16.06 Principles of Automatic Control Recitation 4

Problem 1.

Sketch the root locus for $L(s)=\frac{s}{(s+1)(s+4)}$.
$\phi_{R}=\frac{180^{\circ}+360^{\circ}}{2-1}=180^{\circ}$, open loop pole at $s=-1, s=-4$. Zero at $s=0$.

Problem 2.

Sketch the root locus for $L(s)=\frac{s}{(s-1)(s-4)}$.
$\phi_{R}=\frac{180^{\circ}+360^{\circ}}{2-1}=180^{\circ}$, open loop pole at $s=1, s=4$. Zero at $s=0$.
To find departure/arrival point from real axis, use characteristic equation:

$$
1+k L(s)=0 \rightarrow 1+\frac{k s}{s^{2}-5 s+4}=0
$$

$$
\Rightarrow s^{2}+(k-5) s+4=0
$$

Use quadratic formula

$$
\frac{-(k-5)}{2} \pm \frac{\sqrt{(k-5)^{2}-16}}{2}
$$

The $\frac{\sqrt{(k-5)^{2}-16}}{2}$ term may be real or imaginary. If we sent it equal to zero and solve for k, that is the gain at which the transition from real to imaginary occurs.

$$
\frac{\sqrt{(k-5)^{2}-16}}{2}=0
$$

$$
\begin{aligned}
(k-5)^{2} & =15 \\
|k-5| & =4 \\
\rightarrow k & =1,9
\end{aligned}
$$

Now need to put k values back into characteristic equation, and solve for s. This will tell us the location of the roots.
$k=1 \rightarrow s^{2}-4 s+4=0$, two roots at $s=2, k=9 \rightarrow s^{2}+4 s+4=0$.
Two roots at $s=-2$.
When $k=5$, the real part of the quadratic equation is zero, so this is the value of k for when the locus intersects the imaginary axis. Plugging $k=5$ into characteristic equation:
$s^{2}+4=0 \rightarrow$ Intersects imaginary axis at $s= \pm 2 j$.

Problem 3.

Sketch the locus of $L(s)=\frac{s+3}{(s+1)(s+2)(s+20)}$
$\alpha=\frac{-1-2+3-20}{3-1}=-10$

If the pole at $s=-20$ were closer to the zero, the locus would look more like

$s=-14$

MIT OpenCourseWare
http://ocw.mit.edu

16.06 Principles of Automatic Control

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

