
Fluids – Lecture 8 Notes 

1. Wing Geometry 

2. Wing Design Problem 

Reading: Anderson 5.3.2, 5.3.3 

Wing Geometry 

Chord and twist 
The chord distribution is given by the c(y) function. Each spanwise station also has a local 
geometric twist angle αgeom(y), measured from some reference line which is common to the 
whole wing. The freestream angle α is also defined from this same common reference line. 
The choice of the reference line for all these angles is arbitrary, although a common choice 
is the wing-center chord line. 
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How the geometric twist varies across the span is loosely described by the terms washout 

and washin: 

washout washin 

Washout: αgeom(y) decreases towards the tip. 
Washin : αgeom(y) increases towards the tip. 

If the wing has a spanwise-varying camber, the local zero-lift angle αL=0(y) will also vary. It 
is useful to define an overall aerodynamic twist angle as 

αaero(y) ≡ αgeom(y) − αL=0(y) 

αL (y) α (y) δ. 
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The local =0 and hence aero can be changed by a flap deflection 

Local loading/angle relations 
The local lift/span can be given either in terms of the local circulation Γ(y), or the local 
chord-cℓ product. 
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Equating these gives the circulation in terms of the chord and cℓ. 

1 
Γ(y) = V
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c(y) cℓ(y) (1) 
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Assuming the airfoils are not stalled, the local cℓ is proportional to the angle between the 
local relative velocity and the zero lift line. 

cℓ(y) = ao [α + αaero(y) − αi(y)] (2) 

The constant of proportionality ao = dcℓ/dα is nearly 2π for thin airfoils, but is somewhat 
larger for thick airfoils. It can be obtained from either experimental data or calculation. 

Finally, the relation between αi at any one location yo, and the entire spanwise circulation 
distribution, was obtained previously using the Biot-Savart law. 
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Equations (1), (2), and (3) form the basis of wing analysis and design. The general analysis 
problem is rather complicated and is somewhat beyond scope here. However, the design 
problem is simpler, and an example design problem is considered next. 

Wing Design Problem 

Elliptic loading 
A typical basic wing design problem is to determine the geometry of a wing so that it will 
have some specified load (or circulation) distribution Γ(y). As an example, consider the 
simple case where the span b and flight speed V

∞ 
are given, and the circulation is to be 

elliptic. 
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Γ(y) = Γ0 1 − 

b 
Although we don’t yet know what the wing looks like, we do already know its lift and induced 
drag from Γ(y) alone. From previous results, 

π (L/b)2 

L = ρ V
∞

Γ0 b , Di = 
14 ρ V 2 π 
2 ∞ 

Planform definition 
The wing chord distribution, or planform, is partially given by equation (1). This now 
becomes 
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which states only that the c × cℓ product must be elliptic. How c or cℓ vary individually is

not determined, but rather must be chosen by the designer. The possibilities are unlimited,

but it’s useful to consider two particularly simple choices.


Choice 1: Pick a spanwise constant cℓ. In this case the chord distribution must be elliptic,
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where c0 is the center chord. Such a wing is aerodynamically attractive, but the curved 
outlines may be impractical for construction. 

Choice 2: Pick a simple constant wing chord, c(y) = c. Using equation (1) again we have 
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where cℓ0 is the wing-center lift coefficient. 

Aerodynamic twist definition 
Whatever choice is made for either c(y) or cℓ(y), the required corresponding wing twist 
distribution can now be obtained. We have determined earlier that for the elliptic loading 
case, equation (3) produces a spanwise-constant induced angle, given by 

Γ0
αi(y) = (spanwise constant) 
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although a non-constant αi does not present any complications. The aerodynamic twist 
distribution is then given by rearranging equation (2). 

cℓ(y) 

a
α + αaero(y) = + αi(y) 

o 

Only the sum α+αaero(y) is defined at this point, since it is the relevant angle which directly 
affects the lift. How this sum is split up between αaero(y) and α is arbitrary, and will be 
defined as a final step. 

The figure shows the two design choices described here, and the resulting wing shapes and 
aerodynamic twist distributions. Note that the elliptic-planform wing is aerodynamically 

flat , meaning that it has a constant aerodynamic twist (i.e. the zero-lift lines at all spanwise 
locations are parallel). In contrast, the “simple” constant chord wing has not turned out so 
simple after all, with an elliptic aerodynamic twist distribution. 
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Geometric twist definition 
Definition of the geometric wing twist requires that the airfoil be selected, possibly varying 
across the span. This selection fixes the αL=0(y) distribution, 

given airfoil −→ αL=0(y) 
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which in turn determines the required geometric twist, apart from the constant α offset.


cℓ(y) 

a
α + αgeom(y) = + αi(y) + αL=0(y) (4) 

o 

Reference line selection 
The overall angle of attack α is finally determined by selection of a common angle reference 
line for the whole wing. A convenient choice is to set the geometric twist angle at the wing 
center y = 0 to take on some specific value, say αgeom(0) = α0. Applying equation (4) at 
y = 0 then defines α. 

cℓ(0) 
α = + αi(0) + αL=0(0) − α0 

ao 

When this α is substituted into equation (4), the geometric twist distribution is finally 
obtained. 

α
cℓ(y) − cℓ(0)


geom(y) = α0 + + αi(y) − αi(0) + αL=0(y) − αL=0(0)

ao 

It must be stressed that the choice of α0 does not alter the wing twist, or the wing’s ori
entation relative to the freestream velocity (i.e. the physical flow situation is unaffected). 
As shown in the figure, changing α0 merely sets the arbitrary reference line at a different 
orientation on the wing/freestream combination. The flowfields are identical. 

geomα 
α 
V 

geomα 

αreference line 
reference line 

α = 90 0α = 5V 

4



