Problem T3. (Unified Thermodynamics)

Consider two quasi-static expansion processes, one adiabatic, the second isothermal for a closed system containing air at T_1 = 300K, v_1 = 1 m^3/kg . At the end of both expansion processes, the specific volume, v_2 = 10 m^3/kg . Assume that c_p = 1.0035 kJ/kg-K, c_v = 0.7165 kJ/kg-K, and R = 0.287 kJ/kg-K.

- a) Sketch both processes on p-v and T-v diagrams.
- b) For each process determine p_2 and T_2 .
- c) For each process, determine the work done by the system and the heat transferred to the system.
- d) For each process calculate the change in enthalpy of the air.
- e) What is the difference between heat and temperature?

(LO#4, LO#5)