Fluids - Lecture 4 Notes

1. Thin Airfoil Theory Application: Analysis Example

Reading: Anderson 4.8, 4.9

Analysis Example

Airfoil camberline definition

Consider a thin airfoil with a simple parabolic-arc camberline, with a maximum camber height εc.

$$
Z(x)=4 \varepsilon x\left(1-\frac{x}{c}\right)
$$

The camberline slope is then a linear function in x, or a cosine function in θ.

$$
\frac{d Z}{d x}=4 \varepsilon\left(1-2 \frac{x}{c}\right)=4 \varepsilon \cos \theta_{o}
$$

Fourier coefficient calculation

Substituting the above $d Z / d x$ into the general expressions for the Fourier coefficients gives

$$
\begin{aligned}
& A_{0}=\alpha-\frac{1}{\pi} \int_{0}^{\pi} \frac{d Z}{d x} d \theta=\alpha-\frac{1}{\pi} \int_{0}^{\pi} 4 \varepsilon \cos \theta d \theta \\
& A_{n}=\frac{2}{\pi} \int_{0}^{\pi} \frac{d Z}{d x} \cos n \theta d \theta=\frac{2}{\pi} \int_{0}^{\pi} 4 \varepsilon \cos \theta \cos n \theta d \theta
\end{aligned}
$$

The integral in the A_{0} expression easily evaluates to zero. The integral in the A_{n} expression can be evaluated by using the orthogonality propertyof the cosine functions.

$$
\int_{0}^{\pi} \cos n \theta \cos m \theta d \theta= \begin{cases}\pi & (\text { if } n=m=0) \\ \pi / 2 & (\text { if } n=m \neq 0) \\ 0 & (\text { if } n \neq m)\end{cases}
$$

For our case we have $m=1$, and then set $n=1,2,3 \ldots$ to evaluate $A_{1}, A_{2}, A_{3}, \ldots$ The final results are

$$
\begin{aligned}
A_{0} & =\alpha \\
A_{1} & =4 \varepsilon \\
A_{2} & =0 \\
A_{3} & =0 \\
& \vdots
\end{aligned}
$$

so only A_{0} and A_{1} are nonzero for this case.

Lift and moment coefficients

The coefficients can now be computed directly using their general expressions derived previously.

$$
\begin{aligned}
c_{\ell} & =\pi\left(2 A_{0}+A_{1}\right)=2 \pi(\alpha+2 \varepsilon) \\
c_{m, c / 4} & =\frac{\pi}{4}\left(A_{2}-A_{1}\right)=-\pi \varepsilon
\end{aligned}
$$

From the $c_{\ell}(\alpha)$ expression above, the zero-lift angle is seen to be

$$
\alpha_{L=0}=-2 \varepsilon
$$

which is also the angle of the zero lift line In the present case of a parabolic camber line, the zero lift line passes through the maximum-camber point and the trailing edge point.

As a possible shortcut, the zero-lift angle could also have been computed directly from its explicit equation derived earlier.

$$
\alpha_{L=0}=\frac{1}{\pi} \int_{0}^{\pi} \frac{d Z}{d x}\left(1-\cos \theta_{o}\right) d \theta_{o}=\frac{1}{\pi} \int_{0}^{\pi} 4 \varepsilon \cos \theta_{o}\left(1-\cos \theta_{o}\right) d \theta_{o}=-2 \varepsilon
$$

But this integral is just the combination of the integrals for A_{0} and A_{1}, so there is no real simplification here.

Surface loading (further details)

In many applications, obtaining just the c_{ℓ} and c_{m} of the entire airfoil is sufficient. But in some cases, we may also want to know the force and moment on only a portion of the airfoil. For example, the force and moment on a flap are of considerable interest, since the flap hinge and flap control linkage must be designed to withstand these loads. We therefore need to know how the loading $\Delta p(x)$ is distributed over the chord, and over the flap in particular.

The loading Δp is directly related to the vortex sheet strength $\gamma(x)$, and can also be given in terms of the dimensionless pressure coefficient.

$$
\begin{equation*}
\Delta p(x)=\rho V_{\infty} \gamma(x)=\frac{1}{2} \rho V_{\infty}^{2} \Delta C_{p}(x) \tag{1}
\end{equation*}
$$

The general expression for the sheet strength, obtained previously, is

$$
\gamma(\theta)=2 V_{\infty}\left(A_{0} \frac{1+\cos \theta}{\sin \theta}+\sum_{n=1}^{N} A_{n} \sin n \theta\right)
$$

Substituting the Fourier coefficients obtained for the present case gives

$$
\begin{aligned}
\gamma(\theta) & =2 V_{\infty}\left(\alpha \frac{1+\cos \theta}{\sin \theta}+4 \varepsilon \sin \theta\right) \\
\text { or } \quad \Delta C_{p}(\theta)=2 \frac{\gamma(\theta)}{V_{\infty}} & =4 \alpha \frac{1+\cos \theta}{\sin \theta}+16 \varepsilon \sin \theta
\end{aligned}
$$

The integration of ΔC_{p} over the flap can be conveniently performed in the θ coordinate as usual, using the above expression. But it is also of some interest to examine this distribution in the physical x coordinate. The relevant relations between θ and x are

$$
\begin{aligned}
\cos \theta & =1-2 x / c \\
\sin \theta & =\sqrt{1-\cos ^{2} \theta}=\sqrt{1-(1-2 x / c)^{2}}=2 \sqrt{x / c-(x / c)^{2}}
\end{aligned}
$$

which can be substituted into the above $\Delta C_{p}(\theta)$ expression to put it in terms of x.

$$
\Delta C_{p}(x)=4 \alpha \sqrt{\frac{c}{x}-1}+32 \varepsilon \sqrt{\frac{x}{c}-\left(\frac{x}{c}\right)^{2}}
$$

Define x_{h} as the location of the flap hinge, so the flap extends from $x=x_{h}$, to the trailing edge at $x=c$. The corresponding θ locations are $\theta=\arccos \left(1-2 x_{h} / c\right) \equiv \theta_{h}$, and $\theta=\pi$, respectively. The load/span and moment/span coefficients on the flap hinge can now be computed by integrating the pressure loading.

$$
\begin{aligned}
c_{\ell_{h}} & \equiv \frac{L_{h}^{\prime}}{\frac{1}{2} \rho V_{\infty}^{2} c}=\frac{1}{c} \int_{x_{h}}^{c} \Delta C_{p}(x) d x=\frac{1}{2} \int_{\theta_{h}}^{\pi} \Delta C_{p}(\theta) \sin \theta d \theta \\
c_{m_{h}} & \equiv \frac{M_{h}^{\prime}}{\frac{1}{2} \rho V_{\infty}^{2} c^{2}}=\frac{1}{c^{2}} \int_{x_{h}}^{c} \Delta C_{p}(x)\left(x_{h}-x\right) d x=\frac{1}{4} \int_{\theta_{h}}^{\pi} \Delta C_{p}(\theta)\left(\cos \theta-\cos \theta_{h}\right) \sin \theta d \theta
\end{aligned}
$$

Here, integrations in θ are simpler, but still somewhat tedious, and are best left for computerbased symbolic or numerical integration methods.

