Introduction to Computers and Programming

Prof. I. K. Lundqvist

Numeric Values

- Storing the value of 25_{10} using ASCII: 0011001000110101
- Binary notation: 00000000000011001_{2}

Finding Binary Representation of Large Values

1. Divide the value by 2 and record the remainder
2. As long as the quotient obtained is not 0 , continue to divide the newest quotient by 2 and record the remainder
3. Now that a quotient of 0 has been obtained, the binary representation of the original value consists of the remainders listed from right to left in the order they were recorded

The Binary System

- Decimal: Position represents a power of 10

$$
-5382_{10}=5 \times 10^{3}+3 \times 10^{2}+8 \times 10^{1}+2 \times 10^{0}
$$

- Binary: Position represents a power of 2
$-1011_{2}=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$
$=8+0+2+1=11_{10}$
- Binary addition

$$
\begin{array}{rrrr}
0 & 1 & 0 & 1 \\
+0 & +0 & +1 & +1 \\
\hline 0 & +1 & 1 & +1
\end{array}
$$

- A byte
bit number

bit value

$$
\begin{array}{llllllll}
128 & 64 & 32 & 16 & 8 & 4 & 2 & 1
\end{array}
$$

Representing Negative Numbers

- Using one byte, any suggestions for representing negative numbers?
- E.g., $00010011_{2}=19_{10}$. How to represent 19_{10} in binary?
- Reserve 1 bit (\#7) for sign, 7 bits for number (sign magnitude)
$-\mathbf{0 0 0 0 0 0 0 0 1}_{2}=1_{10} \quad \mathbf{1 0 0 0 0 0 0 1}_{2}=-1_{10}$
$-00010011_{2}=19_{10} \quad 10010011_{2}=-19_{10}$

Representing Negative Numbers

- One's complement - invert each bit
$-00010011_{2}=19_{10} 11101100_{2}=-19_{10}$
$-0_{10}: 00000000_{2}$ and 11111111_{2}
- Two's complement - invert each bit and add 1
$-00010011_{2}=19_{10} 11101101_{2}=-19_{10}$
- Try to negate 0:
- $0_{10}=00000000_{2}$
- invert: $00000000_{2} \rightarrow 11111111_{2}$
- add 1: $11111111_{2}+00000001_{2}=00000000_{2}$

Two's Complement Notation
 Systems

Bit Pattern	Value Represented	Bit Pattern	Value Represented
011	3	0111	7
010	2	0110	6
001	1	0101	5
000	0	0100	4
111	-1	0011	3
110	-2	0010	2
101	-3	0001	1
100	-4	0000	0
		1111	-1
		1110	-2
		1101	-3
		1100	-4
		1011	-5
		1010	-6
		1001	-7
		1000	-8

Addition

- Example: we are using 8 bit two's complement and have the problem 97-81.

97	0	1	1	0	0	0	0	1
-81	+1	0	1	0	1	1	1	1
16	0	0	0	1	0	0	0	0

Summary: One's/Two's Complement

- Note that in sign magnitude and in one's complement there are two possible representations of 0 , and we can represent every integer n with $-\left(2^{k}-1\right) \leq \mathrm{n} \leq 2^{k}-1$ with a k-bit field.
- With two's complement there is only one representation of 0 , and we can represent the integers n with $-2^{k} \leq \mathrm{n} \leq 2^{k}-1$.
- The most significant advantage of two's complement is the fact that subtraction can be performed with addition circuitry.

The Problem of Overflow

- Overflow: when a value to be represented falls outside the range of values that can be represented.
- An overflow is indicated if the addition of two positive values results in the pattern for a negative value or vice versa.
- Remember: small values can accumulate to produce large numbers.

Fractions in Binary

- Each position is assigned a quantity of twice the size of the one to its right.
- $101.101=$?

[^0]
Floating Point representation

- To represent a floating point number the number is divided into two parts: the integer and the fraction
- 3.1415 has integer 3 and fraction 0.1415
- Converting FP to binary:
- Convert integer part to binary
- Convert fraction part to binary
- Put a decimal point between the two numbers

Floating Point representation

- Assume 12 bits to represent the integer part and 4 bits to represent the fraction:
$71.3425=+1000111.0101$

Normalization

- To represent +1000111.0101

- Store sign, all bits, and the position of decimal point

- Instead we use Normalization

-Move the decimal point so that there is only one 1 to the left of the decimal point.
-To indicate the original value of the number, multiply by 2^{e} where e is the number of bits that the decimal point moved, positive for left movement, negative for right movement
-Store:
-The sign
-The exponent
-The mantissa

Excess (or bias) Notation

- Alternative to two's complement used to store the exponent for floating point numbers.

Bit Pattern Value Represented 111 3 110 2 101 1 100 0 011 -1 010 -2 001 -3 000 -4

With 3 bits we have excess 4 ($=2^{3-1}$)

Excess (or bias) Notation

Bit Pattern	Value Represented
1111	7
1110	6
1101	5
1100	4
1011	3
1010	2
1001	1
1000	0
0111	-1
0110	-2
0101	-3
0100	-4
0011	-5
0010	-6
0001	-7
0000	-8

With 4 bits we have excess 8 ($=2^{4-1}$)

With N bits we have excess $2^{\mathrm{N}-1}$

We add the magic number, $2^{\mathrm{N}-1}$, to the integer, change the result to binary, and add 0's (on the left) to make up N bits.

FP Representation

- The standard IEEE representation for FP uses 32 bits for single-precision format:
- 1 bit sign
-8 bits exponent (excess $127=2^{8-1}-1$)
- 23 bitsmantissa
- Representation. Store the:
- Sign as 0 (positive), 1 (negative)
- Exponent (power of 2) as excess127
- Mantissa as an unsigned integer

Example: FP Representation

- Consider a 16 -bit representation with
- 1 bit sign
- 5 bits exponent (excess $16=2^{5-1}$)
- 10 bitsmantissa
- $0 \quad 100111101100000$
- The sign 0 represents positive
- The exponent $10011=19_{10}$ represents 3
- The mantissa is 1101100000 (1 to left of . is not stored, it is understood)

Coding the value 2 5/8

[^0]: 10.001
 $+100.000$
 111.001

