Introduction to Computers and Programming

Prof. I. K. Lundqvist

Recap

- Iteration versus Recursion
- Towers of Hanoi
- Computed time taken to solve towers of Hanoi

Divide and Conquer

- It is an algorithmic design paradigm that contains the following steps
- Divide: Break the problem into smaller sub-problems
- Recur: Solve each of the sub-problems recursively
- Conquer: Combine the solutions of each of the sub-problems to form the solution of the problem

Represent the solution using a recurrence equation

Recurrence Equation

- A recurrence equation is of the form
$T(n)=a T(m)+b, \quad n>0, m<n$ (induction)
and
$\mathrm{T}(0)=$ constant (base case)
Where:
- aT(m): cost of solving a sub-problems of size m
- b: cost of pulling together the solutions

Solving Recurrence Equations

- Iteration
- Recurrence Trees
- Substitution
- Master Method

Towers of Hanoi

Given: $T(1)=1$

$$
T(n)=2 T(n-1)+1 \quad 1 \quad 1
$$

2
3
3
7
415
531

Using Iteration

$T(n)=2 T(n-1)+1$
$T(n)=2[2 T(n-2)+1]+1$
$T(n)=2[2[2 T(n-3)+1]+1]+1$
$T(n)=2[2[2[2 T(n-4)+1]+1]+1]+1$
$T(n)=2^{4} T(n-4)+15$
$T(n)=2^{k} T(n-k)+2^{k}-1$
Since n is finite, $k \rightarrow n$.
Therefore,

$$
\lim _{T(n)}^{k \rightarrow n} 1=2^{n}-1
$$

Greatest Common Divisor

Given two natural numbers a, b

- If $b=0$, then GCD : $=a$
- If $b /=0$, then
- $\mathrm{c}:=\mathrm{a}$ MOD b
- $\mathrm{a}:=\mathrm{b}$
- b:=c
- $\operatorname{GCD}(\mathrm{a}, \mathrm{b})$

[The MOD function]

- Notation: m mod $\mathbf{n}=\mathrm{x}$
- $x=$ integer remainder when m is divided by n $=m-\lfloor m / n\rfloor n$
- Examples:
$-8 \bmod 3=2$
$-42 \bmod 6=0$
$-5 \bmod 7=5$

Extended Euclid's Algorithm $\operatorname{GCD}(\mathrm{a}, \mathrm{b})=\mathrm{ap}+\mathrm{bq}$

$38 \bmod 10=8=38-3 * 10$
$10 \bmod 8=2=10-1 * 8$
$=10-1^{*}\left(38-3^{*} 10\right)$
$=4 * 10-1 * 38$
$8 \bmod 2=0$
$\operatorname{GCD}(2,0)=2$
" 2 " can be expressed as linear combination of 10 and 38 - Solve Diophantine Equations

Exercise

- Write 6 as an integer combination of 10 and 38
-Find GCD $(38,10)$
- Express the GCD as a linear combination of 38 and 10
- Multiply that expression by (6/GCD)

$$
\begin{aligned}
6 & =3(4 * 10-1 * 38) \\
& =12 * 10-3 * 38
\end{aligned}
$$

Multiplication

- Standard method for multiplying long numbers:
$(1000 a+b) \times(1000 c+d)=1,000,000 a c$

$$
+1000(a d+b c)+b d
$$

- Instead use:
$(1000 a+b) \times(1000 c+d)=$
1,000,000 $a c+1000((a+b)(c+d)-a c-b d)+b d$
One length-k multiply $=3$ length $-k / 2$ multiplies and a bunch of additions and shifting

[Logarithms - $\log _{b}(x)$]

- A logarithm of base b for value y is the power to which b is raised to get y.
$-\log _{b} y=x \leftrightarrow b^{x}=y \leftrightarrow b^{\log _{b} y}=y$
- $\log _{b} 1=0, \log _{b} b=1$ for all values of b

PRS - 1

- Given $\mathbf{n}, \mathbf{n} \log \mathbf{n}, \mathbf{n}^{\mathbf{2}}, \mathbf{n}(\log \mathbf{n})^{\mathbf{2}}$, for large n :

1. \mathbf{n} has the largest value
2. $\mathbf{n} \log \mathbf{n}$ has the largest value
3. \mathbf{n}^{2} has the largest value
4. $\mathbf{n}(\log \mathbf{n})^{2}$ has the largest value

Relative size of $n, n \log n, n^{2}, n(\log n)^{2}$

- ($n \log n$)/n $=\log n \rightarrow \infty$ n is more efficient than logn
- $\mathrm{n}(\log \mathrm{n})^{2} / \mathrm{nlogn}=\log \mathrm{n} \rightarrow \infty$ nlogn is more efficient than $n(\operatorname{logn})^{2}$
- $n(\log n)^{2} / n^{2}=(\log n)^{2} / n \rightarrow 0$ $n(\log n)^{2}$ is more efficient than n^{2}
- Order of efficiency is $n, n \log n, n(\log n)^{\mathbf{2}}, n^{\mathbf{2}}$

Recurrence Tree

Recurrence Equation : $\mathrm{T}(\mathrm{n})<3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{c} \mathrm{n}$

Solving using Recurrence Tree

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & <\mathrm{cn}\left(1+3(1 / 2)+9(1 / 4)+\ldots+3^{\lg n}\left(1 / 2^{\lg n}\right)\right) \\
& <\mathrm{cn}\left(1+3 / 2+(3 / 2)^{2}+\ldots+(3 / 2)^{\lg n}\right) . \\
& <\mathrm{cn}\left((3 / 2)^{(\lg n+1)}-1\right) /((3 / 2)-1) \\
& <\mathrm{cn}\left((3 / 2)^{\lg n}(3 / 2)-1\right) /(1 / 2) \\
& <\left(\left(\mathrm{cn}(3 / 2)^{\lg n}(3 / 2)\right) /(1 / 2)\right)-2 \mathrm{cn} \\
& <\mathrm{cn}(3 / 2)^{\lg n}-2 \mathrm{cn} .
\end{aligned}
$$

$\mathrm{T}(\mathrm{n})<3 \mathrm{cn}(3 / 2)^{\lg n}$--approximation
$3 \mathrm{cn}\left(\mathrm{n}^{\lg (3 / 2)}\right)=3 \mathrm{Cn} \mathrm{n}^{1+\lg (3 / 2)}$

Important Theorems

Arithmetic Series
For $n \geq 1,1+2+\ldots+n=n(n+1) / 2$

Geometric Series
For $a \geq 1, a^{k}+a^{k-1}+\ldots 1=\left(a^{k+1}-1\right) /(a-1)$

Logarithmic Behavior
$a^{\lg b}=b^{\lg a}$

Recurrence Examples

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
2 T\left(\frac{n}{2}\right)+c & n>1
\end{array}\right.
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
a T\left(\frac{n}{b}\right)+c n & n>1
\end{array}\right.
$$

