MIT OpenCourseWare
http://ocw.mit.edu

16.36 Communication Systems Engineering

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

16.36: Communication Systems Engineering
 Lecture 19: Delay Models for Data Networks

Part 1: Introduction

Eytan Modiano

Packet Switched Networks

Queueing Systems

- Used for analyzing network performance
- In packet networks, events are random
- Random packet arrivals
- Random packet lengths
- While at the physical layer we were concerned with bit-error-rate, at the network layer we care about delays
- How long does a packet spend waiting in buffers?
- How large are the buffers?
- Applications far beyond just communication networks
- Air transportation systems, air traffic control
- Manufacturing systems
- Service centers, phone banks, etc.

Random events

- Arrival process
- Packets arrive according to a random process
- Typically the arrival process is modeled as Poisson
- The Poisson process
- Arrival rate of λ packets per second
- Over a small interval δ,

$$
\mathrm{P}(\text { exactly one arrival })=\lambda \delta
$$

$P(0$ arrivals $)=1-\lambda \delta$
$\mathbf{P}($ more than one arrival $)=0$

- It can be shown that:

$$
\mathrm{P}(\text { n arrivals in interval } \mathrm{T})=\frac{(\lambda T)^{n} e^{-\lambda T}}{n!}
$$

The Poisson Process

$$
\mathrm{P}(\mathrm{n} \text { arrivals in interval } \mathrm{T})=\frac{(\lambda T)^{n} e^{-\lambda T}}{n!}
$$

$\mathrm{n}=$ number of arrivals in T
It can be shown that,

$$
\begin{aligned}
& \mathrm{E}[\mathrm{n}]=\lambda T \\
& \mathrm{E}\left[\mathrm{n}^{2}\right]=\lambda T+(\lambda T)^{2} \\
& \sigma^{2}=\mathrm{E}\left[(\mathrm{n}-\mathrm{E}[\mathrm{n}])^{2}\right]=\mathrm{E}\left[\mathrm{n}^{2}\right]-\mathrm{E}[\mathrm{n}]^{2}=\lambda T
\end{aligned}
$$

Inter-arrival times

- Time that elapses between arrivals (IA)

$$
\begin{aligned}
\mathbf{P}(\mathbf{I A} \leq t)= & 1-\mathbf{P}(\mathbf{I A}>t) \\
& =1-\mathbf{P}(\mathbf{0} \text { arrivals in time } \mathrm{t}) \\
& =1-e^{-\lambda t}
\end{aligned}
$$

- This is known as the Exponential distribution
- Inter-arrival CDF $=\mathrm{F}_{\text {IA }}(\mathrm{t})=\mathbf{1 -}-\mathrm{e}^{-\lambda \mathrm{t}}$
- \quad Inter-arrival PDF $=\mathbf{d} / \mathbf{d t} \mathrm{F}_{\text {IA }}(\mathrm{t})=\lambda \mathrm{e}^{-\lambda \mathrm{t}}$
- The Exponential distribution is often used to model the service times (I.e., the packet length distribution)

Markov property (Memoryless)

$$
P\left(T \leq t_{0}+t \mid T>t_{0}\right)=P(T \leq t)
$$

Proof:

$$
\begin{aligned}
& P\left(T \leq t_{0}+t \mid T>t_{0}\right)=\frac{P\left(t_{0}<T \leq t_{0}+t\right)}{P\left(T>t_{0}\right)} \\
& =\frac{\int_{t_{0}}^{t_{0}+t} \lambda e^{-\lambda t} d t}{\int_{t_{0}}^{\infty} \lambda e^{-\lambda t} d t}=\frac{-e^{-\lambda t}| |_{t_{0}}^{t_{0}+t}}{-\left.e^{-\lambda t}\right|_{t_{0}} ^{\infty}}=\frac{-e^{-\lambda\left(t+t_{0}\right)}+e^{-\lambda\left(t_{0}\right)}}{e^{-\lambda\left(t_{0}\right)}} \\
& =1-e^{-\lambda t}=P(T \leq t)
\end{aligned}
$$

- Previous history does not help in predicting the future!
- Distribution of the time until the next arrival is independent of when the last arrival occurred!

Example

- Suppose a train arrives at a station according to a Poisson process with average interarrival time of 20 minutes
- When a customer arrives at the station the average amount of time until the next arrival is $\mathbf{2 0}$ minutes
- Regardless of when the previous train arrived
- The average amount of time since the last departure is $\mathbf{2 0}$ minutes!
- Paradox: If an average of $\mathbf{2 0}$ minutes passed since the last train arrived and an average of 20 minutes until the next train, then an average of 40 minutes will elapse between trains
- But we assumed an average inter-arrival time of 20 minutes!
- What happened?
- Answer: You tend to arrive during long inter-arrival times
- If you don't believe me you have not taken the T

Properties of the Poisson process

- Merging Property

Let A1, A2, ... Ak be independent Poisson Processes
of rate $\lambda 1, \lambda 2, \ldots \lambda k$

$$
\mathbf{A}=\sum \mathbf{A}_{i} \text { is also Poisson of rate }=\sum \lambda_{i}
$$

- Splitting property
- Suppose that every arrival is randomly routed with probability \mathbf{P} to stream 1 and (1-P) to stream 2
- Streams 1 and 2 are Poisson of rates $P \lambda$ and (1-P) λ respectively

Queueing Models

- Model for
- Customers waiting in line
- Assembly line
- Packets in a network (transmission line)
- Want to know
- Average number of customers in the system
- Average delay experienced by a customer
- Quantities obtained in terms of
- Arrival rate of customers (average number of customers per unit time)
- Service rate (average number of customers that the server can serve per unit time)

Analyzing delay in networks (queueing theory)

- Little's theorem
- Relates delay to number of users in the system
- Can be applied to any system
- Simple queueing systems (single server)
- M/M/1, M/G/1, M/D/1
$\quad-\mathrm{M} / \mathbf{M} / \mathbf{m} / \mathrm{m}$
- Poisson Arrivals $\Rightarrow \quad P(n$ arrivals in interval $T)=\frac{(\lambda T)^{\mathrm{n}} e^{-\lambda \mathrm{T}}}{\mathrm{n}!}, ~$
- $\quad \lambda=$ arrival rate in packets/second
- Exponential service time $\Rightarrow \quad P($ service time $<\mathrm{T})=1-\mathrm{e}^{-\mu \mathrm{T}}$
- $\quad \mu=$ service rate in packets/second

Little's theorem

- $\mathbf{N}=$ average number of packets in system
- $T=$ average amount of time a packet spends in the system
- $\lambda=$ arrival rate of packets into the system (not necessarily Poisson)
- Little's theorem: $\mathbf{N}=\lambda T$
- Can be applied to entire system or any part of it
- Crowded system \leftrightarrow long delays

On a rainy day people drive slowly and roads are more congested!

Proof of Little's Theorem

- $\mathbf{A}(\mathbf{t})=$ number of arrivals by time t
- $B(t)=$ number of departures by time t
- $t_{i}=$ arrival time of $i^{\text {th }}$ customer
- $T_{i}=$ amount of time $i^{\text {th }}$ customer spends in the system
- $\mathbf{N}(\mathbf{t})=$ number of customers in system at time $t=A(t)-B(t)$

$$
\begin{aligned}
& N=\lim _{t \rightarrow \infty} \frac{\sum_{i=1}^{A(t)} T_{i}}{t}, \quad T=\lim _{t \rightarrow \infty} \frac{\sum_{i=1}^{A(t)} T_{i}}{A(t)} \Rightarrow \sum_{i=1}^{A(t)} T_{i}=A(t) T \\
& N=\frac{\sum_{i=1}^{A(t)} T_{i}}{t}=\left(\frac{A(t)}{t}\right) \frac{\sum_{i=1}^{A(t)} T_{i}}{A(t)}=\lambda T
\end{aligned}
$$

Application of Little's Theorem

- Little's Theorem can be applied to almost any system or part of it
- Example:

1) The transmitter: $D_{T P}=$ packet transmission time

- \quad Average number of packets at transmitter $=\lambda D_{T P}=\rho=$ link utilization

2) The transmission line: $D_{p}=$ propagation delay

- \quad Average number of packets in flight $=\lambda D_{p}$

3) The buffer: $D_{q}=$ average queueing delay

- \quad Average number of packets in buffer $=N_{q}=\lambda D_{q}$

4) Transmitter + buffer

- Average number of packets $=\rho+\mathbf{N}_{q}$

