Introduction to Computers and Programming

Prof. I. K. Lundqvist

Four Variable K-Maps Example-2

Using a 4-variable K-Map, simplify the following Truth table

A	B	C	D	Output
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	$\mathbf{1}$
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	$\mathbf{1}$
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	$\mathbf{1}$
1	1	1	1	0

AB	0	01	11	10
	0	1	0	0
01	0	0	0	1
11	0	0	0	0
10	0	0	1	0

Output $=\bar{A} B \bar{C} \bar{D}+A \bar{B} \bar{C} D+A B C \bar{D}$

Four Variable K-Maps
 Example-2

Using a 4-variable K-Map, simplify the following Truth table

Product-of-Sums from a Truth Table

A	B	C	F	$\overline{\mathrm{F}}$	
0	0	0	0	1	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	1	0	Find an expression for \bar{F}
1	0	1	1	0	$\bar{F}=\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C+\bar{A} B \bar{C}$
1	1	0	1	0	\bar{A}
1	1	1	1	0	$F=\overline{\bar{A} \bar{B} \bar{C}+\bar{A} \bar{B} C+\bar{A} B \bar{C}}$
			$F=\overline{\bar{A} \bar{B} \bar{C}} \bullet \overline{\bar{A} \bar{B} C} \bullet \overline{\bar{A} B \bar{C}}$		

Maxterms

A	B	C	F	$\overline{\mathrm{F}}$
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
Maxterms				
1	1	0	1	0
1	1	1	1	0

- To find a Product-of-Sums form for a truth table
- Make one maxterm for each row in which the function is zero
- For each maxterm, each variable appears once
- In its complemented form if it is one in the row
- In its regular form if it is zero in the row

Today

- Propositional Logic
- From English to propositions
- Quantified statements
- Tomorrow: Methods of proving theorems

Propositional Logic

- Logic at the sentential level
- Smallest unit: sentence
- Sentences that can be either true or false
- This kind of sentences are called Propositions
- If a propositions is true, then its truth value is "true", if proposition if false, then the truth value is "false"

Propositional Logic

- The following are propositions:
- Grass is green
$-2+4=4$
- The following are not propositions:
- Wake up
- Is it raining today?
- $x>2$
$-X=X$

Elements of Propositional Logic

Connectives

not	\neg
and	\wedge
or	\vee
if (implien	\rightarrow
iff	\leftrightarrow

Connectives

P	Q	$(P \vee Q)$
F	F	F
F	T	T
T	F	T
T	T	T

P	Q	$(P \wedge Q)$
F	F	F
F	T	F
T	F	F
T	T	T

P	Q	$(\mathrm{P} \rightarrow \mathrm{Q})$
F	F	T
F	T	T
T	F	F
T	T	T

P	$\neg \mathrm{P}$
T	F
F	T

Truth tables

P	Q	$(\mathrm{P} \leftrightarrow \mathrm{Q})$
F	F	T
F	T	F
T	F	F
T	T	T

Concept Question
 Given $\mathrm{P} \rightarrow \mathrm{Q}$, Is Q \rightarrow P True?

1. Yes
2. No
3. I don't know
4. What is $\mathrm{P}->\mathrm{Q}$

Converse and Contrapositive

- For $\mathrm{P} \rightarrow \mathrm{Q}$

$$
\begin{array}{ll}
\mathrm{Q} \rightarrow \mathrm{P} & \text { is called its converse } \\
\neg \mathrm{Q} \rightarrow \neg \mathrm{P} & \text { is called its contrapositive }
\end{array}
$$

Example: If it rains, then I get soaked
converse:
If I get soaked, then it rains
contrapositive :
If I don't get soaked, then it does not rain

From English to Proposition

- Premises:

P - It snows
Q - If it snows, then the school is closed

The school is closed

- Rules of inference

$$
[P \wedge(P \rightarrow Q)] \rightarrow Q
$$

From English to Proposition

- Restate given statements using building blocks and the connectives
- Propositions
- $\mathrm{P} \quad$ it is raining
- Q I will go to the beach
- R I have time
- "I will go to the beach if it is not raining" restate "If it is not raining, I will go to the beach" restate $\neg \mathrm{P} \rightarrow \mathrm{Q}$

Exercise

- Restate: " I will go to the beach if is not raining and I have time "

\square

"If it is not raining and I have time, then I will go to the beach"

$$
(\neg P \wedge R) \rightarrow Q
$$

Rule of Inference: Modus Ponens

$(p \wedge(p \rightarrow q)) \rightarrow q$ is a tautology. It states that if we know that both an implication $\mathrm{p} \rightarrow \mathrm{q}$ is true and that its hypothesis, p , is true, then the conclusion, q , is true.

Ex: Suppose the implication "If the bus breaks down, then I will have to walk" and its hypothesis "the bus breaks down" are true.
Then by modus ponens it follows that "I will have to walk".
Ex: Assume that the implication $(\mathrm{n}>3) \rightarrow\left(\mathrm{n}^{2}>9\right)$ is true. Suppose also that $\mathrm{n}>3$.
Then by modus ponens, it follows that $\mathrm{n}^{2}>9$.

Fallacy: Affirming the Conclusion

$(\mathrm{q} \wedge(\mathrm{p} \rightarrow \mathrm{q})) \rightarrow \mathrm{p}$ is a contingency. It states that if we know that both an implication $\mathrm{p} \rightarrow \mathrm{q}$ is true and that its conclusion, q, is true, then the hypothesis, p, is true.

Ex: Suppose the implication "If the bus breaks down, then I will have to walk" and its conclusion "I will have to walk" is true. It does not follow that the bus broke down. Perhaps I simply missed the bus.

Ex: Consider the implication $(\mathrm{n}>3) \rightarrow\left(\mathrm{n}^{2}>9\right)$ which is true. Suppose also that $n^{2}>9$. It does not follow that $n>3$. It might be that $n=-4$ for example.

