
Wing Bending Calculations 
Lab 10 Lecture Notes 

Nomenclature 

L

y spanwise coordinate

q net beam loading

S shear

M bending moment

θ deflection angle (= dw/dx)

w deflection

κ local beam curvature

′ lift/span distribution

′ 

S

η normalized spanwise coordinate (= 2y/b) 
c local wing chord 

wing wing area 
b wing span 
λ taper ratio 
E Young’s modulus 
δ tip deflection 
N load factor 

m wing mass/span distribution

I bending inertia

i spanwise station index

n last station index at tip


L lift 
W weight 
g gravitational acceleration 
()o quantity at wing root 

Loading and Deflection Relations 

The net wing beam load distribution along the span is given by 

′ ′ q(y) = L (y) − N g m (y) (1) 

where m ′ (y) is the local mass/span of the wing, and N is the load factor. In steady level 
flight we have N = 1. The net loading q(y) produces shear S(y) and bending moment M(y) 
in the beam structure. This resultant distribution produces a deflection angle θ(y), and 
deflection w(y) of the beam, as sketched in Figure 1. 
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Figure 1: Aerodynamic and mass loadings, and resulting structural loads and deflection.
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The standard differential equations derived via simple Bernoulli-Euler beam model, with the 
primary structural axis along the y direction, relate the loads and deflections to the loading 
q(y) and the bending stiffness EI(y). 

dS = q dy (2) 

dM = S dy (3) 

M 
dθ = dy (4) 

EI 

dw = θ dy (5) 

To allow integration of these equations, it’s necessary to impose four boundary conditions. 
For a cantilevered wing beam, they are 

y = b/2 : S = 0 (6) 

y = b/2 : M = 0 (7) 

y = 0 : θ = 0 (8) 

y = 0 : w = 0 (9) 

Load Distribution 

The lift distribution L′ (y) needed to define q(y) depends on the induced angle αi(y) and 
hence the overall wing shape in a complicated manner. One reasonable simplification is to 
assume that the net aerodynamic + weight loading in equation (1) is proportional to the 
local chord, 

q(y) ≃ Kq c(y) (10) 

as shown in Figure 2. 
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Figure 2: Net loading assumed to scale as local chord c(y). 

This is equivalent to assuming a constant local cℓ = CL, and that the local wing mass 
distribution m ′ (y) scales as the chord. The constant Kq is best set such that the approximate 
and actual loadings have the same total integrated loads. 

� b/2 � b/2 

−b/2 
Kq c dy = 

−b/2 
(L ′ − Ngm ′ ) dy (11) 

Kq Swing = L − NWwing (12) 

Kq = 
L − NWwing 

Swing 

= 
NWfuse 

Swing 

(13) 
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where Wfuse is the weight of the fuselage, defined as everything not including the wing. 

Numerical Integration 

Equations (2) – (5) can be numerically integrated for any given nonuniform q(y) and EI(y) 
distributions. All spanwise variables are defined at a suitable number of discrete spanwise 
locations y0, y1 . . . yi . . . yn−1, yn. The differential equations (2) – (5) above can then be 
approximated over the yi . . . yi+1 interval via averages and finite differences. 

qi+1 + qi
Si+1 − Si = (yi+1 − yi) (14) 

2 

Si+1 + Si
Mi+1 − Mi = (yi+1 − yi) (15) 

2 

1 Mi+1 Mi
θi+1 − θi = + (yi+1 − yi) (16) 

2 EIi+1 EIi 

θi+1 + θi 
wi+1 − wi = (yi+1 − yi) (17) 
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As indicated in Figure 3, this is equivalent to approximate integration via the Trapezoidal 
Rule. 
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Figure 3: Approximation of continuous differential equation with discrete finite differences 
and averages (Trapezoidal Rule). 

For this statically-determinate problem, the beam equations can be discretely integrated 
(i.e. summed) in the order written above. The summation of each equation starts at the 
end where its boundary condition is applied. Equations (14) and (15) have their boundary 
conditions are at the tip at i = n, so they are summed from the tip inward after a simple 
rearrangement. 

Sn = 0 (18) 

q

Mn = 0 (19) 

i+1 + qi
Si = Si+1 − (yi+1 − yi) (i = n−1, n−2 . . .0) (20) 

2 
Si+1 + Si

Mi = Mi+1 − (yi+1 − yi) (i = n−1, n−2 . . . 0) (21) 
2 
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For the two remaining equations (16) and (17), the boundary conditions (8) and (9) are at 
the root, so the summation proceeds from the root to the tip. After rearranging (16) and 
(17), and substituting i → i−1, we have 

θ0 = 0 (22) 

w0 = 0 (23) 
� � 

θi = θi−1 + 
1 

2 

Mi 

EIi 
+ 

Mi−1 

EIi−1 

(yi − yi−1) (i = 1, 2 . . . n) (24) 

wi = wi−1 + 
θi + θi−1 

2 
(yi − yi−1) (i = 1, 2 . . . n) (25) 

The summations above are readily implemented in a spreadsheet, as shown in Figure 4. 
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Figure 4: Spreadsheet computation of arbitrary cantilever beam deflection. 

Simplified Deflection Calculations 

For preliminary or optimization work, the spreadsheet calculation of each candidate wing is 
unwieldy. For estimation, a very simple approximation is to assume that the beam curvature 

d2w dθ M(y)
κ(y) ≡ = = 

dy2 dy EI(y) 

is constant, and taken from some representative location such as the wing root at y= 0. 

M0
κ(y) ≃ κ0 = (26) 

EI0 
y 

θ(y) = κ0 dy = κ0 y (27) 
0 
y 1 

κ0 y 
2 w(y) = θ dy = (28) 

0 2 

For a straight-taper wing with taper ratio ct/cr = λ, the chord distribution is 

Swing 2 2y 
c(y) = 1 + (λ − 1) (29) 

b 1 + λ b 
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and the corresponding approximate loading is then given by (10), and by the Kq defini
tion (13). 

NWfuse 2 
q(y) ≃ Kq c(y) = 1 + (λ − 1)η (30) 

b 1 + λ 
2y

η ≡ (31) 
b 

To simplify the subsequent integrations, the y coordinate has been replaced with the equiv
alent and more convenient normalized coordinate η, which runs η = 0 . . . 1 root to tip. The 
shear and bending moment are then calculated by integrating equations (2) and (3). 

� b/2 

S(y) = q(y) dy (32) 
y 
� 1b 

S(η) = q(η) dη (33) 
2 η 

� 1 � �NWfuse 2 b 
= 1 + (λ − 1)η dη (34) 

b 1 + λ 2 η 

= 
NWfuse 2 b 

1 − η + (λ − 1)
1
(1 − η2) (35) 

b 1 + λ 2 2
� b/2 

M(y) = S(y) dy (36) 
y 
� 1b 

M(η) = S(η) dη (37) 
2 η 

b2 � 1 1 
= 

NWfuse 2
1 − η + (λ − 1) (1 − η2) dη (38) 

b 1 + λ 4 η 2

b2 
� �1 � � 1 1 

= 
NWfuse 2

1 − η − 1 − η2 + (λ − 1) 1 − η − 1 − η3 (39) 
b 1 + λ 4 2 2 3 

The root moment is then 

b 1 + 2λ 
M0 ≡ M(0) = NWfuse (40) 

12 1 + λ 

which is subsequently combined with (26) and (28) to get the following estimate of the tip 
deflection. 

� �2
1 b M0 b2 NWfuse b

3 1 + 2λ 
δ ≡ w(b/2) ≃ κ0 = = (41) 

2 2 EI0 8 EI0 96 1 + λ 

Figure 5 shows κ(y) for three taper ratios for a solid wing, for which the stiffness varies as 
EI(y)∼ c(y)4 . It can be seen that the κ = κ0 assumption is poor for a rectangular wing, 
but reasonable for wings of moderate to strong taper of λ = 0.3 . . . 0.5. Figure 6 compares 
the approximate deflections defined by (28) with the exact deflections, for the three taper 
ratios. For the untapered λ = 1.0 wing, the approximation considerably overestimates the 
tip deflection, but the tapered cases are quite reasonable. 
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Figure 5: Spanwise distribution of curvature κ(y) = M/EI for three taper ratios.
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Figure 6: Approximate and exact deflections for three taper ratios.
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