Problem S16 Solution

The Fourier transform of $x(t)$ is given by $X(f)$. Then the FT of $x_{1}(t)$ is given by

$$
X_{1}(f)=H(f) X(f)= \begin{cases}-j X(f), & 0<f<f_{M} \\ +j X(f), & -f_{M}<f<0 \\ 0, & |f|>f_{M}\end{cases}
$$

The signal $x_{2}(t)$ is given by

$$
x_{2}(t)=w_{1}(t) x_{1}(t)
$$

where $w_{1}(t)=\cos 2 \pi f_{c} t$. The FT of $w_{1}(t)$ is

$$
W_{1}(f)=\frac{1}{2}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]
$$

The FT of $x_{2}(t)$ is then

$$
\begin{aligned}
X_{2}(f) & =X_{1}(f) * W_{1}(f) \\
& =\frac{1}{2}\left[X_{1}\left(f-f_{c}\right)+X_{1}\left(f+f_{c}\right)\right] \\
& = \begin{cases}-\frac{j}{2} X\left(f-f_{c}\right), & f_{c}<f<f_{c}+f_{M} \\
+\frac{j}{2} X\left(f-f_{c}\right), & f_{c}-f_{M}<f<f_{c} \\
-\frac{j}{2} X\left(f+f_{c}\right), & -f_{c}<f<-f_{c}+f_{M} \\
+\frac{j}{2} X\left(f+f_{c}\right), & -f_{c}-f_{M}<f<-f_{c} \\
0, & \text { else }\end{cases}
\end{aligned}
$$

The signal $x_{3}(t)$ is given by

$$
x_{3}(t)=w_{2}(t) x(t)
$$

where $w_{2}(t)=\sin 2 \pi f_{c} t$. The FT of $w_{2}(t)$ is

$$
W_{2}(f)=\frac{1}{2}\left[-j \delta\left(f-f_{c}\right)+j \delta\left(f+f_{c}\right)\right]
$$

The FT of $x_{3}(t)$ is then

$$
\begin{aligned}
X_{3}(f) & =X(f) * W_{2}(f) \\
& =\frac{1}{2}\left[-j X\left(f-f_{c}\right)+j X\left(f+f_{c}\right)\right] \\
& = \begin{cases}-\frac{j}{2} X\left(f-f_{c}\right), & f_{c}<f<f_{c}+f_{M} \\
-\frac{j}{2} X\left(f-f_{c}\right), & f_{c}-f_{M}<f<f_{c} \\
+\frac{j}{2} X\left(f+f_{c}\right), & -f_{c}<f<-f_{c}+f_{M} \\
+\frac{j}{2} X\left(f+f_{c}\right), & -f_{c}-f_{M}<f<-f_{c} \\
0, & \text { else }\end{cases}
\end{aligned}
$$

Finally, the FT of $y(t)$ is given by

$$
\begin{aligned}
Y(f) & =X_{2}(f)+X_{3}(f) \\
& = \begin{cases}-j X\left(f-f_{c}\right), & f_{c}<f<f_{c}+f_{M} \\
0, & f_{c}-f_{M}<f<f_{c} \\
0, & -f_{c}<f<-f_{c}+f_{M} \\
+j X\left(f+f_{c}\right), & -f_{c}-f_{M}<f<-f_{c} \\
0, & \text { else }\end{cases} \\
& = \begin{cases}-j X\left(f-f_{c}\right), & f_{c}<f<f_{c}+f_{M} \\
+j X\left(f+f_{c}\right), & -f_{c}-f_{M}<f<-f_{c} \\
0, & \text { else }\end{cases}
\end{aligned}
$$

First, $y(t)$ is guaranteed to be real if $x(t)$, because if $x(t)$ real, $X(f)$ has conjugate symmetry, and then $Y(f)$ has conjugate symmetry, which implies $y(t)$ real.

Second, $x(t)$ can be recovered from $y(t) \mathrm{s}$ as follows. If $y(t)$ is modulated by $2 \sin 2 \pi f_{c} t$, the resulting signal is $z(t)=2 y(t) \sin 2 \pi f_{c} t$, which has FT

$$
\begin{aligned}
Z(f) & =-j Y\left(f-f_{c}\right)+j Y\left(f+f_{c}\right) \\
& = \begin{cases}-X\left(f-2 f_{c}\right), & 2 f_{c}<f<2 f_{c}+f_{M} \\
+X(f), & -f_{M}<f<0 \\
+X(f), & 0<f<f_{M} \\
-X\left(f+2 f_{c}\right), & -2 f_{c}-f_{M}<f<-2 f_{c} \\
0, & \text { else }\end{cases}
\end{aligned}
$$

If $z(t)$ is then passed through a lowpass filter, with cutoff at $f= \pm f_{M}$, then the resulting signal is identical to $x(t)$.

Problem S17 Solution

To begin, label the signals as shown below:

From the problem statement,

$$
y(t)=[x(t)+A] \cos \left(2 \pi f_{c} t+\theta_{c}\right)
$$

Define

$$
\begin{aligned}
z(t) & =x(t)+A \\
w(t) & =\cos \left(2 \pi f_{c} t+\theta_{c}\right)
\end{aligned}
$$

The factor $w(t)$ can be expanded as

$$
w(t)=\cos \left(2 \pi f_{c} t+\theta_{c}\right)=\cos \theta_{c} \cos 2 \pi f_{c} t-\sin \theta_{c} \sin 2 \pi f_{c} t
$$

The Fourier transform of $w(t)$ is then given by

$$
\begin{aligned}
W(f) & =\mathcal{F}\left[\cos \left(2 \pi f_{c} t+\theta_{c}\right)\right] \\
& =\frac{1}{2} \cos \theta_{c}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]-\frac{1}{2} \sin \theta_{c}\left[-j \delta\left(f-f_{c}\right)+j \delta\left(f+f_{c}\right)\right] \\
& =\frac{1}{2}\left(\cos \theta_{c}+j \sin \theta_{c}\right) \delta\left(f-f_{c}\right)+\frac{1}{2}\left(\cos \theta_{c}-j \sin \theta_{c}\right) \delta\left(f+f_{c}\right)
\end{aligned}
$$

The Fourier transform of $z(t)=x(t)+A$ is given by

$$
Z(f)=\mathcal{F}[z(t)]=X(f)+A \delta(f)
$$

$Z(f)$ is bandlimited, because $X(f)$ is, and of course the impulse function is bandlimited. So the FT of $y(t)$ is given by the convolution

$$
\begin{aligned}
Y(w) & =Z(f) * W(f) \\
& =\frac{1}{2}\left[\left(\cos \theta_{c}+j \sin \theta_{c}\right) Z\left(f-f_{c}\right)+\left(\cos \theta_{c}-j \sin \theta_{c}\right) Z\left(f+f_{c}\right)\right]
\end{aligned}
$$

Next, compute the spectra of $y_{1}(t)$ and $y_{2}(t)$. To do so, we need the spectra of $w_{1}(t)$ and $w_{2}(t)$:

$$
\begin{aligned}
W_{1}(f)=\mathcal{F}\left[w_{1}(t)\right] & =\mathcal{F}\left[\cos 2 \pi f_{c} t\right] \\
& =\frac{1}{2}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right] \\
W_{2}(f)=\mathcal{F}\left[w_{2}(t)\right] & =\mathcal{F}\left[\sin 2 \pi f_{c} t\right] \\
& =\frac{1}{2}\left[-j \delta\left(f-f_{c}\right)+j \delta\left(f+f_{c}\right)\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
Y_{1}(f)= & W_{1}(f) * Y(f) \\
= & \frac{1}{2}\left[Y\left(f-f_{c}\right)+Y\left(f-f_{c}\right)\right] \\
= & \frac{1}{4}\left[\left(\cos \theta_{c}+j \sin \theta_{c}\right) Z\left(f-2 f_{c}\right)+\left(\cos \theta_{c}-j \sin \theta_{c}\right) Z(f)\right] \\
& +\frac{1}{4}\left[\left(\cos \theta_{c}+j \sin \theta_{c}\right) Z(f)+\left(\cos \theta_{c}-j \sin \theta_{c}\right) Z\left(f+2 f_{c}\right)\right] \\
= & \frac{1}{2} \cos \theta_{c} Z(f) \\
& +\frac{1}{4}\left[\left(\cos \theta_{c}+j \sin \theta_{c}\right) Z\left(f-2 f_{c}\right)+\left(\cos \theta_{c}-j \sin \theta_{c}\right) Z\left(f+2 f_{c}\right)\right]
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
Y_{4}(f)= & W_{2}(f) * Y(f) \\
= & \frac{1}{2}\left[-j Y\left(f-f_{c}\right)+j Y\left(f-f_{c}\right)\right] \\
= & \frac{-j}{4}\left[\left(\cos \theta_{c}+j \sin \theta_{c}\right) Z\left(f-2 f_{c}\right)+\left(\cos \theta_{c}-j \sin \theta_{c}\right) Z(f)\right] \\
& +\frac{j}{4}\left[\left(\cos \theta_{c}+j \sin \theta_{c}\right) Z(f)+\left(\cos \theta_{c}-j \sin \theta_{c}\right) Z\left(f+2 f_{c}\right)\right] \\
= & -\frac{1}{2} \sin \theta_{c} Z(f) \\
& +\frac{1}{4}\left[\left(-j \cos \theta_{c}+\sin \theta_{c}\right) Z\left(f-2 f_{c}\right)+\left(j \cos \theta_{c}+\sin \theta_{c}\right) Z\left(f+2 f_{c}\right)\right]
\end{aligned}
$$

Now, when $y_{1}(t)$ and $y_{4}(t)$ are passed through the lowpass filters, the $Z\left(f-2 f_{c}\right)$ and $Z\left(f+2 f_{c}\right)$ terms are eliminated, and the $Z(f)$ terms are passed. Therefore,

$$
\begin{aligned}
Y_{2}(f) & =\frac{1}{2} \cos \theta_{c} Z(f) \\
Y_{5}(f) & =-\frac{1}{2} \sin \theta_{c} Z(f)
\end{aligned}
$$

and

$$
\begin{aligned}
& y_{2}(t)=\frac{1}{2} \cos \theta_{c} z(t) \\
& y_{5}(t)=-\frac{1}{2} \sin \theta_{c} z(t)
\end{aligned}
$$

After passing these signals through the squarers, we have

$$
\begin{aligned}
& y_{3}(t)=\frac{1}{4} \cos ^{2} \theta_{c} z^{2}(t) \\
& y_{6}(t)=\frac{1}{4} \sin ^{2} \theta_{c} z^{2}(t)
\end{aligned}
$$

$y_{7}(t)$ is the sum of these, so that

$$
\begin{aligned}
y_{7}(t) & =y_{3}(t)+y_{7}(t) \\
& =\frac{1}{4}\left[\cos ^{2} \theta_{c} z^{2}(t)+\sin ^{2} \theta_{c} z^{2}(t)\right] \\
& =\frac{1}{4} z^{2}(t)
\end{aligned}
$$

Finally, $r(t)$ is obtained by passing taking the square root of $y_{7}(t)$, so that

$$
\begin{aligned}
r(t) & =\sqrt{z^{2}(t) / 4} \\
& =\frac{|z(t)|}{2}
\end{aligned}
$$

if the positive root is always taken. But $z(t)=x(t)+A$ is always positive, according to the problem statement. Therefore,

$$
x(t)=2 r(t)-A
$$

Problem sis SOLUTION SPRING $2004 \quad 1 / 2$
Redraws the block diagram:

Take each signal in turn:

$$
\begin{aligned}
& x_{1}(t)=x(t)+\cos \omega_{c} t \\
& \Rightarrow X_{1}(f)=X(f)+\frac{1}{2}\left(\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right)
\end{aligned}
$$

where $f_{c}=\omega_{c} / 2 \pi$
$x_{2}(t)$ is $x_{1}^{2}(t)$, so

$$
\begin{aligned}
& x_{2}(f)= X_{1}(f) * X_{1}(f) \\
&=X(f) * X(f)+X\left(f-f_{c}\right)+X\left(f+f_{c}\right) \\
&+\frac{1}{4}\left[\delta\left(f-2 f_{c}\right)+\delta\left(f+2 f_{c}\right)\right] \\
&+\frac{1}{2} \delta(f)
\end{aligned}
$$

Suppose $X(f)$ is

What does $X_{2}(f)$ look like?

Therefore, if we want

$$
\begin{aligned}
y(t) & =x(t) \cos \omega_{c} t \\
\Rightarrow y(f) & =\frac{x\left(f-f_{c}\right)}{2}+\frac{x\left(f+f_{c}\right)}{2}
\end{aligned}
$$

then we can take

$$
\begin{aligned}
& f_{l}=f_{c}-f_{m} \\
& f_{h}=f_{c}+f_{m} \\
& A=1 / 2
\end{aligned} \quad \begin{aligned}
& \left(w_{e}=\omega_{c}-\omega_{m}\right) \\
& \left(w_{n}=\omega_{c}+\omega_{m}\right)
\end{aligned}
$$

We also require that

$$
\begin{aligned}
& f_{c}-f_{m}>2 f_{m} \\
& \Rightarrow f_{c}>3 f_{m}
\end{aligned}
$$

in order to have ns overlap

