Problem S10 (Signals and Systems)

This problem provides lots of practice using partial fraction expansions to determine inverse Laplace transforms. Please use the coverup method - it really is superior to other methods, and more reliable. Also, please check your answer, that is, verify that your expansion really is equivalent to the $G(s)$ given.

For each of the following Laplace transforms, find the inverse Laplace transform.

1. $G(s)=\frac{3 s^{2}+3 s-10}{s^{2}-4}, \quad \operatorname{Re}[s]>2$
2. $G(s)=\frac{6 s^{2}+26 s+26}{(s+1)(s+2)(s+3)}, \quad \operatorname{Re}[s]>-1$
3. $G(s)=\frac{4 s^{2}+11 s+9}{(s+1)^{2}(s+2)}, \quad \operatorname{Re}[s]>-1$
4. $G(s)=\frac{4 s^{3}+11 s^{2}+5 s+2}{s^{2}(s+1)^{2}}, \quad \operatorname{Re}[s]>0$
5. $G(s)=\frac{s^{3}+3 s^{2}+9 s+12}{\left(s^{2}+4\right)\left(s^{2}+9\right)}, \quad \operatorname{Re}[s]>0$
