Sonutions

$$
\begin{equation*}
U=-\frac{A}{r^{m}}+\frac{B}{r^{n}} \tag{0}
\end{equation*}
$$

lony range electōoshitic. altruction

Shout range repulsion inner electuon crbituls. nuclei.

Cubic unit cell

Young's modulus

$$
\begin{align*}
& =\frac{d F}{A} \cdot \frac{d r_{0}}{d r}=\frac{d F r_{0}}{d r r_{0}^{2}} \\
& =\frac{1}{r_{0}} \frac{d F}{d r}=\left.\frac{1}{r_{0}} \frac{d^{2} U}{d r^{2}}\right|_{r=r_{0}} \tag{1}
\end{align*}
$$

$$
\begin{align*}
\frac{d u}{d r} & =M A r^{(-m-1)}-n B^{(-n-1)}, \frac{d^{2} y}{d r^{2}} \\
d t r & =r_{0} \frac{d u}{d r}=0 \\
\Rightarrow B & =\frac{M}{n} A r_{0}^{n-m} \text { Subshbute into (O) } \\
\Rightarrow U & =-A r^{-m}+\frac{M}{n} A r_{0}^{n-M} r^{-n} \\
\therefore U\left(r_{0}\right) & =-A r_{0}^{-m}+\frac{M}{n} A r_{0}^{(n-M-n)}=A r_{0}^{-m}\left(\frac{M}{n}-1\right)=A r_{0}^{-m}\left(\frac{M-n}{n}\right) \tag{2}
\end{align*}
$$

From definition in question

$$
\begin{aligned}
& -K T_{m}=A r_{0}^{-m}\left(\frac{\mu-n}{n}\right) \\
& \therefore A=\frac{-n}{(m-n)} K T_{m} r_{0}^{m}, \quad B=\frac{-M m}{M-n} K T_{m} r_{0}^{r} r^{r} r_{0}^{n-r^{r}}=\frac{m}{m-n} K T_{m} r_{0}^{n} \\
& U=+\frac{n}{m-a} k T_{m} \frac{r_{0}^{m}}{r^{m}}-\frac{m}{m-n}<T_{m} \frac{r_{0}^{n}}{r^{n}} \\
& =\frac{d v}{d r}=-\frac{m n}{m-n} K T_{m} r_{0}^{m} \xi^{(-m-1)}+\frac{n M}{m-n} K T_{m} r_{0}^{n} r^{(-n-1)} \\
& \frac{d F}{d r}=+\frac{(m+m 1) m n}{m-n} K T_{m} r_{0}^{m} r^{-(m+2)}-\frac{(n+1) n m}{m-n} K T_{m} r_{0}^{n} r^{-(n+2)} \\
& f \sim r=r_{0}, \frac{1}{r_{0}} \frac{d F}{d r}=\frac{+(m+1) m n}{m-n} K T_{m} r_{0}^{\mu} \cdot p_{0}^{-p-2} \cdot r_{0}^{-1} \frac{(n+1) n m}{m-n} K T_{m} \ell_{0}^{\infty}-p_{0}^{-n-2} r_{0}^{-1} \\
& =\frac{m n k T_{m}}{(m-1) r_{0}^{3}}(+(m+1)-(n+1)), r_{0}^{3}=\Omega \\
& \therefore E=\left.\frac{1}{r_{0}} \frac{d F}{d r}\right|_{=r_{0}}=\frac{\operatorname{mnk} T_{m}}{\Omega}!
\end{aligned}
$$

The purpose of this question is to demonstrate Intrinsic link behüeen muchuli e Tm. Diamond, Sic have hight high T_{μ}, Polymers have lon E, Ins Tm.

M24 FCC Packing density

- close packed direchurs or fuce dingorab

ahemic radius r, atünic volume $\frac{4}{3} \pi r^{3}$
number of ateuss $/$ culve $=\underset{\text { curves }}{\left(8 \times \frac{1}{8}\right)}+\underset{\left(\frac{1}{2}\right)}{(8)}=4$
fuces

$$
\therefore 4 \times \frac{4}{3} \pi r^{3} \text { /cule }=\frac{16}{3} \pi r^{3} \text { of "sclid" }
$$

side of cube $=$

$$
\begin{aligned}
2 a^{2} & =(4 r)^{2}=16 r^{2} \\
a & =\sqrt{8} r
\end{aligned}
$$

\therefore packirig density

$$
\begin{aligned}
& =\frac{16 \pi c^{2}}{3} /(\sqrt{8})^{3} y^{2}=\frac{16 \pi}{3(\sqrt{8})^{2}}= \\
& =0.740 \equiv
\end{aligned}
$$

M24 HCP Unitcell

h
comider letralledur

-

$$
\begin{aligned}
& l \cos 30^{\circ}=r \\
& l=\frac{2 r}{\sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=\frac{28}{\sqrt{3}} \cdot \frac{1}{2 r}=\frac{1}{\sqrt{3}} \\
& h^{2}=4 r^{2}-\frac{4 r^{2}}{3}=\frac{8}{3} r^{2}
\end{aligned}
$$

curea of hiangle $=$

$$
2 r \times 2 r \cdot \frac{\sqrt{3}}{2}=2 \sqrt{3} r^{2}
$$

$$
h=\sqrt{\frac{8}{3}} r
$$

\therefore V隹星 of hexagonal unt call $=6 \times 2 \sqrt{3} r^{2} \times \sqrt{\frac{8}{3}} r$

$$
=12 \sqrt{8} r^{3} \Leftarrow
$$

\therefore padking dam.ty $=6 \times \frac{2}{3} \pi r^{3} / 12 \sqrt{8} 8^{3}=\frac{2 \pi}{3 \sqrt{8}}=0.74 \cong$

$$
\begin{aligned}
& \text { Nunter of atims } / \operatorname{cell}=2 \times \frac{1}{2}+12 \times \frac{1}{6}+3 \times 1=6
\end{aligned}
$$

6) Density $=\frac{\text { Mass }}{\text { vowre }}$

$$
\text { at unit call lenel }=\frac{\text { Halums/cell } \times \text { vorese of }}{\text { vorme of cell }}
$$

i) Nikkel. FCC. Man latu= $=\frac{58.69}{6.023 \times 10^{23}}$

$$
\begin{aligned}
& \text { Vouns of all }=\frac{\frac{58.69}{6.023 \times 10^{23}} \times 4}{8.90 \times 10^{8}}=a^{3} \\
& a^{2}=4.38 \times 10^{-26}, a
\end{aligned} \begin{aligned}
& a .52 \times 10^{-4} 10 \\
&=0.3 .59 \mathrm{~nm} \Leftarrow \\
& a=\sqrt{8} r \Rightarrow r=1.24 \times 10^{-4} \mathrm{~m} \Leftarrow
\end{aligned}
$$

ii) iw Magnesivn, HCP Man/alm $=\frac{24.31}{6.023 \times 10^{23}}$

$$
\begin{gathered}
\text { Voure of cell }=\frac{24.31 \times 6}{\frac{1.74 \times 10^{3} 6.023 \times 10^{23}}{1.74 \times 7}}=6 \times 2 \sqrt{8 r^{3}} \\
r^{3}=4.1 \times 10^{-27} r=1.60 \times 10^{-10} \mathrm{M}=
\end{gathered}
$$

Problem M25

In addition to chapters 4-7 of Ashby and Jones Engineering Materials. You may also find the chapters on polymers in Ashby and Jones, Engineering Materials 2, helpful (this is a green covered book, available in the Aero-Astro library).
a) Define the term polymer; list three engineering polymers. A polymer is a large molecule made up of smaller repeating units (mers). Typically polymers have carbon "backbones" with side groups consisting of other organic atoms ($\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{N}$). Engineering polymers: polyethylene, polystyrene, epoxy
b) Define a thermoplastic and a thermoset. A thermoplastic softens dramatically with increasing temperature. A thermoset does not. Thermoplastics consist of long polymer chains with no covalent cross-links between the chains. The chains are bonded together by Van der Waals bonds. Thermosets have covalent crosslinks between the chains.
c) Distinguish between a cross-linked and a non-cross-linked polymer. See above. Thermoplastics are non-cross-linked and Thermosets have covalent cross-links
d) What is the glass transition temperature?. The glass transition temperature is the temperature at which the Van der Waals bonds melt. It is the temperature at which the elastic properties drop dramatically in thermoplastics.
e) Explain the change in moduli of polymers at the glass transition temperature. The Van der Waals bonds "melt" at this temperature, i.e. the thermal vibration exceeds the ability of the bonds to hold the molecules together. Thermoplastics rely on Van der Waals bonds for their elastic response at low temperatures. If these bonds are removed, then the polymer behaves viscoelastically, with the elastic component coming from entanglements between the polymer chains.
f) What is the range of temperature in which T_{G} lies for most engineering polymers?. $100-500 \mathrm{~K}$.
g) How would you increase the modulus of a polymer? Introduce covalent cross-links.

Increase degree of crystallinity. Increase alignment of polymer chains.

On all paints on givilur $V_{n}=0(f / a v \operatorname{tracg})$. d) At poit $A=\lambda=-2 V_{0}$ cos $\left(x 0^{\circ}\right)=2 V$ os

$$
+: \begin{aligned}
& s \quad 2 V_{e} \\
& \overbrace{\lambda=2 V_{0}}
\end{aligned}
$$

b) At pant $c: \quad \lambda=-2 V_{n} \cos (g \theta)=0$

$$
\Delta V_{n}=V_{n_{B}}-V_{n_{c}}^{0}=0 \Rightarrow V_{n_{s}}=0
$$

$A_{s} \Delta V_{S}=V_{S_{0}}-V_{S_{c}}=\gamma=0 \Rightarrow V_{S_{0}}=V_{S_{c}}=2 V_{\infty} \quad\left(=-V_{0}\right)$
c) Velocibes at both BandD are $2 V_{0}$ in x-diration. Interiar velactity appears to be equal \& $2 V_{o}$ evengicere.
d) Exaite smate ather guemel \& locotom:

Look of nesed curpacices
Cleck: $V_{\text {nitak }}-V_{\text {matik }} \stackrel{?}{=} \lambda$

Source sheet model is conssitunt witt tha about cyifider In erier flow is $2 \mathrm{~V}_{\text {oo }}$ in \times dietion

$$
\begin{aligned}
& \Delta V_{n}=V_{B}-V_{\theta_{1}}^{0}+\lambda \\
& \text { or } V_{\text {og }}=\lambda=2 V_{\infty}
\end{aligned}
$$

Unified Fwids F 22 Siluaten Fall b3
a)

$$
\begin{aligned}
& L^{\prime}=\frac{1}{2} P V_{0}^{2} c G_{l} \quad D^{\prime}=\frac{1}{2} \rho V_{0}^{2} \circ c_{\alpha} \\
& L=\int_{-3 / 2}^{b_{2} / L_{1}} d y=\int_{-3 / 2}^{b_{2}} \frac{1}{2} P V_{s}^{2} c \varepsilon_{\varepsilon} d d=\frac{1}{2} p V_{0}^{2} c c_{i} \cdot b=\frac{1}{2} \rho V^{2} S_{\varepsilon} \\
& C_{L}=\frac{L}{\frac{1}{2} V_{Q}^{2} S}=\frac{\frac{1}{2} V_{Q}^{2} S C_{Q}}{\frac{1}{1} P_{0}^{2} S} \Rightarrow C_{L}=\varepsilon \\
& \text { Hikene } C_{D}=4
\end{aligned}
$$

b) In loee flight $L=m g=$ constcent

$$
\begin{aligned}
& \quad m g=\frac{1}{\rho} \rho V^{2} S C_{L} \\
& \Rightarrow V\left(c_{2}\right)=\sqrt{\frac{m g}{s} \frac{2}{\rho \varepsilon_{L}}}=\left(\frac{m g}{s} \frac{2}{\rho}\right)^{1 / 2} \frac{1}{c_{1}^{1 / 2}} \\
& \text { alo } D=\frac{1}{2} \rho V^{2} S C_{D} \\
& P=D V=\frac{1}{2} \rho V^{3} S C_{D}=\frac{1}{2} \rho V^{3} S\left[0.01+0.015 \varepsilon^{3}\right] \\
& P\left(C_{L}\right)=\frac{1}{2} \rho S\left(\frac{m g}{s} \frac{2}{\rho}\right)^{3 / 2} \times\left[0.01 \frac{1}{c_{2}^{2 / 2}}+0.015 G_{2}^{3 / 2}\right]
\end{aligned}
$$

Iganing coristants: $\quad \bar{V}(\varepsilon)=\frac{1}{c_{2}^{1 / 2}} \quad \bar{P}(\varepsilon)=\frac{0.01}{c_{2}^{3_{2} / 2}}+0.015 \varepsilon_{2}^{3 / 2}$
Cam plot $\bar{P}(\varepsilon)$ werses $\bar{V}(\varepsilon)$ wh $\varepsilon_{c}=0.1 . n 1.2$
Or ent ilist $\bar{P}(\bar{V})=0.01 \bar{V}^{3}+\frac{0.015}{\bar{V}^{3}}$, plot $\bar{P}(\bar{V})$

