Node Method Concept Test

For the network above, find the equation that expresses Kirchhoff's Current Law at the node e_{2}. My answer was

1. $\left(R_{4}+R_{5}\right) e_{2}-R_{4} e_{1}=-I$
2. $\left(G_{4}+G_{5}\right) e_{2}-G_{4} e_{1}=-I$
3. $\left(G_{4}+G_{5}\right) e_{2}-G_{4} e_{1}=I$
4. Not among the answers above
5. I was unable to get an answer

Node Method Solution

The correct answer is \#3. The current flowing out of the node through R_{4} is $\left(e_{2}-e_{1}\right) / R_{4}=G_{4}\left(e_{2}-e_{1}\right)$. The current flowing out of the node through R_{5} is $\left(e_{2}-0\right) / R_{5}=G_{5} e_{2}$. The current flowing out of the node through the current source is $-I$, because the source points into the node. So

$$
\left(G_{4}+G_{5}\right) e_{2}-G_{4} e_{1}-I=0
$$

The class did significantly better on the second try, when I asked everyone to find someone who disagrees with them, and to try to come to a consensus on the answer.

Light Bulb I Concept Test

The light bulbs in the circuit are identical. When the switch is closed,

1. Both bulbs go out
2. The intensity of light bulb A increases.
3. The intensity of light bulb A decreases.
4. The intensity of light bulb B increases.
5. The intensity of light bulb B decreases.
6. Some combination of 1-5 occurs.
7. Nothing happens

Concept test due to Eric Mazur, Harvard.

Light Bulb I Solution

We designate the bottom node as ground, and hence its voltage is zero. The node above the lower battery on the right is 12 V above zero, and hence is 12 V . The node above the upper battery on the right is 12 V above that, and hence is 24 V . With the switch open, the two bulbs form a voltage divider. Because the same amount of current flows through the two identical bulbs, the voltage drop across each is the same. Because the drop across two bulbs is 24 V , the drop across each bulb must be 12 V . So the potential of the node between the two bulbs is 12 V , again, before the switch is closed.

After the switch is closed, the potential of the node between the bulbs must be 12 V , since now the battery (almost a voltage source) fixes the potential. But it was 12 V before the switch closed! So closing the switch doesn't really change anything, and the light bulb intensities don't change.
Therefore, the correct answer is \#7.

Surprising, there were only 4 students with the correct answer. The concept test measures your conceptual understanding of node potentials, so some work is needed in this area.

