Introduction to Computers and Programming

Prof. I. K. Lundqvist

Concept Question

A graph $G(V, E)$ is a finite nonempty set of vertices and a set of edges
$\mathrm{G} 1(\mathrm{~V} 1, \mathrm{E} 1)$ where $\mathrm{V} 1=\{ \}, \mathrm{E} 1=\{ \}$
G2(V2,E2) where V2 $=\{a, b\}, E 2=\{ \}$

1. Both G1 and G2 are Graphs
2. Only G1 is a Graph
3. Only G2 is a Graph
4. Neither G1 nor G2 are Graphs

[Theorem]

Why should we use trees?

Binary Search Tree

Trees

A tree is a connected undirected graph with no simple circuits.

- it cannot contain multiple edges or loops

Theorem : An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Which graphs are trees?

a)

b)

c)

d)

Rooted Tree

- A directed graph G is called a rooted tree if there exists a vertex u so that for each $v \in \mathrm{~V}$, there is exactly one path between u and v
- The in-degree of u is 0 and the in-degree of all other vertices is 1
- For an undirected graph, different choices of the root produces different trees

Choice of Root

Internal Vertex

- A vertex that has children is called an internal vertex
- A graph $\mathrm{H}(\mathrm{W}, \mathrm{F})$ is a subgraph of a graph $G(V, E)$ iff $W \subseteq V$ and $F \subseteq E$
- The subtree at vertex v is the subgraph of the tree consisting of vertex v and its descendants and all edges incident to those descendants

Tree Properties

- The parent of a non-root vertex v is the unique vertex u with a directed edge from u to v.
- A vertex is called a leaf if it has no children.
- The ancestors of a non-root vertex are all the vertices in the path from root to this vertex.
- The descendants of vertex v are all the vertices that have v as an ancestor.

Tree Properties

- The level of vertex v in a rooted tree is the length of the unique path from the root to v.
- The height of a rooted tree is the maximum of the levels of its vertices.

Level of vertex $\mathbf{f}=2$ Height of tree $=4$

Binary Tree

- An m-ary tree is a rooted tree in which each internal vertex has at most m children
- A rooted tree is called a binary tree if every internal vertex has no more than 2 children.
- The tree is called a full binary tree if every internal vertex has exactly 2 children.

Tree Properties

Theorem: A tree with N vertices has $\mathrm{N}-1$ edges.
Theorem: There are at most 2^{H} leaves in a binary tree of height H .

Corallary: If a binary tree with L leaves is full and balanced, then its height is

$$
\mathrm{H}=\left\lceil\log _{2} \mathrm{~L}\right\rceil
$$

A balanced tree with height h is a m-ary tree with all leaves being at levels h or $h-1$

Examples

T2

Ordered Binary Tree

- An ordered rooted tree is a rooted tree where the children of each internal vertex are ordered.
- In an ordered binary tree, the two possible children of a vertex are called the left child and the right child, if they exist.

Children of \mathbf{b} ? d, e Parent of b? a
Ancestors of g? c, a Descendants of \mathbf{b} ? d, e, h, i

Leafs? h, i, e, j, k, m
Internal vertices? a, b, c, d, f,g
Left child of \mathbf{g} ? \mathbf{k}
Right child of \mathbf{g} ? I

Traversal Algorithms

- A traversal algorithm is a procedure for systematically visiting every vertex of an ordered binary tree
- Tree traversals are defined recursively
- Three commonly used traversals are:
- preorder
- inorder
- postorder

PREORDER Traversal Algorithm

Let T be an ordered binary tree with root R

If T has only R then
R is the preorder traversal
Else
Let T_{1}, T_{2} be the left and right subtrees at R
Visit R
Traverse T_{1} in preorder
Traverse T_{2} in preorder

Record Definition

type Node;
type Nodeptr is access Node;
type Node is record
Element : Elementtype;
Left_Child : Nodeptr;
Right_Child : Nodeptr;
end record;

I NORDER Traversal Algorithm

Let T be an ordered binary tree with root R

If T has only R then
R is the inorder traversal
Else
Let T_{1}, T_{2} be the left and right subtrees at R
Traverse T_{1} in inorder
Visit R
Traverse T_{2} in inorder

POSTORDER Traversal Algorithm

Let T be an ordered binary tree with root R

If T has only R then
R is the postorder traversal

Else

Let T_{1}, T_{2} be the left and right subtrees at R
Traverse T_{1} in postorder
Traverse T_{2} in postorder
Visit R

Binary Expression Tree

A special kind of binary tree in which:

- Each leaf node contains a single operand
- Each inner vertex contains a single binary operator
- The left and right subtrees of an operator node represent sub-expressions that must be evaluated before applying the operator at the root of the subtree.

Binary Expression Tree

| INORDER TRAVERSAL: | $8-5$ has value 3 |
| :--- | :--- | :--- |
| PREORDER TRAVERSAL: | -85 |
| POSTORDER TRAVERSAL: $85-$ | |

Binary Expression Tree

What value does it have?

$(4+2) * 3=18$

Binary Expression Tree


```
Infix: ((4 + 2)* 3)
Prefix: * + 4 2 3
Postfix: 4 2 + 3 *
```


Levels Indicate Precedence

- When a binary expression tree is used to represent an expression, the levels of the nodes in the tree indicate their relative precedence of evaluation.
- Operations at higher levels of the tree are evaluated later than those below them. The operation at the root is always the last operation performed.

Binary Expression Tree

Infix:
((8-5)*((4+2)/3))
Prefix: *-85 /+423
Postfix: 85-42+3/*

Trees - Glossary

