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Fluids – Lecture 3 Notes 

1. Thin-Airfoil Analysis Problem (continued) 

Reading: Anderson 4.8 

Cambered airfoil case 

We now consider the case where the camberline Z(x) is nonzero. The general thin airfoil 
equation, which is a statement of flow tangency on the camberline, was derived previously. 

1 
� π γ(θ) sin θ dθ dZ


= V
∞ 

α − (for 0 < θo < π) (1) 
2π 0 cos θ − cos θo dx 

For an arbitrary camberline shape Z(x), the slope dZ/dx varies along the chord, and in the 
equation it is negated and shifted by the constant α. Let us consider this combination to be 
some general function of θo. 

dZ 
α − ≡ f(θo)

dx 

For the purpose of computation, any such function can be conveniently represented or ap
proximated by a Fourier cosine series , 

N 

f(θo) = A0 − An cos nθo 
n=1 

which is illustrated in the figure. The negative sign in front of the sum could be absorbed 
into all the An coefficients, but is left outside for later algebraic simplicity. 

f(θ) 1 cos θ cos 2θ cos 3θA0 A1 A2 A3 

... 

The overall summation can be made arbitrarily close to a known f(θo) by making N suffi
ciently large (i.e. using sufficiently many terms). The required coefficients A0, A1, . . . AN 

are computed one by one using Fourier analysis , which is the evaluation of the following 
integrals. 

� π1 
A0 = f(θ) dθ 

π 0 

� π2 
−A1 = f(θ) cos θ dθ 

π 0 

� π2 
−A2 = f(θ) cos 2θ dθ 

π 0 

. . . 
� π2 

−AN = f(θ) cos Nθ dθ 
π 0 
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For the particular f(θo) used here, these integrals become 

1 π dZ 
A0 = α − dθ 

π 0 dx 

2 π dZ 
An = cos nθ dθ (n = 1, 2, . . .)

π 0 dx 

In practice, the integrals can be evaluated either analytically or numerically. If dZ/dx is

smooth, then the higher An coefficients will rapidly decrease, and at some point the remainder

can be discarded (the series truncated) with little loss of accuracy.


Replacing α − dZ/dx in equation (1) with its Fourier series gives the integral equation 

N 
� 

1 
� π γ(θ) sin θ dθ � 

= V
∞ 

A0 − An cos nθo (2) 
2π 0 cos θ − cos θo n=1 

which is to be solved for the unknown γ(θ) distribution. As before, the solution of this

integral equation is beyond scope here. Again, let us simply state the solution.


N 
� 

1 + cos θ � 
γ(θ) = 2V

∞ 
A0 + An sin nθ 

sin θ n=1 

The leading term is the same as for the zero-camber case, but with A0 replacing α. The re

maining coefficients A1, . . . AN in the summation depend only on the shape of the camberline,

and in particular are independent of α.


The figure shows the contributions of the various terms towards γ, all plotted versus the

physical x coordinate rather than versus θ. Note that here the coefficients A0, A1 . . . AN have


γ 
sin θ A2 sin 2θ A3 sin 3θA12V 0A 

sin 
θ1+cos 

θ 

x x x ...x x 

already been determined, and are now merely used to construct γ(θ) by simple summation

of the series. This γ(θ) will now be integrated to obtain the lift force and moment.


Force calculation 

The circulation and lift/span are computed in the same manner as with the symmetric airfoil

case. �
 c 

′
Γ = γ(ξ) dξ , L = ρV
∞

Γ 
0 

The integral is again most easily performed in the trigonometric coordinate θ.


c 
� π 

� 
N 

�

� π 

�

� π 

Γ = γ(θ) sin θ dθ = cV
∞ 

A0 (1 + cos θ) dθ + An sin nθ sin θ dθ 
2 0 0 0 n=1 

The first integral in the brackets is easily evaluated. 
� π 

(1 + cos θ) dθ = π 
0 
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The integrals inside the summation can be evaluated by using the orthogonality property of 
the sine functions. 

� 
� π π/2 (if n = m)

sin nθ sin mθ dθ = 
0 0 (if n 6= m) 

We see that only the n = 1 integral inside the summation evaluates to π/2, and all the others 
are zero. The final result is 

π 
Γ = c V

∞ 
πA0 + A1

2 
1

′ 2L = ρV
∞

Γ = ρV 
∞ 
c π A0 + A1

2 

c
L′ 

ℓ = 
1 2 

= π (2A0 + A1)
ρV c

2 ∞ 

It’s informative to substitute the previously-obtained expressions for A0 and A1, giving 

1 π dZ 
cℓ = 2π α − (1 − cos θo) dθo

π 0 dx 

The integral term inside the brackets depends only on the camberline shape, and is indepen
dent of the angle of attack. Hence the lift slope is 

dcℓ 
= 2π 

dα 

which is the same as for the symmetrical airfoil case. We therefore reach the important 
conclusion that camber has no influence on the lift slope. A terse and convenient way to 
represent the cl(α) function is therefore 

dcℓ 
cℓ = (α − αL=0)

dα 

where αL=0 is called the zero-lift angle , which depends only on the camberline shape. 

1 π dZ 
αL=0 = (1 − cos θo) dθo

π 0 dx 

The moment/span about the leading edge is again computed using the trigonometric coor
dinate. 

� 
c2 � π 2 � � c c 1

′
M = −ρV
∞ 

γ ξdξ = −ρV
∞ 

γ(θ) (1−cos θ) sin θdθ = −ρV 2 π A0 + A1 − A2LE ∞ 

0 4 0 4 2 

The moment/span and corresponding moment coefficient about the x = c/4 quarter-chord 
point are 

2c c π
′ ′ ′
Mc/4 

= M + L = ρV 2 (A2 − A1)LE ∞4 4 2

M ′ 

c
c/4 π 

m,c/4 = 
1 2 c2 

= (A2 − A1)
ρV 4

2 ∞ 
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An important result is that this cm,c/4 depends only on the camberline shape, but not on 
the angle of attack. Therefore, the quarter-chord location is the aerodynamic center for any 
airfoil, defined as the location about which the moment is independent of α, or 

dcm,c/4 
= 0 

dα 

Summary 

c
c

For airfoil analysis, Thin Airfoil Theory takes in the following inputs: 

α angle of attack 
dZ/dx camberline slope distribution along chord 

The outputs are: 

ℓ lift coefficient 

m moment coefficient, about c/4 or any other location 

The information propagates as follows. 

Fourier series chordwise 
dZ analysis summing integration 

α , (θo) −→ A0 , A1 . . . AN −→ γ(θ) −→ cℓ , cm
dx 

The Fourier coefficients An and the vortex sheet strength distribution γ(θ) are intermediate 
results. 

The influence of camber on the airfoil cℓ(α) and cm,c/4(α) curves is illustrated in the figure. 

α α 

cl cm,c/4cl 

cm,c/4 
αL=0 

These results are subject to the assumptions inherent in thin airfoil theory. In practice, they 
are surprisingly accurate even for relatively thick or highly-cambered airfoils. It appears to be 
better at predicting trends (with camber, α, etc) than absolute numbers. When used merely 
as a conceptual framework for understanding airfoil behavior rather than for quantitative 
predictions, thin airfoil theory is highly applicable to almost any airfoil. 
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