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Today – More about Trees

• Spanning trees
– Prim’s algorithm
– Kruskal’s algorithm

• Generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example
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Trees

• A tree is a connected graph without 
cycles

• A connected graph is a tree iff it has N 
vertices and N-1 edges

• A graph is a tree iff there is one and 
only one path joining any two of its 
vertices

Spanning Trees

• A Spanning tree of a graph G, is a tree 
that includes all the vertices from G.
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Minimum Spanning Tree

• Prim’s Algorithm
– Finds a subset of the edges (that form a tree) 

including every vertex and the total weight of 
all the edges in tree is minimized
• Choose starting vertex
• Create the Fringe Set
• Loop until the MST contains all the vertices in the 

graph
– Remove edge with minimum weight from Fringe Set
– Add the edge to MST
– Update the Fringe Set

Initialization

Body

Prim – Initialization

• Pick any vertex x as the starting vertex
• Place x in the Minimum Spanning Tree 

(MST)
• For each vertex y in the graph that is 

adjacent to x
– Add y to the Fringe Set

• For each vertex y in the Fringe Set
– Set weight of y to weight of the edge 

connecting y to x
– Set x to be parent of y



Prim – Body

While number of vertices in MST < vertices in 
the graph

Find vertex y with minimum weight in the Fringe Set
Add vertex and the edge x,y to the MST
Remove y from the Fringe Set
For all vertices z adjacent to y

If z is not in the Fringe Set
Add z to the Fringe Set
Set parent to y
Set weight of z to weight of the edge connecting z to y

Else
If Weight(y,z) < Weight(z) then

Set parent to y
Set weight of z to weight of the edge connecting z to y
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Minimum spanning tree – Prim

Minimum Spanning Tree

• Kruskal’s Algorithm
– Finds a minimum spanning tree for a 

connected weighted graph

• Create a set of trees, where each vertex in the 
graph is a separate tree

• Create set S containing all edges in the graph
• While S not empty

– Remove edge with minimum weight from S
– if that edge connects two different trees, then add 

it to the forest, combining two trees into a single 
tree

– Otherwise discard that edge
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More about Trees

• Spanning trees
– Prim’s algorithm
– Kruskal’s algorithm

• Generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example

Depth First Search (DFS)
Idea: 
•Explore descendants before siblings
•Explore siblings left to right
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Where do we place the children on the queue?
• Assume we pick first element of Q
• Add path extensions to ? of Q

Simple Search Algorithm
Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.

1. Initialize Q with partial path (S)

2. If Q is empty, fail.  Else, pick a partial path N from Q

3. If head(N) = G, return N (goal reached!)

4. Else: 

a) Remove N from Q

b) Find all children of head(N) and 
create all the one-step extensions of N to each child.

c) Add all extended paths to Q

d) Go to step 2.

Depth-First

Pick first element of Q;  Add path extensions to front of Q
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Pick first element of Q;  Add path extensions to front of Q
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Simple Search Algorithm
Let Q be a list of partial paths, 
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2. If Q is empty, fail.  Else, pick a partial path N from Q

3. If head(N) = G, return N (goal reached!)

4. Else: 

a) Remove N from Q

b) Find all children of head(N) and 
create all the one-step extensions of N to each child.

c) Add all extended paths to Q

d) Go to step 2.

C

S

B

G
A

D

Q

5

4

3

2

1

(A S) (B S)

(S)

1

Added paths in blue

2
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Simple Search Algorithm
Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.

1. Initialize Q with partial path (S)
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More about Trees

• Spanning trees
– Prim’s algorithm
– Kruskal’s algorithm

• Generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example
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Depth-First

• C visited multiple times
• Multiple paths to C, D & G

How much wasted effort can be incurred in the worst case?

Effort can be wasted in more mild cases

How Do We Avoid Repeat Visits?

Idea:

• Keep track of nodes already visited.

• Do not place visited nodes on Q.

Does this maintain correctness?

• Any goal reachable from a node that was visited a 
second time would be reachable from that node the 
first time.

Does it always improve efficiency?  

• Guarantees each node appears at most once at 
the head of a path in Q.



Simple Search Algorithm
Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.

1. Initialize Q with partial path (S) as only entry; set Visited = ( )

2. If Q is empty, fail.  Else, pick some partial path N from Q

3. If head(N) = G, return N (goal reached!)

4. Else

a) Remove N from Q

b) Find all children of head(N) not in Visited and 
create all the one-step extensions of N to each child.

c) Add to Q all the extended paths; 

d) Add children of head(N) to Visited

e) Go to step 2.

More about Trees

• Spanning trees
– Prim’s algorithm
– Kruskal’s algorithm

• Generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example

Breadth First Search (BFS)
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•Explore relatives at same level before their children
•Explore relatives left to right
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Where do we place the children on the queue?
• Assume we pick first element of Q
• Add path extensions to ? of Q

Breadth-First
Pick first element of Q;  Add path extensions to end of Q
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q
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Breadth-First
Pick first element of Q;  Add path extensions to end of Q
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Test_ordered_binary.adb

Depth-first:

Add path extensions to front of Q

Pick first element of Q

Breadth-first:

Add path extensions to back of Q

Pick first element of Q

Summary

• Most problem solving tasks may be 
formulated as state space search.

• Mathematical representations for search 
are graphs and search trees.

• Depth-first and breadth-first search 
may be framed, among others, as 
instances of a generic search strategy.

• Cycle detection is required to achieve 
efficiency and completeness.



• Document code
– What it is doing
– How it is doing it
– What it is not doing (detailed status)

• Test run code

• Zip code


