}$
ii) A continuous body experiences a displacement field, u_{n} that is described by:

$$
\begin{aligned}
& \mathrm{u}_{1}=\left[0.5\left(\mathrm{x}_{1}^{2} \square \mathrm{x}_{2}^{2}\right)+0.5 \mathrm{x}_{1} \mathrm{x}_{2}\right] 10^{\square 3} \mathrm{~mm} \\
& \mathrm{u}_{1}=\left[0.25\left(\mathrm{x}_{1}^{2} \square \mathrm{x}_{2}^{2}\right)-\mathrm{x}_{1} \mathrm{x}_{2}\right] 10^{\square 3} \mathrm{~mm} \\
& \mathrm{u}_{3}=0
\end{aligned}
$$

Determine:
a) The 6 components of the strain tensor as a function of position (i.e. in terms of x_{1}, x_{2}, x_{3})
b) The rigid body rotation about x_{3} as a function of position (i.e. in terms of x_{1}, x_{2}, x_{3}).
c) The principal strains and the principal strain directions at $x_{1}=5 \mathrm{~mm}$ and $x_{2}=7 \mathrm{~mm}$.
d) The volumetric strain at $x_{1}=5 \mathrm{~mm}$ and $x_{2}=7 \mathrm{~mm}$.

