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Fluids – Lecture 4 Notes 

1. Thin Airfoil Theory Application: Analysis Example 

Reading: Anderson 4.8, 4.9 

Analysis Example 

Airfoil camberline definition 
Consider a thin airfoil with a simple parabolic-arc camberline, with a maximum camber 
height εc. 

x 
Z(x) = 4ε x 1 − 

c 

The camberline slope is then a linear function in x, or a cosine function in θ. 

dZ x 
= 4ε 1 − 2 = 4ε cos θo

dx c 

x 
x 

dZ 
dx 

Z dZ 
dx 

θ 
0 c 

c π 
cε 

Fourier coefficient calculation 
Substituting the above dZ/dx into the general expressions for the Fourier coefficients gives 

∫ ∫ π1 π dZ 1 
A0 = α − dθ = α − 4ε cos θ dθ 

π 0 dx π 0 

∫ ∫ π2 π dZ 2 
An = cos nθ dθ = 4ε cos θ cos nθ dθ 

π 0 dx π 0 

The integral in the A0 expression easily evaluates to zero. The integral in the An expression 
can be evaluated by using the orthogonality property of the cosine functions. 

 
∫ π  π (if n = m = 0) 

 
cos nθ cos mθ dθ = π/2 (if n = m = 0) 
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0  0 (if n = m) 

For our case we have m = 1, and then set n = 1, 2, 3 . . . to evaluate A1, A2, A3, . . .. The final 
results are 

A0 = α 

A1 = 4ε 

A2 = 0 

A3 = 0 
. . . 

so only A0 and A1 are nonzero for this case. 
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Lift and moment coefficients 
The coefficients can now be computed directly using their general expressions derived pre
viously. 

cℓ = π (2A0 + A1) = 2π (α + 2ε) 

π 
cm,c/4 = (A2 − A1) = −πε 

4 

From the cℓ(α) expression above, the zero-lift angle is seen to be 

αL=0 = −2ε 

which is also the angle of the zero lift line. In the present case of a parabolic camber line, 
the zero lift line passes through the maximum-camber point and the trailing edge point. 

zero lift line
αL=0 

freestream direction 
at zero−lift condition 

cε 

c/2 

As a possible shortcut, the zero-lift angle could also have been computed directly from its 
explicit equation derived earlier. 

∫ ∫ π1 π dZ 1 
αL=0 = (1 − cos θo) dθo = 4ε cos θo (1 − cos θo) dθo = −2ε 

π 0 dx π 0 

But this integral is just the combination of the integrals for A0 and A1, so there is no real 
simplification here. 

Surface loading (further details) 
In many applications, obtaining just the cℓ and cm of the entire airfoil is sufficient. But in 
some cases, we may also want to know the force and moment on only a portion of the airfoil. 
For example, the force and moment on a flap are of considerable interest, since the flap hinge 
and flap control linkage must be designed to withstand these loads. We therefore need to 
know how the loading Δp(x) is distributed over the chord, and over the flap in particular. 

0 

Δ 

x 
c 

p 

Δp 

lift/span on flap only 

L’h 
hM’ 

total lift/span L’ 

L’h 

The loading Δp is directly related to the vortex sheet strength γ(x), and can also be given 
in terms of the dimensionless pressure coefficient. 

1 
Δp(x) = ρ V

∞
γ(x) = ρ V 2 ΔCp(x) (1) 

∞2 
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The general expression for the sheet strength, obtained previously, is


N 
) 

1 + cos θ ∑ 
γ(θ) = 2V

∞ 
A0 + An sin nθ 

sin θ n=1 

Substituting the Fourier coefficients obtained for the present case gives 

1 + cos θ 
γ(θ) = 2V

∞ 
α + 4ε sin θ 

sin θ 

γ(θ) 1 + cos θ 
or ΔCp(θ) = 2 = 4α + 16ε sin θ 

V
∞ 

sin θ 

The integration of ΔCp over the flap can be conveniently performed in the θ coordinate as 
usual, using the above expression. But it is also of some interest to examine this distribution 
in the physical x coordinate. The relevant relations between θ and x are 

cos θ = 1 − 2x/c 

sin θ = 
√

1 − cos2 θ = 1 − (1 − 2x/c)2 = 2 x/c − (x/c)2 

which can be substituted into the above ΔCp(θ) expression to put it in terms of x. 

√ 
( )2c x x 

ΔCp(x) = 4α
x 
− 1 + 32ε 

c 
− 

c 

Δ p 

x x x 

4αC 
c c 
x x 2c 

x 1increasing α 32 ε 

x ch 

Define xh as the location of the flap hinge, so the flap extends from x = xh, to the trailing 
edge at x = c. The corresponding θ locations are θ = arccos(1−2xh/c) ≡ θh, and θ = π, 
respectively. The load/span and moment/span coefficients on the flap hinge can now be 
computed by integrating the pressure loading. 

∫ ∫ πL′ c1 1h = ΔCp(x) dx = ΔCp(θ) sin θ dθ 
1 2 

cℓh 
≡ 

2 
ρ V c c xh 2 θh∞ 

∫ c 1 ∫ π1Mh 
′ 

= ΔCp(x) (xh − x) dx = ΔCp(θ) (cos θ − cos θh) sin θ dθ cmh 
≡ 

1 ρ V 2c2 c2 xh 4 θh2 ∞ 

Here, integrations in θ are simpler, but still somewhat tedious, and are best left for computer-
based symbolic or numerical integration methods. 
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