
Notes on the Node Method and the Loop

Method 

The steps  in  the node method  are:  

1.	 Identify one node as the ground node, so that by definition, the potential at the 
node is 0 V. You may choose any node as ground, but often a judicious choice 
will simplify things later on. If there is only one source, make the negative 
terminal of the source ground. If there are several sources, all with a common 
node, make that node ground. Otherwise, choose one source, and make one of 
its terminals (usually the negative terminal) ground. 

2.	 Label the potential of each node. Of course the ground node is at 0 V. Most 
of the other nodes will be unknown. Label them as e1, e2, etc. For voltage 
sources, use the constitutive relation to label one of the nodes. For example, 
if the negative terminal is at ground, and the source has strength V1, then the 
positive terminal is at V1. If the negative terminal is at, say, e2, then the positive 
terminal is at V1 + e2. 

Generally, this process will lead to a unique (but perhaps unknown) voltage at 
each node. Furthermore, Kirchhoff’s voltage law will be satisfied automatically 
for each loop. 

This process can fail in one situation: If any loop in the network consists of 
only voltage sources, then that loop will not satisfy KVL (unless the source 
strengths happen to sum to zero around the loop). Physically, such a situation 
would lead to infinite current flow, and so should be avoided! 

3.	 For each node with unknown potential, apply Kirchhoff’s Current Law. This 
will lead to an equation in the unknown node voltage. (The equation will also 
involve other nodes that are connected to the node of interest by other elements.) 

There is no need to apply KCL at nodes with known voltage. Indeed, such 
nodes are connected to voltage sources, and the constitutive relation of voltage 
sources gives no information about the current flow through the source; hence, 
it adds no new information that would allow one to find the unknown node 
voltages. 

There is one complicated situation that bears discussion. In cases where both 
nodes connected to a voltage source is unknown, because neither terminal is at 
ground, there will be one unknown associated with the two nodes. For example, 
the negative terminal of the source may be at e2, and the positive terminal at 
V1 + e2. In that case, KCL is applied to the two nodes together. That is, the 
two nodes are treated as a supernode, and all the current flowing out of both 
nodes is summed. This will yield one equation for the one unknown. 
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4.	 The resulting linear equations are solved for the unknown node voltages. 

5.	 If the currents through the various network elements are desired, the constitutive 
relations are used to derive them. In the case of voltage sources, KCL must be 
applied at one node of the source to find the source current. 

The steps in the loop method are: 

1.	 Identify the maximum number of independent loops in the network. If the loop 
is planar, i.e, has no crossovers of elements or conductors, then the number of 
independent loops is obvious — it’s the number of “white spaces” the circuit 
encloses. 

If the circuit is not planar, it’s a little more tricky. The number of independent 
loops is b − n + 1,  where  b  is the number of branches or elements in the circuit, 
and n is the number of nodes. You must pick loops that are really independent. 
That is, you must be able to build up any set of branch currents that is consistent 
with KCL from the loop currents. See Appendix A for more details. 

2.	 Label the current around each loop, with known currents where possible (due 
to current sources), and otherwise with unknown variables. 

It is important to understand what is meant by “loop current.” The current 
through any element is given by the algebraic sum of loop currents of the loops 
that that element is part of. As such, the loop current is simply a bookkeeping 
convenience that will be useful for the method. 

Generally, this process will lead to a unique (but perhaps unknown) current 
associated with each loop. Furthermore, Kirchhoff’s current law will be satisfied 
automatically at each node. 

This process can fail in one situation: If any node in the network is connected 
only to current sources, then that node will not satisfy KCL, unless the source 
strengths happen to sum to zero. Physically, such a situation would lead to 
infinite voltage at that node, and so should be avoided! 

3.	 For each loop with unknown current, apply Kirchhoff’s Voltage Law. This will 
lead to an equation in the unknown loop current. (The equation will also involve 
other loop currents, namely, for other loops which share a common element.) 

There is no need to apply KVL for loops with known current. Indeed, such 
loops include current sources, and the constitutive relation of current sources 
gives no information about the voltage across the source; hence, it adds no new 
information that would allow one to find the unknown loop currents. 

4. The resulting linear equations are solved for the unknown loop currents. 
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5. If the voltage across the various network elements are desired, the constitutive 
relations are used to derive them. In the case of current sources, KVL must be 
applied to the loop that includes the source to find the source voltage. 

Appendix A. Number of Independent Loops 

This brief set of notes clarifies an issue that arose in class, namely, When using the 
loop method, how many independent loops can be identified? And, how do we know 
that a set of loops is independent? 

Consider the circuit shown in Figure 1. The circuit has n = 5 nodes, labeled e1, 

ib id if 

ia ic ie igi1 i2 i3 

Figure 1: Example circuit 

e2,  . . .  e5, and  b  = 7 branch currents, corresponding to the 7 elements in the circuit. 
Also shown in the figure are three loop currents, i1, i2, and  i3. It’s important to 
understand that the loop currents are used to describe the branch currents in the 
circuit. For example, the current ic is given in terms of loop currents by 

ic = −i1 + i2 (1) 

Kirchhoff’s current law applies at each node. KCL for this network can be written 
in vector form as ⎦ 

ia⎦ �����������⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢� 

1 0 0 0 0 0−1 
0 

ib 

ic 

id 

ie 

if 

ig 

������⎡ 

⎢⎢⎢⎢⎢⎢� 

1 0 0 0−1 −1 
0 00 =
 0 1 0−1 −1 

0 00 0 0
 −1 −1

0 1
1 0 1 0 1 

= Ai (2) 
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Note that the matrix A not only describes KCL at the five nodes, it also encodes the 
topology of the network. For example, the first column of A shows that the circuit 
element a is connected between node e5 and node e1. 

Now, each column of A is composed of all zeros, except for one 1 and one −1, 
meaning that each element is connected to two nodes of the network. Thus, each 
column of A sums to zero, so that even though A is a 5 × 7 matrix, one row is redun
dant, so that there are only four independent rows. Since there are seven unknown 
currents, the equation above is under determined, and there are many solutions to 
the equations. In fact, the space of solutions is a 3-dimensional space. The general 
solution to Equation (2) is given by ⎦ 

i1 �⎡ i2 
⎢� (3)
i = B


i3 

where B is a 7 × 3 matrix, the three columns of B are linearly independent, and 

AB = 0  (4)  

By choosing the currents in this way, we automatically guarantee that KCL is satisfied 
at each node, since each loop current (i.e., column  of  B) satisfies  KCL.  

One choice of B is
 ⎦ �����������⎡ 

1 0 0 
1 0 0 

1 0−1 
0 1 0 
0 −1 1

0 0 1

0 0 −1


⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢� 

B = (5) 

This choice corresponds to the three loop currents shown in Figure 1. For example, 
the first column of B corresponds to the loop current i1. 

So how many independent loops does a circuit have? For a circuit with n nodes, 
there are n − 1 independent node equations that constrain the currents. If the circuit 
has b branches, that implies that there are exactly b − (n − 1) = b − n + 1 independent 
loops currents. For planar circuits (circuits that can be drawn on a plane without 
any elements crossing one another), there is an obvious choice for the loops; namely, 
the b − n + 1 small loops that enclose no circuit elements. For nonplanar loops, the 
choice is not so obvious, but the number of independent loops will be b − n + 1.  
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