16.06 Principles of Automatic Control Recitation 11

Sketch a Nichols plot of:

$$
\begin{gathered}
G(s)=\frac{1}{(s+1)^{3}} \\
s=-3 \tan ^{-1}(\omega)=-180^{\circ} \\
\omega=1.73 \\
\therefore K=\left(\frac{1}{\sqrt{1+3}}\right)^{3}=\frac{1}{(\sqrt{1+3})^{3}}=\frac{1}{8}=K
\end{gathered}
$$

Start with Bode plot of the system:

Nichols:

But, similar to Nyquist, we need to reflect the plot, so what we really have is:

Now the question is how do we count the number of encirclements? $Z=N+P$ still applies! A clockwise encirclement in Nyquist is equivalent to leftward crossing in Nichols. In Nyquist, when counting encirclements, always on imaginary axis. In Nichols, this corresponds to 0° vertical line. Along 0° line there is one leftward crossing, which makes $N=1$. Along -180°
line for magnitudes greater than $0.125, N=0$. For magnitudes lower than $0.125, N=2$. What gain corresponds to boundary point?

$$
\begin{aligned}
\infty & >\frac{1}{K}>\frac{1}{8} \\
0 & <K<8 \\
0 & <\frac{-1}{K}<1 \\
K & >-1 \\
\text { so stable for }-1 & <K<8
\end{aligned}
$$

Check with Nyquist and get the same result!

MIT OpenCourseWare
http://ocw.mit.edu

16.06 Principles of Automatic Control

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

