Problem S22 (Signals and Systems)

Solution:

I used Mathematica to find some of the integrals, although you could use tables or integrate by parts.
(a)

$$
\begin{gathered}
\bar{t}=\int t g^{2}(t) d t=\int_{0}^{\infty} t^{7} e^{-2 t / t a u} d t=\frac{315}{16} \tau^{8} \\
\bar{t}=\int g^{2}(t) d t=\int_{0}^{\infty} t^{6} e^{-2 t / t a u} d t=\frac{45}{8} \tau^{7}
\end{gathered}
$$

Therefore,

$$
\bar{t}=\frac{7}{2} \tau
$$

(b)

$$
\int(t-\bar{t})^{2} g^{2}(t) d t=\frac{315}{32} \tau^{9}
$$

Therefore,

$$
\Delta t=\sqrt{7} \tau
$$

(c)

$$
\int \dot{g}^{2}(t) d t=\frac{9}{8} \tau^{5}
$$

Therefore,

$$
\Delta \omega=\frac{2}{\sqrt{5} \tau}
$$

(d) The duration-bandwidth product is

$$
\Delta t \Delta \omega=2 \sqrt{\frac{7}{5}} \approx 2.366
$$

which compares favotably with the theoretical lower bound

$$
\Delta t \Delta \omega \geq 2
$$

