
Introduction to Computers and
Programming

Prof. I. K. Lundqvist

Lecture 10
April 8 2004

2

Today

• How to determine Big-O

• Compare data structures and
algorithms

• Sorting algorithms

3

How to determine Big-O

• Partition algorithm into known pieces

• Identify relationship between pieces
– Sequential code (+)
– Nested code (*)

• Drop constants

• Only keep the most dominant factors

4

Does Big-O tell the whole story?
• Tx(n) = Ty(n) = O(lg n)

Algorithm 1
setup of algorithm -- takes 50 time units
read n elements into array -- 3 units/element
for i in 1..n loop

do operation1 on A[i] -- takes 10 units
do operation2 on A[i] -- takes 5 units
do operation3 on A[i] -- takes 15 units

Algorithm 2
setup of algorithm -- takes 200 time units
read n elements into array -- 3 units/element
for i in 1..n loop

do operation1 on A[i] -- takes 10 units
do operation2 on A[i] -- takes 5 units

T1(n)=50+3n+(10+5+15)n = 50+33n

T2(n)=200+3n+(10+5)n = 200+18n

5

F&B BST

BST

Binary Tree

Sorted Array

Unsorted Array

Sorted L List

Unsorted L List

InsertSearchTraversalData structure

N
N

N

N
N

N

N

6

Searching

• Linear (sequential) search
– Checks every element of a list until a match

is found
– Can be used to search an unordered list

• Binary search
– Searches a set of sorted data for a

particular data
– Considerable faster than a linear search
– Can be implemented using recursion or

iteration

7

Linear Search

• If data distributed randomly
– Average case:

• N/2 comparisons needed

– Best case:
• values is equal to first element tested

– Worst case:
• value not in list N comparisons needed

Linear search is O(N)Linear search is O(N)

8

F&B BST

BST

Binary Tree

Sorted Array

Unsorted Array

Sorted L List

Unsorted L List

InsertSearchTraversalData structure

N
N

N

N
N

N

N

N
N

N

N

N

9

Full and Balanced Binary Search Tree

42

17 47

11 19 43 67

10

Binary Search

6752474342191711

50 not found

3 comparisons
3 = Log (8)

11

Binary Search

• Can be performed on
– Sorted arrays
– Full and balanced BSTs

• Compares and cuts half the work
– We cut work in ½ each time
– How many times can we cut in half?

Binary search is O(Log N)Binary search is O(Log N)

12

F&B BST

BST

Binary Tree

Sorted Array

Unsorted Array

Sorted L List

Unsorted L List

InsertSearchTraversalData structure

N
N

N

N
N

N

N

N
N

N

N

N

Log N

Log N

1

1

PSET

PSET

13

Insertion/Shuffling Elements

474342191711

35

47434235191711

Shuffle is O(N)Shuffle is O(N)

14

Insertion to a Sorted Array

• Sorted Array
– Finding the right spot – O(Log N)
– Performing the shuffle – O(N)
– Performing the insertion - O(1)

– Total work: O(Log N + N + 1) = O(N)O(Log N + N + 1) = O(N)

15

F&B BST

BST

Binary Tree

Sorted Array

Unsorted Array

PSETSorted L List

PSETUnsorted L List

InsertSearchTraversalData structure

N
N

N

N
N

N

N

N
N

N

N

N

Log N

Log N

1

1

N

16

Insertion into a F&B BST

42

17 47

11 19 43 67

18

17

Insertion into a F&B BST

• Finding the right spot – O(Log N)
• Performing the insertion – O(1)

• Total work: O(Log N + 1) = O(Log N)O(Log N + 1) = O(Log N)

18

F&B BST

BST

Binary Tree

Sorted Array

Unsorted Array

PSETSorted L List

PSETUnsorted L List

InsertSearchTraversalData structure

N
N

N

N
N

N

N

N
N

N

N

N

Log N

Log N

1

1

N

Log N

N

19

Sorting Algorithms

• Insertion sort
• Bubble sort
• Selection sort
• …
• Merge sort
• Heap sort
• Quick sort
• …

O(N2) or worse

O(N Log N) or better

In the Worst CaseIn the Worst Case

20

Insertion Sort

• Sorted array/list is built one item at a
time
– Simple to implement
– Efficient on small data sets
– Efficient on already almost ordered data sets
– Minimal memory requirements

21

Insertion Sort

8 2 4 9 3 6

2 8 4 9 3 6
2 4 8 9 3 6
2 4 8 9 3 6
2 3 4 8 9 6
2 3 4 6 8 9

22

Statement Work
Insertion Sort

InsertionSort(A, n) T(n)

for j in 2..n do c1n
key:= A[j] c2(n-1)

i := j-1 c3(n-1)

while i > 0 and A[i] > key c4X

A[i+1]:= A[i] c5(X-(n-1))

i:= i-1 c6(X-(n-1))

A[i+1]:= key c7(n-1)

X = x2 + x3 + … + xn where xi is number of
while expression evaluations for the ith for
loop iteration

23

T(n) = c1n + c2(n-1) + c3(n-1) + c4X +
c5(X - (n-1)) + c6(X - (n-1)) + c7(n-1)

= c8X + c9n + c10

Running time
– Best case:

• inner loop never executed - Linear Function

– Worst case:
• inner loop always executed - X is a quadratic

function in n

– Average case:
• all permutations equally likely

Insertion Sort Analysis

24

Insertion Sort – O(N2)

• Assume you are sorting 250,000,000 item

N = 250,000,000 N2 = 6.25 * 1016

Assume you can do 1 operation/nanosecond

6.25 * 107 seconds

= 1.98 years

25

Merge Sort
MergeSort A[1..n]

1. If the input sequence has only one element
– Return

2. Partition the input sequence into two halves

3. Sort the two subsequences using the same
algorithm

4. Merge the two sorted subsequences to form
the output sequence

26

Divide and Conquer

• It is an algorithmic design paradigm
that contains the following steps

– Divide: Break the problem into smaller
sub-problems

– Recur: Solve each of the sub-problems
recursively

– Conquer: Combine the solutions of each of
the sub-problems to form the solution of
the problem

27

Merge Sort
596671217421147

17421147 5966712

1147 1742 6712 596

47 11 42 17 12 67 96 5

4711 4217 6712 596

47421711 9667125

966747421712115

28

Merge Sort – O(N * Log N)

• Assume you are sorting 250,000,000 item

N = 250,000,000
N*Log N = 250,000,000 * 28

Assume you can do 1 operation/nanosecond

7.25 seconds

29

Merge Sort Analysis

MergeSort(A, left, right) T(n)
if (left < right) O(1)

mid := (left + right) / 2; O(1)
MergeSort(A, left, mid); T(n/2)
MergeSort(A, mid+1, right); T(n/2)
Merge(A, left, mid, right); O(n)

Statement Work

T(n) = O(1) when n = 1,
2T(n/2) + O(n) when n > 1

T(n) = O(1) when n = 1,
2T(n/2) + O(n) when n > 1

Recurrence EquationRecurrence Equation

