
Introduction to Computers and
Programming

Prof. I. K. Lundqvist

Lecture 8
April 5 2004

Today – More about Trees

• Spanning trees
– Prim’s algorithm
– Kruskal’s algorithm

• Generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example

A B

C D
E

B

A

A

A

B D

D

D

B

E

C D

C E

B

A

C

D

E

01010
10111
01001
11001
01110

E
D
C
B
A

A B C D E

A B

C D
E

B

D

D

D

B

C D

B

A

C

D

E

00010
01000
01000
01000
01110

E
D
C
B
A

A B C D E

Trees

• A tree is a connected graph without
cycles

• A connected graph is a tree iff it has N
vertices and N-1 edges

• A graph is a tree iff there is one and
only one path joining any two of its
vertices

Spanning Trees

• A Spanning tree of a graph G, is a tree
that includes all the vertices from G.

SFO

Boston

LA Dallas

Wash DC

Airline Routes

SFO

Boston

LA Dallas

Wash DC

The resulting spanning tree
is not unique

The resulting spanning tree
is not unique

Minimum Spanning Tree

• Prim’s Algorithm
– Finds a subset of the edges (that form a tree)

including every vertex and the total weight of
all the edges in tree is minimized
• Choose starting vertex
• Create the Fringe Set
• Loop until the MST contains all the vertices in the

graph
– Remove edge with minimum weight from Fringe Set
– Add the edge to MST
– Update the Fringe Set

Initialization

Body

Prim – Initialization

• Pick any vertex x as the starting vertex
• Place x in the Minimum Spanning Tree

(MST)
• For each vertex y in the graph that is

adjacent to x
– Add y to the Fringe Set

• For each vertex y in the Fringe Set
– Set weight of y to weight of the edge

connecting y to x
– Set x to be parent of y

Prim – Body

While number of vertices in MST < vertices in
the graph

Find vertex y with minimum weight in the Fringe Set
Add vertex and the edge x,y to the MST
Remove y from the Fringe Set
For all vertices z adjacent to y

If z is not in the Fringe Set
Add z to the Fringe Set
Set parent to y
Set weight of z to weight of the edge connecting z to y

Else
If Weight(y,z) < Weight(z) then

Set parent to y
Set weight of z to weight of the edge connecting z to y

BOS

JFK

ATL

MIA

LAX

SFO DEN

ORD

957

860
191

1090
760

595

606

722

2534

1855

908

2451834349

BOS

JFK
191

MIA

595

ATL
606

ORD 722

DEN 908

LAX

834

SFO

349

Minimum spanning tree – Prim

Minimum Spanning Tree

• Kruskal’s Algorithm
– Finds a minimum spanning tree for a

connected weighted graph

• Create a set of trees, where each vertex in the
graph is a separate tree

• Create set S containing all edges in the graph
• While S not empty

– Remove edge with minimum weight from S
– if that edge connects two different trees, then add

it to the forest, combining two trees into a single
tree

– Otherwise discard that edge

BOS

JFK

ATL

MIA

LAX

SFO DEN

ORD

957

860
191

1090
760

595

606

722

2534

1855

908

2451834349

BOS

JFK
191

MIA

595

ATL
606

ORD 722

908DEN

834

LAX

SFO

349

Minimum spanning tree – Kruskal

More about Trees

• Spanning trees
– Prim’s algorithm
– Kruskal’s algorithm

• Generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example

Depth First Search (DFS)
Idea:
•Explore descendants before siblings
•Explore siblings left to right

S

D

BA

C G

C G

D

C G

1

2

3

4 5

6

7

8

9 10

11

Where do we place the children on the queue?
• Assume we pick first element of Q
• Add path extensions to ? of Q

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)

2. If Q is empty, fail. Else, pick a partial path N from Q

3. If head(N) = G, return N (goal reached!)

4. Else:

a) Remove N from Q

b) Find all children of head(N) and
create all the one-step extensions of N to each child.

c) Add all extended paths to Q

d) Go to step 2.

Depth-First

Pick first element of Q; Add path extensions to front of Q

C

S

B

G
A

D

Q

5

4

3

2

1 (S)

1

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)

2. If Q is empty, fail. Else, pick a partial path N from Q

3. If head(N) = G, return N (goal reached!)

4. Else:

a) Remove N from Q

b) Find all children of head(N) and
create all the one-step extensions of N to each child.

c) Add all extended paths to Q

d) Go to step 2.

C

S

B

G
A

D

Q

5

4

3

2

1 (S)

1

Depth-First

Pick first element of Q; Add path extensions to front of Q

C

S

B

G
A

D

Q

5

4

3

2

1

(A S)

(S)

1

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

C

S

B

G
A

D

Q

5

4

3

2

1

(A S) (B S)

(S)

1

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)

2. If Q is empty, fail. Else, pick a partial path N from Q

3. If head(N) = G, return N (goal reached!)

4. Else:

a) Remove N from Q

b) Find all children of head(N) and
create all the one-step extensions of N to each child.

c) Add all extended paths to Q

d) Go to step 2.

C

S

B

G
A

D

Q

5

4

3

2

1

(A S) (B S)

(S)

1

Added paths in blue

2

Depth-First

Pick first element of Q; Add path extensions to front of Q

C

S

B

G
A

D

Q

5

4

3

2

1

(C A S) (D A S) (B S)

(A S) (B S)

(S)

1

2

Depth-First

Pick first element of Q; Add path extensions to front of Q

Added paths in blue

C

S

B

G
A

D

Q

5

4

3

2

1

(C A S) (D A S) (B S)

(A S) (B S)

(S)

1

2

Depth-First

Pick first element of Q; Add path extensions to front of Q

Added paths in blue

C

S

B

G
A

D

Q

5

4

3

2

1

(C A S) (D A S) (B S)

(A S) (B S)

(S)

1

2

3

Depth-First

Pick first element of Q; Add path extensions to front of Q

Added paths in blue

C

S

B

G
A

D

Q

5

4

3

2

1

(D A S) (B S)

(C A S) (D A S) (B S)

(A S) (B S)

(S)

1

2

3

Depth-First

Pick first element of Q; Add path extensions to front of Q

Added paths in blue

C

S

B

G
A

D

Q

5

4

3

2

1

(D A S) (B S)

(C A S) (D A S) (B S)

(A S) (B S)

(S)

1

2

3

4

Depth-First

Pick first element of Q; Add path extensions to front of Q

Added paths in blue

C

S

B

G
A

D

Q

5

4

3

2

1

(C D A S)(G D A S)
(B S)

(D A S) (B S)

(C A S) (D A S) (B S)

(A S) (B S)

(S)

1

2

3

4

Depth-First

Pick first element of Q; Add path extensions to front of Q

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)

2. If Q is empty, fail. Else, pick a partial path N from Q

3. If head(N) = G, return N (goal reached!)

4. Else:

a) Remove N from Q

b) Find all children of head(N) and
create all the one-step extensions of N to each child.

c) Add all extended paths to Q

d) Go to step 2.

C

S

B

G
A

D

Q

5

4

3

2

1

(C D A S)(G D A S)
(B S)

(D A S) (B S)

(C A S) (D A S) (B S)

(A S) (B S)

(S)

1

2

3

4

Depth-First

Pick first element of Q; Add path extensions to front of Q

C

S

B

G
A

D

(G D A S)(B S)6

Q

5

4

3

2

1

(C D A S)(G D A S)
(B S)

(D A S) (B S)

(C A S) (D A S) (B S)

(A S) (B S)

(S)

1

2

3

4

Depth-First

Pick first element of Q; Add path extensions to front of Q

C

S

B

G
A

D

(G D A S)(B S)6

Q

5

4

3

2

1

(C D A S)(G D A S)
(B S)

(D A S) (B S)

(C A S) (D A S) (B S)

(A S) (B S)

(S)

1

2

3

4

Depth-First

Pick first element of Q; Add path extensions to front of Q

More about Trees

• Spanning trees
– Prim’s algorithm
– Kruskal’s algorithm

• Generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example

C

S

B

G
A

D

Issue: Starting at S and moving top to bottom,
will depth-first search ever reach G?

C

S

B

G
A

D

(G D A S)(B S)6

Q

5

4

3

2

1

(C D A S)(G D A S)
(B S)

(D A S) (B S)

(C A S) (D A S) (B S)

(A S) (B S)

(S)

1

2

3

4

Depth-First

• C visited multiple times
• Multiple paths to C, D & G

How much wasted effort can be incurred in the worst case?

Effort can be wasted in more mild cases

How Do We Avoid Repeat Visits?

Idea:

• Keep track of nodes already visited.

• Do not place visited nodes on Q.

Does this maintain correctness?

• Any goal reachable from a node that was visited a
second time would be reachable from that node the
first time.

Does it always improve efficiency?

• Guarantees each node appears at most once at
the head of a path in Q.

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S) as only entry; set Visited = ()

2. If Q is empty, fail. Else, pick some partial path N from Q

3. If head(N) = G, return N (goal reached!)

4. Else

a) Remove N from Q

b) Find all children of head(N) not in Visited and
create all the one-step extensions of N to each child.

c) Add to Q all the extended paths;

d) Add children of head(N) to Visited

e) Go to step 2.

More about Trees

• Spanning trees
– Prim’s algorithm
– Kruskal’s algorithm

• Generic search algorithm
– Depth-first search example
– Handling cycles
– Breadth-first search example

Breadth First Search (BFS)

S

D

BA

C G

C G

D

C G

Idea:
•Explore relatives at same level before their children
•Explore relatives left to right

1

2

4

8 9

5

3

6

10 11

7

Where do we place the children on the queue?
• Assume we pick first element of Q
• Add path extensions to ? of Q

Breadth-First
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

6

VisitedQ

5

4

3

2

1 S(S)

1

Breadth-First
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

6

VisitedQ

5

4

3

2

1 S(S)

1

Breadth-First
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

6

VisitedQ

5

4

3

2

1

A,B,S(A S) (B S)

S(S)

1

Breadth-First
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

6

VisitedQ

5

4

3

2

1

A,B,S(A S) (B S)

S(S)

1

2

Breadth-First
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

6

VisitedQ

5

4

3

2

1

C,D,B,A,S(B S) (C A S) (D A S)

A,B,S(A S) (B S)

S(S)

1

2

Breadth-First
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

6

VisitedQ

5

4

3

2

1

C,D,B,A,S(B S) (C A S) (D A S)

A,B,S(A S) (B S)

S(S)

1

2

3

Breadth-First
Pick first element of Q; Add path extensions to end of Q

C

S

B

G
A

D

G,C,D,B,A,S(G B S)6

VisitedQ

5

4

3

2

1

G,C,D,B,A,S(D A S) (G B S)

G,C,D,B,A,S(C A S) (D A S) (G B S)*

C,D,B,A,S(B S) (C A S) (D A S)

A,B,S(A S) (B S)

S(S)

1

2

3

4

5

6

Depth First Search (DFS)
S

D

BA

C G

C G

D

C G

S

D

BA

C G

C G

D

C G

Breadth First Search (BFS)

Test_ordered_binary.adb

Depth-first:

Add path extensions to front of Q

Pick first element of Q

Breadth-first:

Add path extensions to back of Q

Pick first element of Q

Summary

• Most problem solving tasks may be
formulated as state space search.

• Mathematical representations for search
are graphs and search trees.

• Depth-first and breadth-first search
may be framed, among others, as
instances of a generic search strategy.

• Cycle detection is required to achieve
efficiency and completeness.

• Document code
– What it is doing
– How it is doing it
– What it is not doing (detailed status)

• Test run code

• Zip code

