Introduction to Computers and Programming

Prof. I. K. Lundqvist

Reading: B pp. 47-71

Lecture 5 Sept 12 2003

• Storing the value of 25_{10} using ASCII:

00110010 00110101

• Binary notation: <u>00000000 000011001</u>₂

Finding Binary Representation of Large Values

- 1. Divide the value by 2 and record the remainder
- As long as the quotient obtained is not 0, continue to divide the newest quotient by 2 and record the remainder
- Now that a quotient of 0 has been obtained, the binary representation of the original value consists of the remainders listed from right to left in the order they were recorded

The Binary System

- Decimal: Position represents a power of 10 $-5382_{10} = 5x10^3 + 3x10^2 + 8x10^1 + 2x10^0$
- Binary: Position represents a power of 2

$$1011_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0$$

$$= 8 + 0 + 2 + 1 = 11_{10}$$

- Binary addition
- $\begin{array}{ccccccc} 0 & 1 & 0 & 1\\ + 0 & + 0 & + 1 & + 1\\ \hline 0 & 1 & 1 & 1 \end{array}$

Representing Negative Numbers Using one byte, any suggestions for representing negative numbers? - E.g., 00010011₂ = 19₁₀. How to represent - 19_{10} in binary? • Reserve 1 bit (#7) for sign, 7 bits for number (sign magnitude) $1000001_2 = -1_{10}$ $-0000001_2 = 1_{10}$ $-00010011_2 = 19_{10}$ $10010011_2 = -19_{10}$ **Representing Negative Numbers** One's complement – invert each bit

- $-00010011_2 = 19_{10} 11101100_2 = -19_{10}$ $-0_{10}: 0000000_2 \text{ and } 1111111_2$
- Two's complement invert each bit and add 1

 $- 00010011_2 = 19_{10} 11101101_2 = -19_{10}$

- Try to negate 0:
 - $0_{10} = 0000000_2$
 - invert: $0000000_2 \rightarrow 1111111_2$
 - add 1: $11111111_2 + 00000001_2 = 00000000_2$

Two's Complement Notation Systems

Bit Pattern	Value Represented	Bit Pattern	Value Represented	
011	3	0111	7	
010	2	0110	6	
001	1	0101	5	
000	0	0100	4	
111	-1	0011	3	
110	-2	0010	2	
101	-3	0001	1	
100	-4	0000	0	
		1111	-1	
		1110	-2	
		1101	-3	
		1100	-4	
		1011	-5	
		1010	-6	
		1001	-7	
		1000	-8	

Addition

Problem in		Problem in	n Ar	Answer in	
base ten	two	's complen	nent b	base ten	
3	>	0011			
+ 2	\rightarrow	+ 0010			
		0101		5	
-3		1101			
+-2	\longrightarrow	+ 1110			
		1011		- 5	
7		0111			
+-5	\longrightarrow	<u>+ 1011</u>			
		0010	\rightarrow	2	

• Example: we are using 8 bit two's complement and have the problem 97-81.

Summary: One's/Two's Complement

- Note that in *sign magnitude* and in *one's complement* there are two possible representations of 0, and we can represent every integer n with -(2^k -1) ≤ n ≤ 2^k -1 with a k-bit field.
- With *two's complement* there is only one representation of 0, and we can represent the integers n with $-2^k \le n \le 2^k 1$.
- The most significant advantage of two's complement is the fact that subtraction can be performed with addition circuitry.

The Problem of Overflow

- Overflow: when a value to be represented falls outside the range of values that can be represented.
- An overflow is indicated if the addition of two positive values results in the pattern for a negative value or vice versa.
- Remember: small values can accumulate to produce large numbers.

- Each position is assigned a quantity of twice the size of the one to its right.
- 101.101 = ?

+ 100.000111.001

Floating Point representation

- To represent a floating point number the number is divided into two parts: the integer and the fraction
 - 3.1415 has integer 3 and fraction 0.1415
- Converting FP to binary:
 - Convert integer part to binary
 - Convert fraction part to binary
 - Put a decimal point between the two numbers

Floating Point representation

 Assume 12 bits to represent the integer part and 4 bits to represent the fraction:

71.3425 = +1000111.0101

Normalization

- To represent +1000111.0101
 - Store sign, all bits, and the position of decimal point

•Instead we use Normalization

•Move the decimal point so that there is only one 1 to the left of the decimal point.

•To indicate the original value of the number, multiply by 2^e where e is the number of bits that the decimal point moved, positive for left movement, negative for right movement

•Store:

■The sign

•The exponent

Excess (or bias) Notation

• Alternative to two's complement used to store the exponent for floating point numbers.

Bit Pattern	Value Represented		
111	3		
110	2		
101	1		
100	0		
011	-1		
010	-2		
001	-3		
000	-4		

With 3 bits we have excess 4 $(=2^{3-1})$

Excess (or bias) Notation

Bit Pattern	Value Represented
$\begin{array}{c} 1111\\ 1110\\ 1101\\ 1100\\ 1011\\ 1000\\ 1001\\ 1000\\ 0111\\ 0000\\ 0111\\ 0100\\ 0101\\ 0100\\ 0011\\ 0010\\ 0001\\ 0000\\ \end{array}$	7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8

With 4 bits we have excess 8 $(=2^{4-1})$

With N bits we have excess 2^{N-1}

We add the magic number, 2^{N-1} , to the integer, change the result to binary, and add 0's (on the left) to make up N bits.

FP Representation

- The standard IEEE representation for FP uses 32 bits for single-precision format:
 - 1 bit sign
 - 8 bits exponent (excess $127 = 2^{8-1}-1$)
 - 23 bits mantissa
- Representation. Store the:
 - Sign as 0 (positive), 1 (negative)
 - Exponent (power of 2) as excess127
 - Mantissa as an unsigned integer

Example: FP Representation

- Consider a 16-bit representation with
 - 1 bit sign
 - 5 bits exponent (excess $16 = 2^{5-1}$)
 - 10 bits mantissa
- 0 10011 1101100000
 - The sign 0 represents positive
 - The exponent $10011 = 19_{10}$ represents 3
 - The mantissa is .1101100000 (1 to left of . is not stored, it is understood)

Coding the value 2 5/8

