Circuits with Sources I Concept Test

For the circuit above, take v_{1} and i_{2} to be the state variables. Find the differential equation for the state i_{2}.

My confidence in my answer is:

1. 0%
2. 20%
3. 40%
4. 60%
5. 80%
6. 100%

Circuits with Sources I Concept Test

For the circuit above, take v_{1} and i_{2} to be the state variables. The differential equation for the state i_{2} is

$$
\frac{d i_{2}}{d t}=\frac{1}{L} v_{1}
$$

My answer was

1. Completely correct.
2. Had one or two small errors.
3. Incorrect.
4. I didn't understand the problem.

Circuits with Sources I Solution

The differential equation for i_{2} is

$$
\frac{d i_{2}}{d t}=\frac{1}{L} v_{2}
$$

But $v_{2}=v_{1}$, since the inductor and capacitor are in parallel, and the voltage across the inductor is referenced the same way as the capactior. Therefore,

$$
\frac{d i_{2}}{d t}=\frac{1}{L} v_{1}
$$

Note that differential equation is in terms of states and parameters of the circuit only.

The class had some difficulty with this problem. There should be plenty of practice on the problem set.

Circuits with Sources II Concept Test

For the circuit above, take v_{1} and i_{2} to be the state variables. Find the differential equation for the state v_{1}.

My confidence in my answer is:

1. 0%
2. 20%
3. 40%
4. 60%
5. 80%
6. 100%

Circuits with Sources II Concept Test

For the circuit above, take v_{1} and i_{2} to be the state variables. The differential equation for the state v_{1} is

$$
\frac{d v_{1}}{d t}=-\frac{1}{R C} v_{1}-\frac{1}{C} i_{2}(t)+\frac{1}{R C} u(t)
$$

My answer was

1. Completely correct.
2. Had one or two small errors.
3. Incorrect.
4. I didn't understand the problem.

Circuits with Sources II Solution

Lecture S13: Circuits with Sources II (Confidence)

The differential equation for v_{1} is

$$
\frac{d v_{1}}{d t}=\frac{1}{C} i_{1}
$$

So we need to solve for i_{1}. We can apply KCL to the node at the top of the capacitor to obtain

$$
i_{1}+\frac{v_{1}-u}{R}+i_{2}=0
$$

Solving for \boldsymbol{i}_{1},

$$
i_{1}=-\frac{1}{R} v_{1}-i_{2}(t)+\frac{1}{R} u(t)
$$

Therefore,

$$
\frac{d v_{1}}{d t}=-\frac{1}{R C} v_{1}-\frac{1}{C} i_{2}(t)+\frac{1}{R C} u(t)
$$

