MIT OpenCourseWare http://ocw.mit.edu

16.36 Communication Systems Engineering Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 12: Link Budget Analysis and Design

Eytan Modiano

Signal attenuation

- The signal suffers an attenuation loss L
 - Received power $P_R = P_T/L$
 - Received SNR = E_b/N_0 , $E_b = P_R/R_b$
- Antennas are used to compensate for attenuation loss
 - Capture as much of the signal as possible

L = free space loss, d = distance between Tx and Rx $\lambda =$ signal wavelength

$$G_R = A_R 4\pi/\lambda^2$$

 A_R is the effective area of the antenna

For Parabolic antenna $A_R = \pi \eta D^2/4$

 η = illumination efficiency factor, 0.5 < η < 0.6 D = dish diameter

 $=>G_{R} = \eta(\pi D/\lambda)^{2}$ $=>PR = P_{T}G_{T}D^{2}\eta/(4d)^{2}$

Antenna Beamwidth

- Beamwidth is a measure of the directivity of the antenna
 - Smaller beamwidth concentrated power along a smaller area
- Free space loss assumes that power is radiated in all directions
- An antenna with a smaller beamwidth concentrates the power hence yields a gain
 - For parabolic antenna, $\theta_{\rm B} \sim 70 \lambda/D$
 - Gain (G_T) s proportional to (θ_B)⁻²
 - Hence a doubling of the diameter D increases gain by a factor of 4

Example (GEO Satellite)

d = 36,000 km = 36,000,000 meters $f_c = 4 \text{ Ghz} \Rightarrow \lambda = 0.075 \text{m}$ $P_T = 100 \text{w}, G_T = 18 \text{ dB}$ Receiver antenna is parabolic with D = 3 meters

A) What is PR?

B) Suppose $(E_b/N_0)_{req} = 10 \text{ dB}$, what is the achievable data rate R_b ?

Repeaters

• A repeater simply amplifies the signal to make up for attenuation

$$P_{R1} = P_T/L, P_{T2} = P_{R1}A, P_{R2} = P_{T2}/L, ...$$

$$P_{N1} = P_N, P_{N2} = P_{N1}A/L + P_N, \dots$$

Let
$$A = L \Rightarrow P_{RK} = P_T/L$$
, $P_{NK} = KP_N$

$$P_{RK}/P_{NK} = P_T/LKP_N = 1/K (P_{R1}/P_{N1})$$

Received SNR is reduced by a factor of K

$$(E_b/N_0)k = 1/K (E_b/N_0)$$

Regenerators

- A regenerator demodulates, detects and retransmits the signal
 - Each segment has the same P_R/P_N and the same received E_b/N_0
 - P_b = probability of error on a segment (independent between segments)

-
$$P_b$$
 (overall) = 1 - P(no error) = 1 - $(1-P_b)^K \sim KP_b$

Now compare repeater to regenerator (e.g. PAM)

 $P_b = Q(\sqrt{2E_b/N_0})$

For repeater : $P_b(overall) = Q(\sqrt{2E_b/KN_0})$

For regenerator : $P_b(overall) = KQ(\sqrt{2E_b / N_0})$

Eytan Modiano Slide 7 $KQ(\sqrt{2E_{b} / N_{0}}) < Q(\sqrt{2E_{b} / KN_{0}})$

Satellite example

- Uplink received $(E_b/N_0)_u = \text{downlink received } (E_b/N_0)_d = 10 \text{dB}$
- PAM modulation $P_b = Q(\sqrt{2E_b/N_0})$
- Repeater: Received $(E_b/N_0)_{u/d} = 1/2 (E_b/N_0)_u = 10 \text{ dB} 3\text{dB} = 7\text{dB}$

- => Pb = 5x10⁻⁴ from table 7.55 or 7.58

- Regenerator: $P_b(up) = P_b(down) = 3x10^{-6}$
 - (from table with $(E_b/N_0)_d = 10dB$)
 - Hence P_b (up/down) ~ 2 P_b (up) ~ 6x3x10⁻⁶
- Two orders of magnitude difference between repeaters and regeneration
 - Greater difference with more segments