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Channel Coding
 

1 

0 

1-Pe 

1-Pe 

Pe 

•	 When transmitting over a noisy channel, some of the bits are
received with errors 

Example: Binary Symmetric Channel (BSC) 

0 
Pe = Probability of error 

1 

•	 Q: How can these errors be removed? 

•	 A: Coding: the addition of redundant bits that help us determine
what was sent with greater accuracy 
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 Example (Repetition code)
 

Repeat each bit n times (n-odd)

Input
0 

Code 
000……..0 

1 11..……..1 

Decoder: 
•	 If received sequence contains n/2 or more 1’s decode as a 1 

and 0 otherwise 
–	 Max likelihood decoding 

P ( error | 1 sent ) = P ( error | 0 sent )
= P[ more than n / 2 bit errors occur ]

⎛
 ⎞
n n
 
)n− iP i (1 − Pe e∑
 ⎜⎝
 ⎟⎠
 =
 i
i = ⎡
n / 2 ⎤
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 Repetition code, cont.
 

•	 For Pe < 1/2, P(error) is decreasing in n 
– ⇒ for any ε, ∃ n large enough so that P (error) < ε 

Code Rate: ratio of data bits to transmitted bits 
–	 For the repetition code R = 1/n 
–	 To send one data bit, must transmit n channel bits “bandwidth

expansion” 

•	 In general, an (n,k) code uses n channel bits to transmit k data bits 
–	 Code rate R = k / n 

•	 Goal: for a desired error probability, ε, find the highest rate code
that can achieve p(error) < ε 
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 Channel Capacity

(Discrete Memoryless Channel)
 

• The capacity of a discrete memoryless channel is given by, 

Channel YC = max p( x ) I(X;Y) X – 

Example: Binary Symmetric Channel (BSC) 

I(X;Y) = H (Y) - H (Y|X) = H (X) - H (X|Y) 

H(Y|X) = Hb(pe) (why?) 

H(Y) ≤ 1 (why?) 

H(Y) = 1 when p0 = 1/2 

P0 

P1 =1-P0 1 

0 

⇒ C = 1 - Hb(pe) 

Try to compute the capacity starting with H(X) - H(X|Y). 

1 

0 

1-Pe 

1-Pe 

Pe 
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Capacity of BSC
 

C = 1 - Hb(Pe) 

C = 0 when Pe = 1/2 and C = 1 when Pe = 0 or Pe=1 
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Capacity of AWGN channel
 

• Additive White Gaussian Noise channel 
– r = S + N 
– N is AWGN with power spectral density No/2 

• Transmission over band-limited channel of bandwidth W 
• Average input (transmit) power = P
• Band-limited equivalent noise power = WNo 

1 PC = log(1+ ) bits per transmission 
2 WN0
 

P
Rs ≤ 2W ⇒ C = Wlog(1+ ) bits per second 
WN0• Notes 

– Rs 	≤ 2W is implied by sampling theorem (see notes on sampling theorem) 
–	 Capacity is a function of signal-to-noise ratio (SNR = P/WNo)


Where the signal power is measured at the receiver
 

–	 As W increases capacity approaches a limit:

Increasing W increases the symbol rate, but also the noise power
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Capacity of AWGN channel

(example)
 

•	 The capacity of a cooper telephone channel 

–	 W = 3000Hz 
–	 SNR = 39dB = 7943 

–	 C = WLog(1+SNR) = 3000Log(1+7943) = 38,867 bits/sec 

•	 Modern modems achieve a higher data rate of 56,000 bps because they
actually use digital transmission over a fiber optic backbone 

–	 The “bottleneck” is the cooper line from the home to the telephone company’s 
central office; which has less noise than the old end-to-end cooper links 

•	 DSL modems achieve much higher data rates (Mbps) by using a greater
bandwidth over the cooper link between the home and the central office 

–	 The full bandwidth of the cooper line over such short distances can be on the
order of MHz 
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 Channel Coding Theorem (Claude Shannon)
 

Theorem: For all R < C and ε > o; there exists a code of rate R whose 
error probability < ε 

–	 ε can be arbitrarily small 

–	 Proof uses large block size n
 

as n →∞ capacity is achieved
 

•	 In practice codes that achieve capacity are difficult to find 

–	 The goal is to find a code that comes as close as possible to 
achieving capacity 

•	 Converse of Coding Theorem: 
–	 For all codes of rate R > C, ∃ ε0 > 0, such that the probability of error

is always greater than ε0 

For code rates greater than capacity, the probability of error is bounded 
away from 0 
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 Channel Coding
 

• Block diagram
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 Approaches to coding
 

• Block Codes 
– Data is broken up into blocks of equal length 
– Each block is “mapped” onto a larger block 

Example: (6,3) code, n = 6, k = 3, R = 1/2

 000 → 000000 100 → 100101


 001 → 001011 101 → 101110


 010 → 010111 110 → 110010


 011 → 011100 111 → 111001
 

• An (n,k) binary block code is a collection of 2k binary n-tuples (n>k) 
– n = block length 
– k = number of data bits 
– n-k = number of checked bits 
– R = k / n = code rate 

Eytan Modiano
Slide 11



 

 Approaches to coding
 

• Convolutional Codes 
– The output is provided by looking at a sliding window of input 

Eytan Modiano

Slide 12


DelayUK

Ci

Ci + 1

Delay

+

++

C(2K) = U(2K)

mod(2) addition (1+1=0)

U(2K-2),+

+
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 Block Codes
 

•	  A block code is systematic if every codeword can be broken into a
data part and a redundant part 

–	 Previous (6,3) code was systematic 

Definitions: 

•	 Given X ∈ {0,1}n, the Hamming Weight of X is the number of 1’s in X 

•	 Given X, Y in {0,1}n , the Hamming Distance between X & Y is the 
number of places in which they differ, 

n 

dH (X, Y) = ∑Xi ⊕ Yi = Weight(X + Y) 
i=1 

X + Y = [x1 ⊕ y1,x2 ⊕ y2 ,...,xn ⊕ yn ] 

•	 The minimum distance of a code is the Hamming Distance between
the two closest codewords:
 

dmin = min {dH (C1,C2)}
 

C1,C2 ∈ C 
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 Decoding
 

Channelu r 

•	 r may not equal to u due to transmission errors
•	 Given r how do we know which codeword was sent? 

Maximum likelihood Decoding: 
Map the received n-tuple r into the codeword C that maximizes,

P { r | C was transmitted } 

Minimum Distance Decoding (nearest neighbor)
Map r to the codeword C such that the hamming distance between
r and C is minimized (I.e., min dH (r,C)) 

⇒	 For most channels Min Distance Decoding is the same as Max
likelihood decoding 
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 Linear Block Codes
 

• A (n,k) linear block code (LBC) is defined by 2k codewords of 
length n 


C = { C1….Cm}
 

• A (n,k) LBC is a K-dimensional subspace of {0,1}n 

– (0…0) is always a codeword 
– If C1,C2 ∈ C, C1+C2 ∈ C 

• Theorem: For a LBC the minimum distance is equal to the min
weight (Wmin) of the code


Wmin = min(over all Ci) Weight (Ci)
 

Proof: Suppose dmin = dH (Ci,Cj), where C1,C2 ∈ C 

dH (Ci,Cj) = Weight (Ci + Cj),

 but since C is a LBC then Ci + Cj is also a codeword
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 Systematic codes
 

Theorem:  Any (n,k) LBC can be represented in Systematic form
where: data = x1..xk, codeword = x1..xk ck+1..xn 

–	 Hence we will restrict our discussion to systematic codes only 

•	 The codewords corresponding to the information sequences: 
e1 = (1,0,..0), e2=(0,1,0..0), ek = (0,0,..,1) for a basis for the code 

–	 Clearly, they are linearly independent 
–	 K linearly independent n-tuples completely define the K dimensional

subspace that forms the code 

Information sequence Codeword 
e1 = (1,0,..0) g1 = (1,0,..,0, g(1,k+1) …g(1,n) ) 
e2=(0,1,0..0)	 g2 = (0,1,..,0, g(2,k+1) …g(2,n) ) 

ek = (0,0,..,1)	 gk = (0,0,..,k, g(k,k+1) …g(k,n) ) 

• g1, g2, …,gk form a basis for the code 
Eytan Modiano
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 The Generator Matrix
 

⎡
g1 

g2 

:
 

⎡
⎤
 
⎥
⎥
⎥
⎥
 

=
 
⎢
⎢
⎢
⎢
 

g11 g12 ... g1n 

g21 g2n 

:
 

⎤
 
⎥
⎥
⎥
⎥
 

⎢
⎢
⎢
⎢
 

G =
 

gk gk1 gkn ⎣
 ⎣
⎦
 ⎦


• For input sequence x = (x1,…,xk): Cx = xG 

– Every codeword is a linear combination of the rows of G 
–	 The codeword corresponding to every input sequence can be derived

from G 
–	 Since any input can be represented as a linear combination of the

basis (e1,e2,…, ek), every corresponding codeword can be
represented as a linear combination of the corresponding rows of G 

• Note: x1  C1, x2  C2  => x1+x2  C1+C2 
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Example
 

•	 Consider the (6,3) code from earlier: 

100 → 100101; 010 → 010111; 001 → 001011 

1
 

1
 

1
 

⎤
⎥
⎥
⎥
⎦


⎡
1 0 0 1 0

⎢
⎢
⎢
⎣


G =
 0 1 0 1 1
 

0 0 1 0 1
 

Codeword for (1,0,1) = (1,0,1)G = (1,0,1,1,1,0)
 

⎤
⎡
 

G =
 
⎢
⎢
⎢
⎣


IK PKx( n− K ) 

⎥
⎥
⎥
⎦


IK	 = KxK identity matrix 
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The parity check matrix
 

⎤
⎡

⎢
⎢
⎢
⎣


PT
 I(n− K ) 

⎥
⎥
⎥
⎦


H =
 

I (n- K) = (n − K)x(n - K) identity matrix 

⎡
1 1 0 1 0 0 

0 1 1 0 1 0 

1 1 1 0 0 1 

⎤

⎥
⎥
⎥
⎦


Example:
 ⎢
⎢
⎢
⎣


H =
 

v
Now, if ci is a codework of C then, ciH

T = 0 

• “C is in the null space of H”
• Any codeword in C is orthogonal to the rows of H 
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Decoding
 

•	 v = transmitted codeword = v1 … vn
•	 r = received codeword = r1 … rn
•	 e = error pattern = e1… en 

•	 r = v + e 

•	 S = rHT = Syndrome of r

= (v+e)HT = vHT + eHT  = eHT
 

•	 S is equal to ‘0’ if and only if e ∈ C 
–	 I.e., error pattern is a codeword 

• S 	≠ 0 => error detected 
•	 S = 0 => no errors detected (they may have occurred and not

detected) 

•	 Suppose S ≠ 0, how can we know what was the actual transmitted 
Eytan Modiano codeword? 
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Syndrome decoding
 

•	 Many error patterns may have created the same syndrome
For error pattern e0 => S0 = e0HT 

Consider error pattern e0 + ci (ci ∈ C) 
S’ 0 = (e0 + ci))HT =e0 HT + ci HT = e0 HT = S0

•	 So, for a given error pattern, e0, all other error patterns that can be
expressed as e0 + ci for some ci ∈ C are also error patterns with
the same syndrome 

•	 For a given syndrome, we can not tell which error pattern actually
occurred, but the most likely is the one with minimum weight 

–	 Minimum distance decoding 

•	 For a given syndrome, find the error pattern of minimum weight
(emin) that gives this syndrome and decode:  r’ = r + emin 
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Standard Array
 

C1 C2 .... CM Syndrome 

e1 e1 + C2 e1 + CM S1M = 2K 
: e2 + C2 e2 + CM S2 

e2( n− K ) −1	 S2( n− K ) −1 

•	 Row 1 consists of all M codewords 
•	 Row 2 e1 = min weight n-tuple not in the array 

–	 I.e., the minimum weight error pattern
•	 Row i, ei = min weight n-tuple not in the array 

•	 All elements of any row have the same syndrome 
–	 Elements of a row are called “co-sets” 

•	 The first element of each row is the minimum weight error pattern
with that syndrome 

–	 Called “co-set leader” 
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Decoding algorithm
 

• Receive vector r 

1) Find S = rHT = syndrome of r 

2) Find the co-set leader e, corresponding to S 

3) Decode: C = r+e 

• “Minimum distance decoding” 
– Decode into the codeword that is closest to the received sequence 
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Example (syndrome decoding)
 

⎡

⎢
⎣
 
1 0 1 0
 

0 1 0 1
 

⎤

⎥
⎦


• Simple (4,2) code	 G =
 

Data codeword
 
⎡
⎢
⎢
⎢
⎢
⎢⎣


1 

0 

1 

0 

Standard array	 0000 0101 1010 1111 Syndrome
1000 1101 0010 0111  10 
0100 0001 1110 1011  01 
1100 1001 0110 0011  11 

Suppose 0111 is received, S = 10, co-set leader = 1000 

Decode: C = 0111 + 1000 = 1111 

0
00	  0000
 
1 0 1 0
 1
⎡
 ⎤
01	  0101
 H T
H =
⎢
⎣
 

⎥
⎦


=
 
10	  1010
 0 1 0 1
 0
 
11	  1111
 1
 

⎤

⎥
⎥
⎥
⎥
⎥⎦
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Minimum distance decoding
 

•	 Minimum distance decoding maps a received sequence onto the nearest
codeword 

•	 If an error pattern maps the sent codeword onto another valid codeword,
that error will be undetected (e.g., e3) 

–	 Any error pattern that is equal to a codeword will result in undetected errors 
•	 If an error pattern maps the sent sequence onto the sphere of another

codeword, it will be incorrectly decoded (e.g., e2) 
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Performance of Block Codes
 

•	 Error detection: Compute syndrome, S ≠ 0 => error detected 
–	 Request retransmission 
–	 Used in packet networks 

•	 A linear block code will detect all error patterns that are not
codewords 

•	 Error correction: Syndrome decoding 

–	 All error patterns of weight < dmin/2 will be correctly decoded 

–	 This is why it is important to design codes with large minimum
distance (dmin) 

–	 The larger the minimum distance the smaller the probability of
incorrect decoding 
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Hamming Codes
 

• Linear block code capable of correcting single errors 
–	  n = 2m - 1, k = 2m -1 -m
 

(e.g., (3,1), (7,4), (15,11)…)
 
– R = 1 - m/(2m - 1) => very high rate 
– dmin = 3 => single error correction 

• Construction of Hamming codes 
– Parity check matrix (H) consists of all non-zero binary m-tuples 

Example: (7,4) hamming code (m=3) 

⎡
1 0 0 0 1 1 0 

0 1 0 0 0 1 1 

0 0 1 0 1 0 1 

0 0 0 1 1 1 1 

⎤

⎡
1 0 1 1 1 0 0 

1 1 0 1 0 1 0 

0 1 1 1 0 0 1 

⎤
 ⎢
⎢
⎢
⎢
⎢⎣


⎥
⎥
⎥
⎥
⎥⎦


⎢
⎢
⎢
⎣


⎥
⎥
⎥
⎦

,
H =
 G =
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