MIT OpenCourseWare
http://ocw.mit.edu

### 16.36 Communication Systems Engineering

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

# 16.36: Communication Systems Engineering <br> Lecture 5: Source Coding 

Eytan Modiano

## Source coding



- Source symbols
- Letters of alphabet, ASCII symbols, English dictionary, etc...
- Quantized voice
- Channel symbols
- In general can have an arbitrary number of channel symbols

Typically $\{0,1\}$ for a binary channel

- Objectives of source coding
- Unique decodability
- Compression

Encode the alphabet using the smallest average number of channel symbols

## Compression

- Lossless compression
- Enables error free decoding
- Unique decodability without ambiguity
- Lossy compression
- Code may not be uniquely decodable, but with very high probability can be decoded correctly


## Prefix (free) codes

- A prefix code is a code in which no codeword is a prefix of any other codeword
- Prefix codes are uniquely decodable
- Prefix codes are instantaneously decodable
- The following important inequality applies to prefix codes and in general to all uniquely decodable codes


## Kraft Inequality

Let $n_{1} \ldots n_{k}$ be the lengths of codewords in a prefix (or any Uniquely decodable) code. Then,

$$
\sum_{i=1}^{k} 2^{-n_{i}} \leq 1
$$

## Proof of Kraft Inequality

- Proof only for prefix codes
- Can be extended for all uniquely decodable codes
- Map codewords onto a binary tree
- Codewords must be leaves on the tree
- A codeword of length $n_{i}$ is a leaf at depth $n_{i}$
- Let $n_{k} \geq n_{k-1} \ldots \geq n_{1} \Rightarrow$ depth of tree $=n_{k}$
- In a binary tree of depth $n_{k}$, up to $2^{n k}$ leaves are possible (if all leaves are at depth $n_{k}$ )
- Each leaf at depth $n_{i}<n_{k}$ eliminates a fraction $1 / 2^{\text {ni }}$ of the leaves at depth $n_{k} \Rightarrow$ eliminates $2^{n k-n i}$ of the leaves at depth $n_{k}$
- Hence,

$$
\sum_{i=1}^{k} 2^{n_{k}-n_{i}} \leq 2^{n_{k}} \Rightarrow \sum_{i=1}^{k} 2^{-n_{i}} \leq 1
$$

## Kraft Inequality - converse

- If a set of integers $\left\{\mathrm{n}_{1} . . \mathrm{n}_{\mathrm{k}}\right\}$ satisfies the Kraft inequality the a prefix code can be found with codeword lengths $\left\{\mathrm{n}_{1} . . \mathrm{n}_{\mathrm{k}}\right\}$
- Hence the Kraft inequality is a necessary and sufficient condition for the existence of a uniquely decodable code
- Proof is by construction of a code
- Given $\left\{n_{1} . . n_{k}\right\}$, starting with $n_{1}$ assign node at level $n_{i}$ for codeword of length $\mathbf{n}_{\mathbf{i}}$. Kraft inequality guarantees that assignment can be made

Example: $\mathbf{n}=\{2,2,2,3,3\}$, (verify that Kraft inequality holds!)


## Average codeword length

- Kraft inequality does not tell us anything about the average length of a codeword. The following theorem gives a tight lower bound

Theorem: Given a source with alphabet $\left\{a_{1} . . a_{k}\right\}$, probabilities $\left\{p_{1} . . p_{k}\right\}$, and entropy $\mathrm{H}(\mathrm{X})$, the average length of a uniquely decodable binary code satisfies:

$$
\bar{n} \geq \mathbf{H}(\mathbf{X})
$$

Proof:

$$
\begin{aligned}
& H(X)-\bar{n}=\sum_{i=1}^{i=k} p_{i} \log \frac{1}{p_{i}}-\sum_{i=1}^{i=k} p_{i} n_{i}=\sum_{i=1}^{i=k} p_{i} \log \frac{2^{-n_{i}}}{p_{i}} \\
& \log \text { inequality }=>\log (X) \leq X-1=> \\
& H(X)-\bar{n} \leq \sum_{i=1}^{i=k} p_{i}\left[\frac{2^{-n_{i}}}{p_{i}}-1\right]=\sum_{i=1}^{i=k} 2^{-n_{i}}-1 \leq 0
\end{aligned}
$$

## Average codeword length

- Can we construct codes that come close to $\mathrm{H}(\mathrm{X})$ ?

Theorem: Given a source with alphabet $\left\{\mathrm{a}_{1} . . \mathrm{a}_{\mathrm{k}}\right\}$, probabilities $\left\{\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{k}}\right\}$, and entropy $H(X)$, it is possible to construct a prefix (hence uniquely decodable) code of average length satisfying:

$$
\bar{n}<\mathrm{H}(\mathrm{X})+1
$$

Proof (Shannon-fano codes):

Let $\mathbf{n}_{\mathrm{i}}=\left|\log \left(\frac{1}{p_{i}}\right)\right| \Rightarrow \mathbf{n}_{\mathbf{i}} \geq \log \left(\frac{1}{p_{i}}\right) \Rightarrow 2^{-\mathbf{n}_{\mathrm{i}}} \leq p_{i}$
$\Rightarrow \sum_{i=1}^{k} 2^{-\mathrm{n}_{\mathrm{i}}} \leq \sum_{i=1}^{k} p_{i} \leq 1$
$\Rightarrow$ Kraftinequality satisfied!
$\Rightarrow$ Can find a prefix code with lengths,
$\mathbf{n}_{\mathrm{i}}=\left\lceil\log \left(\frac{1}{p_{i}}\right)\right\rceil<\log \left(\frac{1}{p_{i}}\right)+1$
$\mathbf{n}_{\mathrm{i}}=\left|\log \left(\frac{1}{p_{i}}\right)\right|<\log \left(\frac{1}{p_{i}}\right)+1$,
Now,
$\bar{n}=\sum_{i=1}^{k} p_{i} n_{i}<\sum_{i=1}^{k} p_{i}\left[\log \left(\frac{1}{p_{i}}\right)+1\right]=H(X)+1$.
Hence,
$H(X) \leq \bar{n}<H(X)+1$

## Getting Closer to $\mathrm{H}(\mathrm{X})$

- Consider blocks of $\mathbf{N}$ source letters
- There are $\mathrm{K}^{\mathrm{N}}$ possible N letter blocks ( N -tuples)
- Let Y be the "new" source alphabet of N letter blocks
- If each of the letters is independently generated,

$$
H(Y)=H\left(x_{1} \cdot \ldots x_{N}\right)=N^{\star} H(X)
$$

- Encode Y using the same procedure as before to obtain,

$$
\begin{aligned}
& H(Y) \leq \bar{n}_{y}<H(Y)+1 \\
& \Rightarrow N * H(X) \leq \bar{n}_{y}<N * H(X)+1 \\
& \Rightarrow H(X) \leq \bar{n}<H(X)+1 / N
\end{aligned}
$$

Where the last inequality is obtained because each letter of Y corresponds to N letters of the original source

- We can now take the block length $(\mathrm{N})$ to be arbitrarily large and get arbitrarily close to $H(X)$


## Huffman codes

- Huffman codes are special prefix codes that can be shown to be optimal (minimize average codeword length)


Huffman Algorithm:

1) Arrange source letters in decreasing order of probability ( $p_{1} \geq p_{2} . . \geq p_{k}$ )
2) Assign ' 0 ' to the last digit of $X_{k}$ and ' 1 ' to the last digit of $X_{k-1}$
3) Combine pk and pk-1 to form a new set of probabilities

$$
\left\{p_{1}, p_{2}, \ldots, p_{k-2},\left(p_{k-1}+p_{k}\right)\right\}
$$

4) If left with just one letter then done, otherwise go to step 1 and repeat

## Huffman code example

$A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ and $p=\{0.3,0.25,0.25,0.1,0.1\}$


| Letter | Codeword |
| :---: | :---: |
| $\mathrm{a}_{1}$ | 11 |
| $\mathrm{a}_{2}$ | 10 |
| $\mathrm{a}_{3}$ | 01 |
| $\mathrm{a}_{4}$ | 001 |
| $\mathrm{a}_{5}$ | 000 |

$$
\begin{aligned}
& H(X)=\sum p_{i} \log \left(\frac{1}{p_{i}}\right)=2.1855 \\
& \text { Shannon - Fanocodes } \Rightarrow n_{i}=\left\lceil\log \left(\frac{1}{p_{i}}\right)\right\rceil \\
& n_{1}=n_{2}=n_{3}=2, n_{4}=n_{5}=4 \\
& \Rightarrow \bar{n}=2.4 \text { bits } / \text { symbol }<H(X)+1
\end{aligned}
$$

## Lempel-Ziv Source coding

- Source statistics are often not known
- Most sources are not independent
- Letters of alphabet are highly correlated
E.g., E often follows I, H often follows G, etc.
- One can code "blocks" of letters, but that would require a very large and complex code
- Lempel-Ziv Algorithm
- "Universal code" - works without knowledge of source statistics
- Parse input file into unique phrases
- Encode phrases using fixed length codewords

Variable to fixed length encoding

## Lempel-Ziv Algorithm

- Parse input file into phrases that have not yet appeared
- Input phrases into a dictionary
- Number their location
- Notice that each new phrase must be an older phrase followed by a ' 0 ' or a ' 1 '
- Can encode the new phrase using the dictionary location of the previous phrase followed by the ' 0 ' or ' 1 '


## Lempel-Ziv Example

Input: 0010110111000101011110

Parsed phrases: 0, 01, 011, 0111, 00, 010, 1, 01111
Dictionary

| Loc | binary rep | phrase | Codeword | comment |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0000 | null |  |  |
| 1 | 0001 | 0 | 00000 | loc-0 + ${ }^{\prime}$ ' |
| 2 | 0010 | 01 | 00011 | loc-1 + '1' |
| 3 | 0011 | 011 | 00101 | loc-2 + '1' |
| 4 | 0100 | 0111 | 00111 | loc-3 + 1 ' |
| 5 | 0101 | 00 | 00010 | loc-1 + ${ }^{\text {'0, }}$ |
| 6 | 0110 | 010 | 00100 | loc-2 + 0 ' |
| 7 | 0111 | 1 | 00001 | loc-0 + '1' |
| 8 | 1000 | 01111 | 01001 | loc-4 + ${ }^{\text {' }}$ |

Sent sequence: 0000000011001010011100010001000000101001

## Notes about Lempel-Ziv

- Decoder can uniquely decode the sent sequence
- Algorithm clearly inefficient for short sequences (input data)
- Code rate approaches the source entropy for large sequences
- Dictionary size must be chosen in advance so that the length of the codeword can be established
- Lempel-Ziv is widely used for encoding binary/text files
- Compress/uncompress under unix
- Similar compression software for PCs and MACs

