Introduction to Computers and Programming

Prof. I. K. Lundqvist

Lecture 10 April 8 2004

Today

- How to determine Big-O
- Compare data structures and algorithms
- Sorting algorithms

How to determine Big-O

- Partition algorithm into known pieces
- Identify relationship between pieces
 - Sequential code (+)
 - Nested code (*)
- Drop constants
- Only keep the most dominant factors

Data structure	Traversal	Search	Insert
Unsorted L List	N		
Sorted L List	N		
Unsorted Array	N		
Sorted Array	N		
Binary Tree	N		
BST	N		
F&B BST	N		

5

Searching

- Linear (sequential) search
 - Checks every element of a list until a match is found
 - Can be used to search an unordered list
- Binary search
 - Searches a set of sorted data for a particular data
 - Considerable faster than a linear search
 - Can be implemented using recursion or iteration

Linear Search

- If data distributed randomly
 - Average case:
 - N/2 comparisons needed
 - Best case:
 - · values is equal to first element tested

- Worst case:

• value not in list \rightarrow N comparisons needed

Data structure	Traversal	Search	Insert
Unsorted L List	N	N	
Sorted L List	N	Ν	
Unsorted Array	N	Ν	
Sorted Array	N		
Binary Tree	N	Ν	
BST	N	Ν	
F&B BST	N		

Binary Search

- Can be performed on
 - Sorted arrays
 - Full and balanced BSTs
- Compares and cuts half the work
 - We cut work in 1/2 each time
 - How many times can we cut in half?

Binary search is O(Log N)

Data structure	Traversal	Search	Insert
Unsorted L List	N	N	PSET
Sorted L List	N	Ν	PSET
Unsorted Array	N	N	1
Sorted Array	N	Log N	
Binary Tree	N	N	1
BST	N	N	
F&B BST	N	Log N	

Data structure	Traversal	Search	Insert
Unsorted L List	N	Ν	PSET
Sorted L List	N	Ν	PSET
Unsorted Array	N	Ν	1
Sorted Array	N	Log N	Ν
Binary Tree	N	Ν	1
BST	N	Ν	
F&B BST	Ν	Log N	

Insertion into a F&B BST

Insertion into a F&B BST

- Finding the right spot O(Log N)
- Performing the insertion O(1)
- Total work: O(Log N + 1) = O(Log N)

Data structure	Traversal	Search	Insert
Unsorted L List	N	N	PSET
Sorted L List	N	N	PSET
Unsorted Array	N	N	1
Sorted Array	N	Log N	Ν
Binary Tree	N	N	1
BST	N	N	Ν
F&B BST	N	Log N	Log N

Sorting Algorithms

- Bubble sort
- Selection sort
- ...
- Merge sort
- Heap sort
- Quick sort
- ...

In the Worst Case

O(N²) or worse

O(N Log N) or better

19

Insertion Sort

- Sorted array/list is built one item at a time
 - Simple to implement
 - Efficient on small data sets
 - Efficient on already almost ordered data sets
 - Minimal memory requirements

Insertion Sort

Statement	Work
InsertionSort(A, n)	T(n)
for j in 2n do	c ₁ n
key:= A[j]	c ₂ (n-1)
i := j-1	$c_1 n c_2(n-1) c_3(n-1)$
while i > 0 and A[i] > key	C₄X
A[i+1]:= A[i]	<pre>c₅(X-(n-1)) c₆(X-(n-1)) c₇(n-1)</pre>
i:= i-1	c ₆ (X-(n-1))
A[i+1]:= key	c ₇ (n-1)

 $X = x_2 + x_3 + ... + x_n$ where x_i is number of while expression evaluations for the ith for loop iteration

Insertion Sort Analysis

$$T(n) = c_1n + c_2(n-1) + c_3(n-1) + c_4X + c_5(X - (n-1)) + c_6(X - (n-1)) + c_7(n-1)$$
$$= c_8X + c_9n + c_{10}$$

Running time
- Best case:
• inner loop never executed - Linear Function
- Worst case:
• inner loop always executed - X is a quadratic function in n
- Average case:

• all permutations equally likely

23

Insertion Sort – $O(N^2)$

• Assume you are sorting 250,000,000 item

N = 250,000,000 $N^2 = 6.25 * 10^{16}$

Assume you can do 1 operation/nanosecond

 \rightarrow 6.25 * 10⁷ seconds

= 1.98 years

Merge Sort

MergeSort A[1..n]

- If the input sequence has only one element
 Return
- 2. Partition the input sequence into two halves
- 3. Sort the two subsequences using the same algorithm
- 4. Merge the two sorted subsequences to form the output sequence

25

Divide and Conquer

- It is an algorithmic design paradigm that contains the following steps
 - Divide: Break the problem into smaller sub-problems
 - Recur: Solve each of the sub-problems recursively
 - Conquer: Combine the solutions of each of the sub-problems to form the solution of the problem

Merge Sort Analysis

<u>Statement</u>	Work
<pre>MergeSort(A, left, right)</pre>	T(n)
<pre>if (left < right)</pre>	O(1)
mid := (left + right) / 2;	O(1)
<pre>MergeSort(A, left, mid);</pre>	T(n/2)
<pre>MergeSort(A, mid+1, right);</pre>	T(n/2)
<pre>Merge(A, left, mid, right);</pre>	O(n)
T(n) = O(1) when r	n = 1,
2T(n/2) + O(n) when r	1 > 1
Recurrence Equation	29
	29