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Sampling
 

•	 Sampling provides a discrete-time representation of a continuous
waveform 

– Sample points are real-valued numbers 
–	 In order to transmit over a digital system we must first convert into

discrete valued numbers 

Quantization

levels
 

Q3
 

Q2
 

Q1
 
λ 

λ 
λ λ λ λ λ λ 

λ 
λ 

Sample points 

What are the quantization regions 

What are the quantization levels 
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Uniform Quantizer
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•	 All quantization regions are of equal size (Δ) 
– Except first and last regions if samples are not finite valued 

•	 With N quantization regions, use log2(N) bits to represent each
quantized value 

Eytan Modiano

Slide 3
 



 
 

Quantization Error


 e(x) = Q(x) - x 

Squared error: D = E[e(x)2] = E[(Q(x)-x)2] 

SQNR: E[X2]/E[(Q(x)-x)2] 
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Example
 

• X is uniformly distributed between -A and A 

– f(x) = 1/2A, -A<=x<=A and 0 otherwise 

• Uniform quantizer with N levels => Δ = 2A/N 
– Q(x) = quantization level = midpoint of quantization region in which x lies 

•  D = E[e(x)2] is the same for quantization regions 

D = E[e(x)2 | x !Ri ] = x2 f (x)dx
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Quantizer design
 

•	 Uniform quantizer is good when input is uniformly distributed 

•	 When input is not uniformly distributed 
–	 Non-uniform quantization regions


Finer regions around more likely values
 

–	 Optimal quantization values not necessarily the region midpoints 

•	 Approaches 
–	 Use uniform quantizer anyway
 

Optimal choice of Δ
 

–	 Use non-uniform quantizer

Choice of quantization regions and values
 

–	 Transform signal into one that looks uniform and use uniform
quantizer 
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Optimal uniform quantizer
 

•	 Given the number of regions, N 
–	 Find the optimal value of Δ 
–	 Find the optimal quantization values within each region 
–	 Optimization over N+2 variables 

•	 Simplification: Let quantization levels be the midpoint of the
quantization regions (except first and last regions, when input not
finite valued) 

•	 Solve for Δ to minimize distortion 
–	 Solution depends on input pdf and can be done numerically for 

commonly used pdfs (e.g., Gaussian pdf, table 6.2, p. 296 of text) 
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Uniform quantizer example
 

• N=4, X~N(0,1)
 fx(x) =
1

2!"
e
# x 2 / 2" 2

, "
2 = 1

• From table 6.2, Δ=0.9957, D=0.1188, H(Q)= 1.904 
– Notice that H(Q) = the entropy of the quantized source is < 2 
– Two bits can be used to represent 4 quantization levels 
– Soon we will learn that you only need H(Q) bits 

Δ− Δ 

R1 R2 R3 R4 

q1 = -3Δ/2 q4 = 3Δ/2 q2 =Δ/2 q3 =Δ/2 
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Non-uniform quantizer
 

• Quantization regions need not be of same length
• Quantization levels need not be at midpoints
• Complex optimization over 2N variables 

• Approach: 
– Given quantization regions, what should the quantization levels be? 

– What should the quantization regions be? 

• Solve for quantization levels first (given region (ai-1, ai)) 
– Minimize distortion 
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Non-uniform quantizer
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Need to determine optimum quantization regions and levels
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Optimal quantization levels
 

•	 Minimize distortion, D 
–	 Optimal value affects distortion

only within its region 

– 
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•	 Quantization values should be the “centroid” of their regions 
–	 The conditional expected value of that region 

•	 Approach can be used to find optimal quantization values for the
uniform quantizer as well 
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Optimal quantization regions
 

•	 Take derivative of D with respect to ai 
–	 Take derivative with respect to integral boundaries 

dD

dai

= fx(ai )[(ai ! ˆ x i )
2
! (ai ! ˆ x i +1)

2 ] = 0

ai =
ˆ x i + ˆ x i +1

2

–	 Boundaries of the quantization regions are the midpoint of the
quantization values 

•	 Optimality conditions:
1. Quantization values are the “centroid” of their region 
2.	 Boundaries of the quantization regions are the midpoint of the

quantization values 
3.	 Clearly 1 depends on 2 and visa-versa. The two can be solved 

iteratively to obtain optimal quantizer 
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Finding the optimal quantizer 

•	 Start with arbitrary regions (e.g., uniform Δ) 

A) Find optimal quantization values (“centroids”) 

B) Use quantization values to get new regions (“midpoints”) 

–	 Repeat A & B until convergence is achieved 

•	 Can be done numerically for known distributions 
–	 Table 6.3 (p. 299) gives optimal quantizer for Gaussian source 

• E.g., N=4, 
– D = 0.1175, H(x) = 1.911 
– Recall: uniform quantizer, D= 0.1188, H(x) = 1.904 (slight improvement) 

1.51

0.4528-0.9816 

-0.4528 0.9816 
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Companders
 

• Non-uniform quantizer can be difficult to design 
– Requires knowledge of source statistics 
– Different quantizers for different input types 

•	 Solution: Transfer input signal into one that looks uniform and then use
uniform quantizer 

• Speech signal: high probabilities for low amplitudes 
– Compress the large amplitudes before performing uniform quantization 

• µ-law compander g(x) =
Log(1 + µ | x |)

Log(1 + µ)
sgn(x)

–	 µ controls the level of compression 
–	 µ = 255 typically used for voice 
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Pulse code modulation
 

Quantizer 

µ -law Uniform Q 

Sampler encoder 011010voice 

• Uniform PCM: x(t) ∈ [Xmin, Xmax] 
– N = 2V quantization levels, each level encoded using v bits 

– SQNR: same as uniform quantizer 

SQNR =
E[X2 ] !3 ! 4v

XMAX

2

– Notice that increasing the number of bits by 1 decreases SQNR by a
factor of 4 (6 dB) 
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Speech coding
 

•	 PCM with µ = 255 

•	 Uniform quantizer with 128 levels, N = 27 , 7 bits per sample 

•	 Speech typically limited to 4KHZ 
–	 Sample at 8KHZ => Ts = 1/8000 = 125 µs 

8000 samples per second at 7 bits per sample => 56 Kbps 

•	 Differential PCM 
–	 Speech samples are typically correlated 

–	 Instead of coding samples independently, code the difference
between samples 

–	 Result: improved performance, lower bit rate speech 

Eytan Modiano

Slide 16
 




