
Fluids – Lecture 13 Notes 

1. Stagnation Quantities 

2. Introduction to Shock Waves 

Reading: Anderson 7.5, 7.6 

Stagnation Quantities 

Adiabatic stagnation processes 

An adiabatic stagnation process is one which brings a moving fluid element to rest adiabat
ically (without heat addition or removal). The figure a fluid element at station 1 in some 
flow being brought to rest by two hypothetical adiabatic processes. Process A is done by 
placing a blunt object in the flow, such that the fluid element reaches the stagnation point, 
where V = 0. Process B lets the fluid element flow into a large insulated chamber where it 
will mix with the stationary fluid there and thus come to rest. 
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Actual Flow 

The changes of h and V for either process are governed by the total enthalpy relation 

1 
ho ≡ h + V 2 = constant 

2 

derived previously. Therefore, we have 

1 1 2ho1 
≡ h1 + V1

2 = hstag +
2 
Vstag = hstag 

2 

We see that at the end of the stagnation process, hstag is equal to the total enthalpy ho1 
at 

the beginning. For this reason, the terms stagnation enthalpy and total enthalpy are largely 
synonymous, although they are two distinct concepts. 

The total enthalpy ho on the streamline can therefore be measured by setting up an actual 
stagnation process, typically with a small obstruction like a small-scale version of Process A, 
and measuring the resulting temperature Tstag. One can then calculate ho = hstag = cpTstag. 

Isentropic stagnation processes 

An isentropic stagnation process, is one which brings a moving fluid element to rest adiabat
ically and reversibly (without friction). Of the above figures, only Process A is of this type. 
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In addition to the total enthalpy relation 

ho1 
= hstag 

we now also have the isentropic relations between station 1 and the stagnation point. 
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ρ1 T1	 h1 
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=	 = 
p1 T1	 h1 

2Substituting hstag = ho1 
, and h1 = ho1 

− 
1 V1 , we can now define the total density and total 
2 

pressure at station 1 in terms of station 1 quantities. 
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ρstag ≡ ρo1 
= ρ1 1 − 

2ho1 

V1
2 
� 
−γ/(γ−1) 

pstag ≡ po1 
= p1 1 − 

2ho1 

Relations along streamline 

Any point along a streamline can be subjected to a hypothetical adiabatic or isentropic 
stagnation process in order to define the local total quantities ho, ρo, and po. Whether any 
two such points on a streamline have the same total quantities depends on whether a non
adiabatic or non-isentropic process occurred on the streamline between them. The figure 
shows four possible situations, resulting in equalities or inequalities between the two points 
on the streamline. The “?” relation in the non-isentropic and adiabatic cases indicates 
that the relation is unknown without additional information about the friction or heating, 
respectively. 
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For the adiabatic case, a unique total enthalpy ho can be assigned to the whole streamline. 
Then for any point on the streamline we have 

1 
h = ho − V 2	 (1) 
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For the more restrictive isentropic case, a unique total density ρo and total pressure po can 
also be assigned to the whole streamline, which gives 

V 2 
�1/(γ−1)


ρ = ρo 1 − (2)

2ho 

V 2 
�γ/(γ−1)


p = po 1 − (3)

2ho 

These equations are in effect a compressible-flow replacement for the incompressible Bernoulli 
equation. 

It’s useful to note that only two of the three above equations are independent. Any one of 
them could be removed and replaced by the state equation. 

γ − 1 
p = ρ h 

γ 

Introduction to Shock Waves 

Wave features 

V

Compressibility of a fluid allows the existence of waves, which are variations in ρ, p, and h 

(or temperature T ), which self-propagate through the fluid at some speed. Ordinary sound 
consists of very small variations which move at the speed of sound a, while a shock wave has 
a finite variation in flow quantities and moves at a larger speed Vs > a. The figure illustrates 
the difference in the two types of waves. The shock wave has a flow velocity behind it equal 
to the piston speed Vp, but the shock itself advances into the still air at a much higher speed 

s > a. The air properties ρ, p, and h are all increased behind the shock. 
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Shock Frame 

We now examine the piston shock flow in the frame of the shock, by shifting all the velocities 
by +Vs. In this frame the flow is steady, and is the most convenient frame for analyzing the 
shock. The upstream and downstream quantities are usually denoted by the subscripts ()1 

and ()2, respectively. The static air properties ρ, p, and h are of course unchanged by this 
frame change. 
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Upstream−Air Frame Shock Frame 

Downstream-Air Frame 

An intuitive understanding of a shock wave is perhaps best obtained by looking at the 
situation yet again, in the downstream-air frame. The shock now propagates against the 
oncoming upstream flow. This situation is closely analogous to how a traffic blockage prop
agates backward against the oncoming traffic. 
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Dissipation in Shock 

The flow passing through a shock wave undergoes an adiabatic process, since there is no heat 
being supplied (there’s nothing there to provide heat!). But because a shock wave is typically 
very thin — less than 1 micron at sea level — there are strong viscous forces acting on the 
fluid passing through it, so the process is irreversible. Therefore, the stagnation quantities 
have the following relations across a shock wave: 

ho1 
= ho2 

ρo1 
> ρo2 

po1 
> po2 

A more detailed analysis will quantify the inequalities.
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