MIT OpenCourseWare
http://ocw.mit.edu

16.36 Communication Systems Engineering

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lectures 11: Hypothesis Testing and BER analysis

Eytan Modiano

Signal Detection

- After matched filtering we receive $\mathbf{r}=\mathrm{S}_{\mathrm{m}}+\mathrm{n}$
$-S_{m} \in\left\{S_{1}, . . S_{m}\right\}$
- How do we determine from r which of the M possible symbols was sent?
- Without the noise we would receive what sent, but the noise can transform one symbol into another

Hypothesis testing

- Objective: minimize the probability of a decision error
- Decision rule:
- Choose S_{m} such that $P\left(S_{m}\right.$ sent $\mid r$ received $)$ is maximized
- This is known as Maximum a posteriori probability (MAP) rule
- MAP Rule: Maximize the conditional probability that S_{m} was sent given that r was received

MAP detector

- Notes:

MAP detector: $\max _{S_{1} \ldots S_{M}} P\left(S_{m} \mid r\right)$
$P\left(S_{m} \mid r\right)=\frac{P\left(S_{m}, r\right)}{P(r)}=\frac{P\left(r \mid S_{m}\right) P\left(S_{m}\right)}{P(r)}$
$P\left(S_{m} \mid r\right)=\frac{f_{r \mid s}\left(r \mid S_{m}\right) P\left(S_{m}\right)}{f_{r}(r)}$
$f_{r}(r)=\sum_{\mathrm{m}=1}^{\mathrm{M}} f_{r \mid s}\left(r \mid S_{m}\right) P\left(S_{m}\right)$

- MAP rule requires prior probabilities
- MAP minimizes the probability of a decision error
- ML rule assumes equally likely symbols
- With equally likely symbols MAP and ML are the same

When $\mathrm{P}\left(S_{m}\right)=\frac{1}{M}$ Map rule becomes:
$\max _{S_{1} \ldots S_{M}} f\left(r \mid S_{m}\right)$ (AKA Maximum Likelihood (ML) decision rule)

Detection in AWGN (Single dimensional constellations)

$$
\begin{aligned}
& f\left(r \mid S_{m}\right)=\frac{1}{\sqrt{\pi N_{0}}} e^{-\left(r-S_{m}\right)^{2} / N_{0}} \\
& \ln \left(f\left(r \mid S_{m}\right)\right)=-\ln \left(\sqrt{\pi N_{0}}\right)-\frac{\left(r-S_{m}\right)^{2}}{N_{0}} \\
& d_{r S_{m}}=\left(r-S_{m}\right)^{2}
\end{aligned}
$$

Maximum Likelihood decoding amounts to minimizing $\quad d_{r S_{m}}=\left(r-S_{m}\right)^{2}$

- Also known as minimum distance decoding
- Similar expression for multidimensional constellations

Detection of binary PAM

- $\quad \mathbf{S 1}(\mathrm{t})=\mathrm{g}(\mathrm{t}), \mathbf{S 2}(\mathrm{t})=-\mathrm{g}(\mathrm{t})$
- $\mathrm{S} 1=-\mathrm{S} 2$ => "antipodal" signaling
- Antipodal signals with energy Eb can be represented geometrically as

- If $\mathbf{S} 1$ was sent then the received signal $r=S 1+n$
- If $\mathbf{S} 2$ was sent then the received signal $r=\mathbf{S} 2+\mathbf{n}$

$$
\begin{aligned}
& f_{r \mid s}(r \mid s 1)=\frac{1}{\sqrt{\pi N_{0}}} e^{-\left(r-\sqrt{E_{b}}\right)^{2} / N_{0}} \\
& f_{r \mid s}(r \mid s 2)=\frac{1}{\sqrt{\pi N_{0}}} e^{-\left(r+\sqrt{E_{b}}\right)^{2} / N_{0}}
\end{aligned}
$$

Detection of Binary PAM

- Decision rule: MLE => minimum distance decoding
- => r>0 decide S1
- $=>$ r 0 decide $\mathbf{S 2}$
- Probability of error
- When S2 was sent the probability of error is the probability that noise exceeds (Eb) $)^{1 / 2}$ similarly when S1 was sent the probability of error is the probability that noise exceeds - (Eb) $)^{1 / 2}$
- $\quad \mathrm{P}(\mathrm{e} \mid \mathrm{S} 1)=\mathrm{P}(\mathrm{e} \mid \mathrm{S} 2)=\mathrm{P}[\mathrm{r}<0 \mid \mathrm{S} 1)$

Probability of error for binary PAM

$$
\begin{aligned}
& P_{e}=\int_{-\infty}^{0} f_{r \mid s}(r \mid s 1) d r=\int_{-\infty}^{0} \frac{1}{\sqrt{\pi N_{0}}} e^{-\left(r-\sqrt{E_{b}}\right)^{2} / N_{0}} d r \\
& =\frac{1}{\sqrt{\pi V_{0}}} \int_{-\infty}^{-\sqrt{E_{b}}} e^{-r^{2} / N_{0}} d r \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{-\sqrt{2 E_{b} / N_{0}}} e^{-r^{2} / 2} d r \\
& =\frac{1}{\sqrt{2 \pi}} \int_{\sqrt{2 E_{b} / N_{0}}}^{-e^{-r^{2} / 2}} d r \\
& \equiv Q\left(\sqrt{2 E_{b} / N_{0}}\right) \text { where } \\
& Q(x) \underline{\Delta} \frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-r^{2} / 2} d r
\end{aligned}
$$

- $Q(x)=P(X>x)$ for X Gaussian with zero mean and $\sigma^{2}=1$
- $Q(x)$ requires numerical evaluation and is tabulated in many math books (Table 4.1 of text)

More on \mathbf{Q} function

- Notes on $\mathbf{Q}(\mathbf{x})$
- $Q(0)=1 / 2$
$-Q(-x)=1-Q(x)$
$-Q(\infty)=0, Q(-\infty)=1$
- If X is $N\left(m, \sigma^{2}\right)$ Then $P(X>X)=Q((x-m) / \sigma)$
- Example: $\mathrm{Pe}=\mathrm{P}[\mathrm{r}<0 \mid \mathrm{S} 1$ was sent)

$$
\begin{aligned}
& f_{r \mid s}(r \mid s 1) \sim N\left(\sqrt{E_{b}}, N_{0} / 2\right) \Rightarrow m=\sqrt{E_{b}}, \sigma=\sqrt{N_{0} / 2} \\
& P_{e}=1-P[r>0 \mid s 1]=1-Q\left(\frac{-\sqrt{E_{b}}}{\sqrt{N_{0} / 2}}\right)=1-Q\left(-\sqrt{2 E_{b} / N_{0}}\right)=Q\left(\sqrt{2 E_{b} / N_{0}}\right)
\end{aligned}
$$

Error analysis continued

- In general, the probability of error between two symbols separated by a distance d is given by:

$$
P_{e}(d)=Q\left(\sqrt{\frac{d^{2}}{2 N_{0}}}\right)
$$

- For binary PAM d = $2 \sqrt{E_{b}}$ Hence,

$$
P_{e}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)
$$

Orthogonal signals

- Orthogonal signaling scheme (2 dimensional)

$$
P_{e}=Q\left(\sqrt{\frac{d^{2}}{2 N_{0}}}=Q\left(\sqrt{E_{b} / N_{o}}\right)\right.
$$

Orthogonal vs. Antipodal signals

- Notice from Q function that orthogonal signaling requires twice as much bit energy than antipodal for the same error rate
- This is due to the distance between signal points

Probability of error for M-PAM

$S_{M}=A_{M} \sqrt{E_{g}}, \quad A_{M}=(2 m-1-M) \quad \tau_{\mathrm{i}}$
$d_{i j}=2 \sqrt{E_{g}}$ for $|i-j|=1$

Decision rule: Choose s_{i} such that $d\left(r, s_{i}\right)$ is minimized

$$
\begin{aligned}
& \mathrm{P}\left[\text { error } \mid \mathrm{s}_{\mathrm{i}}\right]=P\left[\text { decode } s_{i-1} \mid s_{i}\right]+P\left[\text { decode } s_{i+1} \mid s_{i}\right]=2 P\left[\text { decode } s_{i+1} \mid s_{i}\right] \\
& P e=2 Q\left[\sqrt{\frac{d_{i, i+1}^{2}}{2 N_{0}}}\right]=2 Q\left[\sqrt{\frac{2 E_{g}}{N_{0}}}\right], P_{e b}=\frac{P e}{\log _{2}(M)}
\end{aligned}
$$

Notes:

1) the probability of error for s_{1} and s_{M} is lower because error only occur in one direction
2) With Gray coding the bit error rate is $\mathrm{P}_{\mathrm{e}} / \log _{2}(\mathrm{M})$

Probability of error for M-PAM

$$
\begin{aligned}
& E_{a v}=\frac{M^{2}-1}{3} E_{g}=>E_{b a v}=\frac{M^{2}-1}{3 \log _{2}(M)} E_{g} \\
& E_{g}=\frac{3 \log _{2}(M)}{M^{2}-1} E_{b a v} \\
& P_{e}=2 Q\left[\sqrt{\frac{6 \log _{2}(M)}{\left(M^{2}-1\right) N_{0}} E_{b a v}}\right], P_{e b}=\frac{P e}{\log _{2}(M)} \\
& \text { accounting for effect of } S_{1} \text { and } S_{M} \text { we get }: \\
& P_{e}=2\left(\frac{M-1}{M}\right) Q\left[\sqrt{\frac{6 \log _{2}(M)}{\left(M^{2}-1\right) N_{0}} E_{b a v}}\right],
\end{aligned}
$$

Probability of error for PSK

- Binary PSK is exactly the same as binary PAM
- 4-PSK can be viewed as two sets of binary PAM signals
- For large \mathbf{M} (e.g., $\mathbf{M > 8}$) a good approximation assumes that errors occur between adjacent signal points

Error Probability for PSK

$\mathrm{P}\left[\right.$ error $\left.\mid \mathrm{s}_{\mathrm{i}}\right]=P\left[\right.$ decode $\left.s_{i-1} \mid s_{i}\right]+P\left[\right.$ decode $\left.s_{i+1} \mid s_{i}\right]=2 P\left[\right.$ decode $\left.s_{i+1} \mid s_{i}\right]$
$P_{e s}=2 Q\left[\sqrt{\frac{d_{i, i+1}^{2}}{2 N_{0}}}\right]=2 Q\left[\sqrt{\frac{2 E_{s}}{N_{0}}} \sin (\pi / M)\right]$
$E_{b}=E_{s} / \log _{2}(M)$
$P_{e s}=2 Q\left[\sqrt{\frac{2 \log _{2}(M) E_{b}}{N_{0}}} \sin (\pi / M)\right], \quad P_{e b}=\frac{P_{e s}}{\log _{2}(M)}$

