Problem S16 Solution

The Fourier transform of $x(t)$ is given by $X(f)$. Then the FT of $x_{1}(t)$ is given by

$$
X_{1}(f)=H(f) X(f)= \begin{cases}-j X(f), & 0<f<f_{M} \\ +j X(f), & -f_{M}<f<0 \\ 0, & |f|>f_{M}\end{cases}
$$

The signal $x_{2}(t)$ is given by

$$
x_{2}(t)=w_{1}(t) x_{1}(t)
$$

where $w_{1}(t)=\cos 2 \pi f_{c} t$. The FT of $w_{1}(t)$ is

$$
W_{1}(f)=\frac{1}{2}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]
$$

The FT of $x_{2}(t)$ is then

$$
\begin{aligned}
X_{2}(f) & =X_{1}(f) * W_{1}(f) \\
& =\frac{1}{2}\left[X_{1}\left(f-f_{c}\right)+X_{1}\left(f+f_{c}\right)\right] \\
& = \begin{cases}-\frac{j}{2} X\left(f-f_{c}\right), & f_{c}<f<f_{c}+f_{M} \\
+\frac{j}{2} X\left(f-f_{c}\right), & f_{c}-f_{M}<f<f_{c} \\
-\frac{j}{2} X\left(f+f_{c}\right), & -f_{c}<f<-f_{c}+f_{M} \\
+\frac{j}{2} X\left(f+f_{c}\right), & -f_{c}-f_{M}<f<-f_{c} \\
0, & \text { else }\end{cases}
\end{aligned}
$$

The signal $x_{3}(t)$ is given by

$$
x_{3}(t)=w_{2}(t) x(t)
$$

where $w_{2}(t)=\sin 2 \pi f_{c} t$. The FT of $w_{2}(t)$ is

$$
W_{2}(f)=\frac{1}{2}\left[-j \delta\left(f-f_{c}\right)+j \delta\left(f+f_{c}\right)\right]
$$

The FT of $x_{3}(t)$ is then

$$
\begin{aligned}
X_{3}(f) & =X(f) * W_{2}(f) \\
& =\frac{1}{2}\left[-j X\left(f-f_{c}\right)+j X\left(f+f_{c}\right)\right] \\
& = \begin{cases}-\frac{j}{2} X\left(f-f_{c}\right), & f_{c}<f<f_{c}+f_{M} \\
-\frac{j}{2} X\left(f-f_{c}\right), & f_{c}-f_{M}<f<f_{c} \\
+\frac{j}{2} X\left(f+f_{c}\right), & -f_{c}<f<-f_{c}+f_{M} \\
+\frac{j}{2} X\left(f+f_{c}\right), & -f_{c}-f_{M}<f<-f_{c} \\
0, & \text { else }\end{cases}
\end{aligned}
$$

Finally, the FT of $y(t)$ is given by

$$
\begin{aligned}
Y(f) & =X_{2}(f)+X_{3}(f) \\
& = \begin{cases}-j X\left(f-f_{c}\right), & f_{c}<f<f_{c}+f_{M} \\
0, & f_{c}-f_{M}<f<f_{c} \\
0, & -f_{c}<f<-f_{c}+f_{M} \\
+j X\left(f+f_{c}\right), & -f_{c}-f_{M}<f<-f_{c} \\
0, & \text { else }\end{cases} \\
& = \begin{cases}-j X\left(f-f_{c}\right), & f_{c}<f<f_{c}+f_{M} \\
+j X\left(f+f_{c}\right), & -f_{c}-f_{M}<f<-f_{c} \\
0, & \text { else }\end{cases}
\end{aligned}
$$

First, $y(t)$ is guaranteed to be real if $x(t)$, because if $x(t)$ real, $X(f)$ has conjugate symmetry, and then $Y(f)$ has conjugate symmetry, which implies $y(t)$ real.

Second, $x(t)$ can be recovered from $y(t) \mathrm{s}$ as follows. If $y(t)$ is modulated by $2 \sin 2 \pi f_{c} t$, the resulting signal is $z(t)=2 y(t) \sin 2 \pi f_{c} t$, which has FT

$$
\begin{aligned}
Z(f) & =-j Y\left(f-f_{c}\right)+j Y\left(f+f_{c}\right) \\
& = \begin{cases}-X\left(f-2 f_{c}\right), & 2 f_{c}<f<2 f_{c}+f_{M} \\
+X(f), & -f_{M}<f<0 \\
+X(f), & 0<f<f_{M} \\
-X\left(f+2 f_{c}\right), & -2 f_{c}-f_{M}<f<-2 f_{c} \\
0, & \text { else }\end{cases}
\end{aligned}
$$

If $z(t)$ is then passed through a lowpass filter, with cutoff at $f= \pm f_{M}$, then the resulting signal is identical to $x(t)$.

