Problem S22 (Signals and Systems)

Consider a pulse similar to the Loran-C pulse, given by

$$
h(t)=t^{3} e^{-t / \tau} \sigma(t) \sin (2 \pi f t)=g(t) w(t)
$$

where

$$
\begin{aligned}
& g(t)=t e^{-t / \tau} \sigma(t) \\
& w(t)=\sin (2 \pi f t)
\end{aligned}
$$

(a) Find the centroid of the pulse envelope, given by

$$
\bar{t}=\frac{\int t g^{2}(t) d t}{\int g^{2}(t) d t}
$$

(b) Find the duration of the envelope, given by

$$
\Delta t=2\left(\frac{\int(t-\bar{t})^{2} g^{2}(t) d t}{\int g^{2}(t) d t}\right)^{\frac{1}{2}}
$$

(c)

$$
\Delta \omega=2\left(\frac{\int \dot{g}^{2}(t) d t}{\int g^{2}(t) d t}\right)^{\frac{1}{2}}
$$

(d) How does the duration-bandwidth product compare to the theoretical minimum?

