16.333 Homework Assignment #4

Please include all code used to solve these problems.

1. Given the following model of the aerosonde vehicle extracted from the (trim condition, level flight at 23 m/s at sea level)

$$\begin{aligned} G_{u\delta_e(s)} &= \frac{152.2s + 913.1}{\Delta(s)} \\ G_{\alpha\delta_e}(s) &= \frac{-25.72s^2 - 2.439s - 3.85}{\Delta(s)} \\ G_{q\delta_e}(s) &= \frac{-24.18s^3 - 99.13s^2 - 9.672s}{\Delta(s)} \\ G_{\theta\delta_e}(s) &= \frac{-24.18s^2 - 99.13s - 9.672}{\Delta(s)} \\ G_{\theta\delta_e}(s) &= \frac{1.236s^3 + 10.46s^2 + 131.4s + 38.5}{\Delta(s)} \\ G_{\alpha\delta_t^a}(s) &= \frac{-1.192s^2 + 0.3228s - 0.1366}{\Delta(s)} \\ G_{q\delta_t^a}(s) &= \frac{-0.7646s^3 + 3.058s}{\Delta(s)} \\ G_{\theta\delta_t^a}(s) &= \frac{-0.7646s^2 + 3.058}{\Delta(s)} \end{aligned}$$

where

$$\Delta(s) = s^4 + 8.28s^3 + 105.1s^2 + 14.22s + 24.29$$

and $\delta_t^a = H(s)\delta_t^c$, with $H(s) = \frac{3}{s+3}$ to capture the engine lag. The elevators on this aircraft are fast enough that they can be ignored.

Part of the system model available on-line is shown in the figure. u and α are available as the first and third outputs of VelW, q is available as the 5th element of States, and θ is available as the second element of Euler. The elevator is the second control input, the throttle (δ_t^c) is the fourth. Note that a very simple roll loop has been added to facilitate analysis of the longitudinal dynamics.

- Compare the OL dynamics to the 747 any surprises?
- Given these dynamics, design an altitude autopilot

- Use classical, multi-loop closure techniques as discussed in class
- Use Full state feedback. Discuss you rationale for where to locate the regulator poles.
- Use output feedback with u, θ , and α measurements. Discuss you rationale for where to locate the estimator poles.
- Use the simplified block diagram available on the class web page, implement the controller in simulink. Compare the nonlinear simulation response with your predictions any surprises?
- 2. Continue Question #4 of HW3, but this time use the short period model and design the controller using *state space* techniques. As part of this design,
 - (a) Develop a full state feedback controller that puts the *regulator* poles where required.
 - (b) Then develop a *closed-loop* estimator for the system assuming that you can measure the pitch angle θ. Choose estimator pole locations that have the same imaginary part as the regulator poles, but a real part that is 3–4 times larger (in magnitude).
 - (c) Put the regulator and estimator together to form the compensator $G_c(s)$ that maps $y = \theta$ to $u = \delta_e$ (recall that actually $u = -G_c y$). To implement this design, perform the same trick that we did in the notes, and use $u = G_c e$, where $e = \theta_c - \theta$. You should now be able to perform closed-loop simulations of the response of the system to a step in θ_c .
 - (d) Check your pole locations on the full set of longitudinal dynamics. Is the response stable?
 - (e) Compare the frequency response of this state space controller and the controller that you designed in HW3.
- 3. Using the same approach given in class, design a heading autopilot for the F-4C (i.e. one that can track a given Ψ_d) using the dynamics in condition 2. Assume that the actuator servo dynamics has the transfer function $H_s(s) = 20/(s+20)$.
 - (a) This design will consist of a yaw damper, a roll controller, and a feedback on the heading ψ .
 - (b) Simulate the response to an interesting Ψ sequence (like a sequence of 45 deg turns) and comment on the performance. Include a limiter on the desired bank angle of ± 15 degs.
- 4. Write a brief summary of the paper by Vincenti that was handed out. In particular, be sure state his main point and whether or not you agree with it.

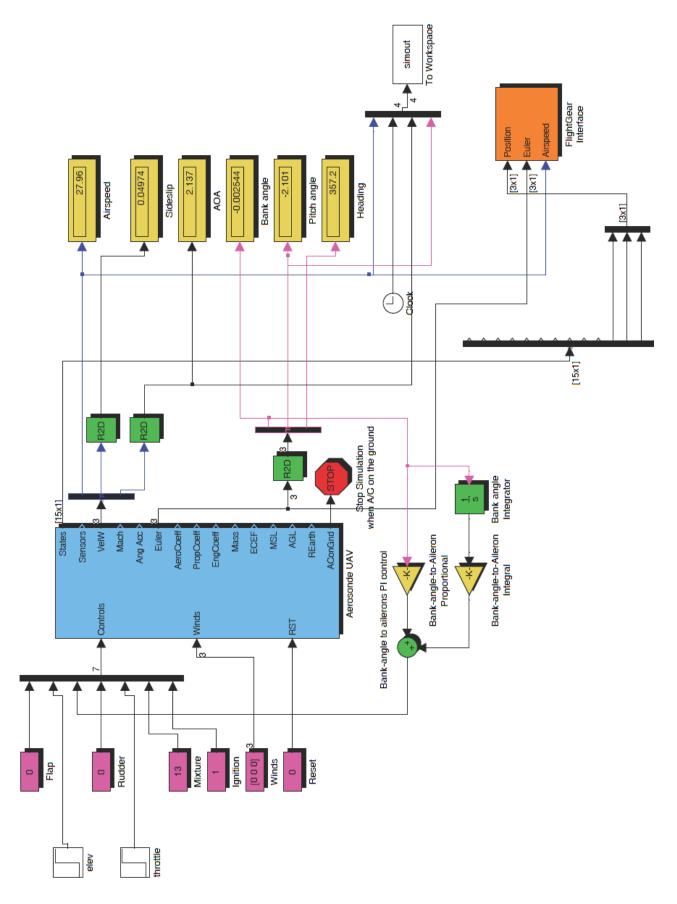


Figure 1: Simplified block diagram for the Aerosonde