16.21 - Techniques of structural analysis and design Homework assignment # 2 Handed out: 2/18/05 Due: 2/25/05

February 17, 2005

- 1. Determine whether the following stress fields are possible in a structural member free of body forces:
 - (a) (not for grade)

$$\sigma_{11} = -3x_1 + 6x_2 \tag{1}$$

$$\sigma_{12} = 4x_1 + 3x_2 \tag{2}$$

$$\sigma_{22} = 5x_1 + 4x_2 \tag{3}$$

(b)

$$\sigma_{11} = c_1 x_1 + c_2 x_2^2 + c_3 x_1 x_2 + c_4 x_1 \tag{4}$$

$$\sigma_{12} = -\frac{c_3}{2}x_2^2 - c_1x_2^2 - c_4x_2 \tag{5}$$

$$\sigma_{22} = c_4 x_1 + c_1 x_2 \tag{6}$$

(c)

$$\sigma_{11} = 2x_1^2 - 2x_1x_2 + 6x_3 \tag{7}$$

$$\sigma_{12} = -x_1 x_2 + x_2^2 \tag{8}$$

$$\sigma_{13} = x_1 x_3 \tag{9}$$

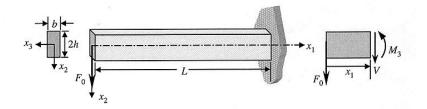
$$\sigma_{22} = -3x_2^2 \tag{10}$$

$$\sigma_{23} = -5x_2x_3\tag{11}$$

$$\sigma_{33} = 2(x_1 - 2x_2)x_3 \tag{12}$$

2. Given the following state of stress, determine the body forces for which the stress field describes a state of equilibrium:

$$\sigma_{11} = -4x_1^2 \tag{13}$$


$$\sigma_{12} = x_1^3 + x_2^2 + 2x_1x_2 \tag{14}$$

$$\sigma_{13} = -4x_1 + 2x_2^2 - 7x_3 \tag{15}$$

$$\sigma_{22} = 3x_2^2 - 2x_3^2 \tag{16}$$

$$\sigma_{23} = 4x_1 x_2 x_3 \tag{17}$$

$$\sigma_{33} = (2x_1 - 3x_2)x_3 \tag{18}$$

3. For the cantilever beam loaded with a point load at the free end (see figure), the bending moment M_3 about the x_3 -axis is given by $M_3 = -F_0x_1$. The bending stress σ_{11} is given by:

$$\sigma_{11} = \frac{M_3 x_2}{I_3}$$

where I_3 is the moment of inertia of the cross section about the x_3 -axis. Use the two-dimensional equilibrium equations in differential form to determine the stress fields: σ_{22} and σ_{12} .

- 4. For the state of stress of question 3, determine the stress vector and its normal and shear components at the point (L, h, 0) on the plane of normal:
 - (a) (1,0,0)
 - (b) $\frac{1}{\sqrt{3}}(1,1,-1)$

Determine the principal stresses and principal directions of stress at this point.