MIT OpenCourseWare
http://ocw.mit.edu

16.36 Communication Systems Engineering

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

16.36: Communication Systems Engineering
 Lecture 20: Delay Models for Data Networks
 Part 2: Single Server Queues

Eytan Modiano

Single server queues

μ packet per second
\Rightarrow Service time $=1 / \mu$

- M/M/1
- Poisson arrivals, exponential service times
- M/G/1
- Poisson arrivals, general service times
- M/D/1
- Poisson arrivals, deterministic service times (fixed)

Markov Chain for M/M/1 system

- \quad State $k \Rightarrow k$ customers in the system
- $P(i, j)=$ probability of transition from state I to state \mathbf{j}
- As $\boldsymbol{\delta} \Rightarrow \mathbf{0}$, we get:

$$
\begin{array}{ll}
\mathbf{P}(\mathbf{0}, \mathbf{0})=1-\lambda \delta, & \mathbf{P}(\mathbf{j}, \mathbf{j}+1)=\lambda \delta \\
\mathbf{P}(\mathbf{j}, \mathbf{j})=1-\lambda \delta-\mu \delta & \mathbf{P}(\mathbf{j}, \mathbf{j}-1)=\mu \delta \\
\mathbf{P}(\mathbf{i}, \mathbf{j})=0 \text { for all other values of } \mathrm{I}, \mathbf{j} . &
\end{array}
$$

- Birth-death chain: Transitions exist only between adjacent states
- $\quad \lambda \delta, \mu \delta$ are flow rates between states

Equilibrium analysis

- We want to obtain $\mathrm{P}(\mathrm{n})=$ the probability of being in state n
- At equilibrium $\lambda P(n)=\mu P(n+1)$ for all n
- $\mathbf{P}(\mathbf{n}+\mathbf{1})=(\lambda / \mu) \mathbf{P}(\mathbf{n})=\rho \mathbf{P}(\mathbf{n}), \rho=\lambda / \mu$
- It follows: $\mathbf{P}(\mathbf{n})=\rho^{n} \mathbf{P}(0)$
- Now by axiom of probability:

$$
\begin{aligned}
& \sum_{i=0}^{\infty} P(n)=1 \\
& \Rightarrow \sum_{i=0}^{\infty} \rho^{n} P(0)=\frac{P(0)}{1-\rho}=1 \\
& \Rightarrow P(0)=1-\rho \\
& P(n)=\rho^{n}(1-\rho)
\end{aligned}
$$

Average queue size

$$
\begin{aligned}
& N=\sum_{n=0}^{\infty} n P(n)=\sum_{n=0}^{\infty} n \rho^{n}(1-\rho)=\frac{\rho}{1-\rho} \\
& N=\frac{\rho}{1-\rho}=\frac{\lambda / \mu}{1-\lambda / \mu}=\frac{\lambda}{\mu-\lambda}
\end{aligned}
$$

- $\mathbf{N}=$ Average number of customers in the system
- The average amount of time that a customer spends in the system can be obtained from Little's formula ($N=\lambda T \Rightarrow T=N / \lambda$)

$$
T=\frac{1}{\mu-\lambda}
$$

- T includes the queueing delay plus the service time (Service time $=D_{T P}=1 / \mu$)
$-W=$ amount of time spent in queue $=T-1 / \mu \Rightarrow$

$$
W=\frac{1}{\mu-\lambda}-\frac{1}{\mu}
$$

- Finally, the average number of customers in the buffer can be obtained from little's formula

$$
N_{Q}=\lambda W=\frac{\lambda}{\mu-\lambda}-\frac{\lambda}{\mu}=N-\rho
$$

Example (fast food restaurant)

- Customers arrive at a fast food restaurant at a rate of $\mathbf{1 0 0}$ per hour and take 30 seconds to be served.
- How much time do they spend in the restaurant?
- Service rate $=\mu=60 / 0.5=120$ customers per hour
- $\quad T=1 / \mu-\lambda=1 /(\mathbf{1 2 0}-100)=1 / 20 \mathrm{hrs}=3$ minutes
- How much time waiting in line?
$-\quad W=T-1 / \mu=2.5$ minutes
- How many customers in the restaurant?
$-\quad N=\lambda T=5$
- What is the server utilization?
- $\rho=\lambda / \mu=5 / \mathbf{6}$

Packet switching vs. Circuit switching

Packets generated at random times

Circuit (TDM/FDM) vs. Packet Switching

Multi-server systems: M/M/m

- Departure rate is proportional to the number of servers in use
- Similar Markov chain:

M/M/m queue

- Balance equations:

$$
\begin{aligned}
& \lambda P(n-1)=n \mu P(n) \quad n \leq m \\
& \lambda P(n-1)=m \mu P(n) \quad n>m \\
& P(n)=\left\{\begin{array}{ll}
P(0)(m \rho)^{n} / n! & n \leq m \\
P(0)\left(m^{m} \rho^{n}\right) / m! & n>m
\end{array}, \quad \rho=\frac{\lambda}{m \mu} \leq 1\right.
\end{aligned}
$$

- Again, solve for $\mathbf{P}(\mathbf{0})$:

$$
\begin{aligned}
& P(0)=\left[\sum_{n=0}^{m-1} \frac{(m \rho)^{n}}{n!}+\frac{(m \rho)^{m}}{m!(1-\rho)}\right]^{-1} \\
& P_{Q}=\sum_{n=m}^{n=\infty} P(n)=\frac{P(0)(m \rho)^{m}}{m!(1-\rho)} \\
& N_{Q}=\sum_{n=0}^{n=\infty} n P(n+m)=\sum_{n=0}^{n=\infty} n P(0)\left(\frac{m^{m} \rho^{m+n}}{m!}\right)=P_{Q}\left(\frac{\rho}{1-\rho}\right) \\
& W=\frac{N_{Q}}{\lambda}, T=W+1 / \mu, N=\lambda T=\lambda / \mu+N_{Q}
\end{aligned}
$$

Applications of M/M/m

- Bank with m tellers
- Network with parallel transmission lines

VS

- When the system is lightly loaded, PQ~0, and Single server is \mathbf{m} times faster
- When system is heavily loaded, queueing delay dominates and systems are roughly the same

Blocking Systems (circuit switched networks)

- A circuit switched network can be viewed as a Multi-server queueing system
- Calls are blocked when no servers available - "busy signal"
- For circuit switched network we are interested in the call blocking probability
- M/M/m/m system
- $\quad \mathrm{m}$ servers $\Rightarrow \mathrm{m}$ circuits
- Last m indicated that the system can hold no more than m users
- Erlang B formula
- Gives the probability that a caller finds all circuits busy
- Holds for general call arrival distribution (although we prove Markov case only)

$$
P_{B}=\frac{(\lambda / \mu)^{m} / m!}{\sum_{n=0}^{m}(\lambda / \mu)^{n} / n!}
$$

M/M/m/m system: Erlang B formula

$$
\begin{aligned}
& \lambda P(n-1)=n \mu P(n), 1 \leq n \leq m, \Rightarrow P(n)=\frac{P(0)(\lambda / \mu)^{n}}{n!} \\
& P(0)=\left[\sum_{n=0}^{m}(\lambda / \mu)^{n} / n!\right]^{-1} \\
& P_{B}=P(\text { Blocking })=P(m)=\frac{(\lambda / \mu)^{m} / m!}{\sum_{n=0}^{m}(\lambda / \mu)^{n} / n!}
\end{aligned}
$$

Erlang B formula

- System load usually expressed in Erlangs
- $\quad \mathrm{A}=\lambda / \mu=$ (arrival rate)*(ave call duration) $=$ average load
- Formula insensitive to λ and μ but only to their ratio

$$
P_{B}=\frac{(A)^{m} / m!}{\sum_{n=0}^{m}(A)^{n} / n!}
$$

- Used for sizing transmission line
- How many circuits does the satellite need to support?
- The number of circuits is a function of the blocking probability that we can tolerate

Systems are designed for a given load predictions and blocking probabilities (typically small)

- Example
- Arrival rate $=\mathbf{4}$ calls per minute, average $\mathbf{3}$ minutes per call $\Rightarrow A=12$
- How many circuits do we need to provision?

Depends on the blocking probability that we can tolerate

$$
\begin{array}{cll}
\text { Circuits } & & P_{B} \\
\cline { 1 - 1 } & & \\
20 & & 1 \% \\
15 & & 8 \% \\
7 & & 30 \%
\end{array}
$$

M/G/1 QUEUE

- Poisson arrivals at rate λ
- Service time has arbitrary distribution with given $\mathrm{E}[\mathrm{X}]$ and $\mathrm{E}\left[\mathrm{X}^{2}\right]$
- Service times are independent and identically distributed (IID)
- Independent of arrival times
$-\quad E[$ service time $]=1 / \mu$
- Single Server queue

Pollaczek-Khinchin (P-K) Formula

$$
W=\frac{\lambda E\left[X^{2}\right]}{2(1-\rho)}
$$

where $\rho=\lambda / \mu=\lambda E[X]=$ line utilization
From Little's Theorem,

$$
\begin{aligned}
& \mathbf{N}_{Q}=\lambda \mathbf{W} \\
& \mathbf{T}=\mathbf{E}[\mathbf{X}]+\mathbf{W} \\
& \mathbf{N}=\lambda T=\mathbf{N}_{\mathbf{Q}}+\rho
\end{aligned}
$$

M/G/1 EXAMPLES

- Example 1: M/M/1

$$
\begin{aligned}
& \mathrm{E}[\mathrm{X}]=1 / \mu ; E\left[\mathrm{X}^{2}\right]=2 / \mu^{2} \\
& \qquad W=\frac{\lambda}{\mu^{2}(1-\rho)}=\frac{\rho}{\mu(1-\rho)}
\end{aligned}
$$

Example 2: M/D/1 (Constant service time $1 / \mu$)

$$
\begin{aligned}
& \mathrm{E}[\mathrm{X}]=1 / \mu ; E\left[\mathrm{X}^{2}\right]=1 / \mu^{2} \\
& W=\frac{\lambda}{2 \mu^{2}(1-\rho)}=\frac{\rho}{2 \mu(1-\rho)}
\end{aligned}
$$

Delay Formulas (summary)

- M/G/1

$$
T=\bar{X}+\frac{\lambda \bar{X}^{2}}{2(1-\lambda / \mu)}
$$

- M/M/1

$$
T=\bar{X}+\frac{\lambda / \mu}{\mu-\lambda}
$$

- M/D/1

$$
T=\bar{X}+\frac{\lambda / \mu}{2(\mu-\lambda)}
$$

Delay components:
Service (transmission) time (LHS)
Queueing delay (RHS)

Use Little's Theorem to compute N, the average number of customers in the system

