Today - More about Trees

- Spanning trees
- Prim's algorithm
- Kruskal's algorithm
- Generic search algorithm
- Depth-first search example
- Handling cycles
- Breadth-first search example

Introduction to Computers and Programming

Prof. I. K. Lundqvist

	A				B			C	D	E
A	0	1	1	1	0					
B	1	0	0	1	1					
C	1	0	0	1	0					
D	1	1	1	0	1					
	E									
	0	1	0	1	0					

	A			B			C	E
A	0	1	1	1	0			
B	0	0	0	1	0			
C	0	0	0	1	0			
D	0	0	0	1	0			
E	0	0	1	0	0			

Trees

- A tree is a connected graph without cycles
- A connected graph is a tree iff it has N vertices and N - 1 edges
- A graph is a tree iff there is one and only one path joining any two of its vertices

Spanning Trees

- A Spanning tree of a graph G, is a tree that includes all the vertices from G.

Minimum Spanning Tree

- Prim's Algorithm
- Finds a subset of the edges (that form a tree) including every vertex and the total weight of all the edges in tree is minimized
- Choose starting vertex
- Create the Fringe Set
- Loop until the MST contains all the vertices in the graph

Body

- Remove edge with minimum weight from Fringe Set
- Add the edge to MST
- Update the Fringe Set

Prim - Initialization

- Pick any vertex x as the starting vertex
- Place x in the Minimum Spanning Tree (MST)
- For each vertex y in the graph that is adjacent to x
- Add y to the Fringe Set
- For each vertex y in the Fringe Set
- Set weight of y to weight of the edge connecting y to x
- Set x to be parent of y

Prim - Body

While number of vertices in MST < vertices in the graph

Find vertex y with minimum weight in the Fringe Set
Add vertex and the edge x, y to the MST
Remove y from the Fringe Set
For all vertices z adjacent to y
If z is not in the Fringe Set
Add z to the Fringe Set
Set parent to y
Set weight of z to weight of the edge connecting z to y Else

If Weight(y, z) < Weight(z) then
Set parent to y
Set weight of z to weight of the edge connecting z to y

Minimum Spanning Tree

- Kruskal's Algorithm
- Finds a minimum spanning tree for a connected weighted graph
- Create a set of trees, where each vertex in the graph is a separate tree
- Create set S containing all edges in the graph
- While S not empty
- Remove edge with minimum weight from S
- if that edge connects two different trees, then add it to the forest, combining two trees into a single tree
- Otherwise discard that edge

More about Trees

- Spanning trees
- Prim's algorithm
- Kruskal's algorithm
- Generic search algorithm
- Depth-first search example
- Handling cycles
- Breadth-first search example

Depth First Search (DFS)

Idea:

- Explore descendants before siblings
-Explore siblings left to right

Where do we place the children on the queue?

- Assume we pick first element of Q
- Add path extensions to ? of Q

Simple Search Algorithm

Let Q be a list of partial paths, Let S be the start node and Let G be the Goal node.

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(\mathrm{N})=\mathrm{G}$, return N (goal reached!)
4. Else:
a) Remove N from Q
b) Find all children of head(N) and create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2 .

Depth-First

Pick first element of Q; Add path extensions to front of Q

	\mathbf{Q}
1	(S)
2	
3	
4	
5	

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(N)=G$, return N
(goal reached!)
4. Else:
a) Remove N from Q
b) Find all children of head(N) and create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	
3	
4	
5	

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	(A S)
3	
4	
5	

Added paths in blue

Depth-First

Pick first element of Q ; Add path extensions to front of Q

	Q
1	(S)
2	(A S) (B S)
3	
4	
5	

Added paths in blue

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(N)=G$, return N (goal reached!)
4. Else:
a) Remove N from Q
b) Find all children of head(N) and
create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2 .

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	(RS) (B S)
3	
4	
5	

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	(I) (B S)
3	(C A S) (D A S) (B S)
4	
5	

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	(NS) (B S)
3	(C A S) (D A S) (B S)
4	
5	

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	(LS) (B S)
3	(C)S (D A S) (B S)
4	
5	

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

	\mathbf{Q}
1	(S)
2	(S) (B S)
3	(C) S) (D A S) (B S)
4	(D A S) (B S)
5	

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(5)
2	(as) (B S)
3	(C) S) (D A S) (BS)
4	(DAS) (BS)
5	

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	(R) S) (B S)
3	(CA S) (D A S) (B S)
4	(DA S) (B S)
5	(CD A S)(G D A S) (B S)

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head $(N)=G$, return N (goal reached!)
4. Else:
a) Remove N from Q
b) Find all children of head(N) and create all the one-step extensions of N to each child.
c) Add all extended paths to Q
d) Go to step 2.

Depth-First

Pick first element of Q ; Add path extensions to front of Q

	Q
1	(5)
2	(12) (B S)
3	(CAS) (D A S) (BS)
4	(DAS) (BS)
5	$\begin{aligned} & (C D A S)(G D A S) \\ & (B S) \end{aligned}$

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	$($ S S) (B S)
3	(C S S) (D A S) (B S)
4	(DA S) (B S)
5	(CDA S)(G D A S) (B S)
6	(G D A S)(B S)

Depth-First

Pick first element of Q; Add path extensions to front of Q

	Q
1	(S)
2	$(\mathrm{CS})(\mathrm{B} \mathrm{S})$
3	(CA S) (D A S) (B S)
4	(DA S) (B S)
5	(CD A S)(G D A S) (B S)
6	(G D A S)(B S)

More about Trees

- Spanning trees
- Prim's algorithm
- Kruskal's algorithm
- Generic search algorithm
- Depth-first search example
- Handling cycles
- Breadth-first search example

Depth-First

Effort can be wasted in more mild cases

	Q
1	(S)
2	(A S) (B S $)$
3	(C A S) (D)A S) (B S)
4	(DAS) (BS)
5	$\frac{(C D C A S)(G) D A S)}{(B S)}$
6	(G D A S)(B S)

- C visited multiple times
- Multiple paths to C, D \& G

How much wasted effort can be incurred in the worst case?

Issue: Starting at S and moving top to bottom, will depth-first search ever reach G?

How Do We Avoid Repeat Visits?

Idea:

- Keep track of nodes already visited.
- Do not place visited nodes on Q .

Does this maintain correctness?

- Any goal reachable from a node that was visited a second time would be reachable from that node the first time.

Does it always improve efficiency?

- Guarantees each node appears at most once at the head of a path in Q .

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S) as only entry; set Visited $=()$
2. If Q is empty, fail. Else, pick some partial path N from Q
3. If head $(N)=G$, return N (goal reached!)
4. Else
a) Remove N from Q
b) Find all children of head(N) not in Visited and create all the one-step extensions of N to each child.
c) Add to Q all the extended paths;
d) Add children of head(N) to Visited
e) Go to step 2 .

More about Trees

- Spanning trees
- Prim's algorithm
- Kruskal's algorithm
- Generic search algorithm
- Depth-first search example
- Handling cycles
- Breadth-first search example

Breadth First Search (BFS)

Idea:

- Explore relatives at same level before their children
- Explore relatives left to right

Breadth-First

Pick first element of Q ; Add path extensions to end of Q

	Q	Visited
1	(S)	S
2		
3		
4		
5		
6		

Where do we place the children on the queue?

- Assume we pick first element of Q
- Add path extensions to ? of Q

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2		
3		
4		
5		
6		

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(AS) (B S)	A, B, S
3		
4		
5		
6		

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3		
4		
5		
6		

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(B S) (C A S) (D A S)	C,D,B,A,S
4		
5		
6		

Breadth-First

Pick first element of Q; Add path extensions to end of Q

	\mathbf{Q}	Visited
1	(S)	S
2	(A S) (B S)	A, B, S
3	(BS) (C A S) (D A S)	C,D,B,A,S
4		
5		
6		

Breadth-First

Pick first element of Q; Add path extensions to end of Q

Depth First Search (DFS)

Depth-first:
Add path extensions to front of Q Pick first element of Q

Breadth First Search (BFS)

Breadth-first:

Add path extensions to back of Q Pick first element of Q

Summary

- Most problem solving tasks may be formulated as state space search.
- Mathematical representations for search are graphs and search trees.
- Depth-first and breadth-first search may be framed, among others, as instances of a generic search strategy.
- Cycle detection is required to achieve efficiency and completeness.
- Document code
- What it is doing
- How it is doing it
- What it is not doing (detailed status)
- Test run code
- Zip code

