Introduction to Computers and Programming

Prof. I. K. Lundqvist

Today

- How to determine Big-O
- Compare data structures and algorithms
- Sorting algorithms

How to determine Big-O

- Partition algorithm into known pieces
- Identify relationship between pieces
- Sequential code (+)
- Nested code (*)
- Drop constants
- Only keep the most dominant factors

```
    Does Big-O tell the whole story?
    - Tx}(n)=\mp@subsup{T}{y}{\prime}(n)=O(\operatorname{lg}n
    - T
    - setup of algorithm -- takes 50 time units
        read n elements into array -- 3 units/element
        for i in 1..n loop
                do operation1 on A[i] -- takes 10 units
                do operation2 on A[i] -- takes 5 units
                do operation3 on A[i] -- takes }15\mathrm{ units
    - T2 (n)=200+3n+(10+5)n=200+18n
    - setup of algorithm -- takes 200 time units
        read n elements into array -- 3 units/element
        for i in 1..n loop
                do operation1 on A[i] -- takes 10 units
                do operation2 on A[i] -- takes 5 units
```

Data structure	Traversal	Search	Insert
Unsorted L List	N		
Sorted L List	N		
Unsorted Array	N		
Sorted Array	N		
Binary Tree	N		
BST	N		
F\&B BST	N		

Searching

- Linear (sequential) search
- Checks every element of a list until a match is found
- Can be used to search an unordered list
- Binary search
- Searches a set of sorted data for a particular data
- Considerable faster than a linear search
- Can be implemented using recursion or iteration

Linear Search

- If data distributed randomly
- Average case:
- N/2 comparisons needed
- Best case:
- values is equal to first element tested
- Worst case:
- value not in list $\rightarrow \mathrm{N}$ comparisons needed

Linear search is $\mathbf{O (N)}$

Data structure	Traversal	Search	Insert
Unsorted L List	N	N	
Sorted L List	N	N	
Unsorted Array	N	N	
Sorted Array	N		
Binary Tree	N	N	
BST	N	N	
F\&B BST	N		

Full and Balanced Binary Search Tree

Binary Search

50 not found
3 comparisons
$3=\log$ (8)

Binary Search

- Can be performed on
- Sorted arrays
- Full and balanced BSTs
- Compares and cuts half the work
- We cut work in $1 / 2$ each time
- How many times can we cut in half?

Binary search is $\mathbf{O}(\mathbf{L o g} \mathbf{N})$

Data structure	Traversal	Search	Insert
Unsorted L List	N	N	PSET
Sorted L List	N	N	PSET
Unsorted Array	N	N	1
Sorted Array	N	Log N	
Binary Tree	N	N	1
BST	N	N	
F\&B BST	N	Log N	

Insertion/Shuffling Elements

Shuffle is $\mathbf{O (N)}$

Insertion to a Sorted Array

- Sorted Array
- Finding the right spot - O(Log N)
- Performing the shuffle - $\mathrm{O}(\mathrm{N})$
- Performing the insertion - O(1)
- Total work: $\mathrm{O}(\log \mathrm{N}+\mathrm{N}+1)=\mathrm{O}(\mathrm{N})$

Data structure	Traversal	Search	Insert
Unsorted L List	N	N	PSET
Sorted L List	N	N	PSET
Unsorted Array	N	N	1
Sorted Array	N	Log N	N
Binary Tree	N	N	1
BST	N	N	
F\&B BST	N	Log N	

Insertion into a F\&B BST

Insertion into a F\&B BST

- Finding the right spot - $\mathrm{O}(\log \mathrm{N})$
- Performing the insertion - O(1)
- Total work: $\mathrm{O}(\log \mathrm{N}+1)=\mathrm{O}(\log \mathrm{N})$

Data structure	Traversal	Search	Insert
Unsorted L List	N	N	PSET
Sorted L List	N	N	PSET
Unsorted Array	N	N	1
Sorted Array	N	Log N	N
Binary Tree	N	N	l
BST	N	N	N
F\&B BST	N	Log N	Log N

Sorting Algorithms

- I nsertion sort
- Bubble sort
- Selection sort
- ...
- Merge sort
- Heap sort
- Quick sort
- ...

In the Worst Case
$\mathrm{O}\left(\mathrm{N}^{2}\right)$ or worse

$\mathrm{O}(\mathrm{N} \log \mathrm{N})$ or better

Insertion Sort

- Sorted array/list is built one item at a time
- Simple to implement
- Efficient on small data sets
- Efficient on already almost ordered data sets
- Minimal memory requirements

Insertion Sort
 8 (2)4 936 284936
 24836 2489636 $\begin{array}{lllll}2 & 3 & 4 & 8 & 9\end{array}$ 234689

Insertion Sort	
Statement	Work
InsertionSort(A, n)	T(n)
for j in 2..n do	$\mathrm{c}_{1} \mathrm{n}$
key:= A[j]	$\mathrm{c}_{2}(\mathrm{n}-1)$
i $:=\mathrm{j}-1$	$\mathrm{c}_{3}(\mathrm{n}-1)$
while i > 0 and $\mathrm{A}[\mathrm{i}] ~>~ k e y ~$	$\mathrm{c}_{4} \mathrm{X}$
A[i+1]:= A[i]	$\mathrm{C}_{5}(\mathrm{X}-(\mathrm{n}-1)$)
i:= i-1	$\mathrm{c}_{6}(\mathrm{X}-(\mathrm{n}-1) \mathrm{l}$
A [i+1]:= key	$\mathrm{c}_{7}(\mathrm{n}-1)$

$X=x_{2}+x_{3}+\ldots+x_{n}$ where x_{i} is number of while expression evaluations for the $\mathrm{i}^{\text {th }}$ for loop iteration

Insertion Sort Analysis

$$
\begin{aligned}
T(n)= & c_{1} n+c_{2}(n-1)+c_{3}(n-1)+c_{4} X+ \\
& c_{5}(X-(n-1))+c_{6}(X-(n-1))+c_{7}(n-1) \\
= & c_{8} X+c_{9} n+c_{10}
\end{aligned}
$$

Running time

- Best case:
- inner loop never executed - Linear Function
- Worst case:
- inner loop always executed - X is a quadratic function in n
- Average case:
- all permutations equally likely

Insertion Sort - $\mathrm{O}\left(\mathrm{N}^{2}\right)$

- Assume you are sorting 250,000,000 item
$\mathrm{N}=250,000,000 \mathrm{~N}^{2}=6.25 * 10^{16}$
Assume you can do 1 operation/nanosecond
$\rightarrow 6.25$ * 10^{7} seconds
$=1.98$ years

Merge Sort

MergeSort A[1..n]

1. If the input sequence has only one element - Return
2. Partition the input sequence into two halves
3. Sort the two subsequences using the same algorithm
4. Merge the two sorted subsequences to form the output sequence

Divide and Conquer

- It is an algorithmic design paradigm that contains the following steps
- Divide: Break the problem into smaller sub-problems
- Recur: Solve each of the sub-problems recursively
- Conquer: Combine the solutions of each of the sub-problems to form the solution of the problem

Merge Sort

Merge Sort - O(N * Log N)

- Assume you are sorting 250,000,000 item
$\mathrm{N}=250,000,000$
$\mathrm{N} * \log \mathrm{~N}=250,000,000$ * 28
Assume you can do 1 operation/nanosecond
$\rightarrow 7.25$ seconds

Merge Sort Analysis

$$
\begin{array}{cl}
\text { Statement } & \text { Work } \\
\text { MergeSort(A, left, right) } & \mathrm{T}(\mathrm{n}) \\
\text { if (left < right) } & \mathrm{O}(1) \\
\text { mid := (left + right) / 2; } & \mathrm{O}(1) \\
\text { MergeSort(A, left, mid); } & \mathrm{T}(\mathrm{n} / 2) \\
\text { MergeSort(A, mid+1, right); } & \mathrm{T}(\mathrm{n} / 2) \\
\text { Merge(A, left, mid, right); } & \mathrm{O}(\mathrm{n}) \\
\mathrm{T}(\mathrm{n})=\mathrm{O}(1) & \\
2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n}) \quad \text { when } \mathrm{n}=1, \\
\text { Recurrence Equation } \mathrm{n}>1
\end{array}
$$

