

SPATIAL ORIENTATION IN FLIGHT Limitations of the Senses

SPATIAL ORIENTATION IN FLIGHT Limitations of the Senses

Visual Sense

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. **Nonvisual Senses**

SPATIAL ORIENTATION IN FLIGHT Limitations of the Senses

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

VISUAL ORIENTATION 3-D Neurobehavioral Model

VISUAL ORIENTATION The Two Visual System Hypothesis

VISUAL ORIENTATION The Two Visual System Hypothesis

VISUAL ORIENTATION The Two Visual System Hypothesis

VISUAL ORIENTATION 9 Alterations of The Ambient Visual Frame

Characteristics of Vection

- Requires large retinal area (including periphery)
- More dependent on background visual field
- Relies on moving textures (sluggish response, low frequency)
- Can occur with optically degraded stimuli

Characteristics of Field-Dependence

- Similar visual requirements as vection (e.g., reliance on background field, can tolerate optical degradation)
- Tilted scenes produces changes in perceived visual vertical, gravitational vertical and posture
- Other position effects (luminance gradients, depth)

Rod-and-frame

Characteristics of Field-Dependence

- Similar visual requirements as vection (e.g., reliance on background field, can tolerate optical degradation)
- Tilted scenes produces changes in perceived visual vertical, gravitational vertical and posture
- Other position effects (luminance gradients, depth)

Characteristics of Field-Dependence

- Similar visual requirements as vection (e.g., reliance on background field, can tolerate optical degradation)
- Tilted scenes produces changes in perceived visual vertical, gravitational vertical and posture
- Other position effects (luminance gradients, depth)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Characteristics of Field-Dependence

- Similar visual requirements as vection (e.g., reliance on background field, can tolerate optical degradation)
- Tilted scenes produces changes in perceived visual vertical, gravitational vertical and posture
- Other position effects (luminance gradients, depth)

Rod-and-frame

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Postural Effects

Optokinetic-Cervical Reflex

Luminance Gradients

- Light-to-Dark Gradient Important in Judging Visual Vertical
- Gradient Inversions Caused by
 - Low Sun Angles
 - Clouds
 - Terrain Shadowing
 - Lunar Reflections
- Can Result in Inversion Illusions

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Luminance Gradients

- Light-to-Dark Gradient Important in Judging Visual Vertical
- Gradient Inversions Caused by
 - Low Sun Angles
 - Clouds
 - Terrain Shadowing
 - Lunar Reflections, etc.
- Can Result in Inversion Illusions

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Luminance Gradients

- Light-to-Dark Gradient Important in Judging Visual Vertical
- Gradient Inversions Caused by
 - Low Sun Angles
 - Clouds
 - Terrain Shadowing
 - Lunar Reflections, etc.
- Can Result in Inversion Illusions

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Luminance Gradients

- Light-to-Dark Gradient Important in Judging Visual Vertical
- Gradient Inversions Caused by
 - Low Sun Angles
 - Clouds
 - Terrain Shadowing
 - Lunar Reflections, etc.
- Can Result in Inversion Illusions

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Image courtesy of Patrick M. on Flickr.

Linear perspective

Ambient Depth Cues

- Linear perspective/foreshortening
- Gradient of texture
- Motion parallax
- Illumination
- Aerial perspective

Image by MIT OpenCourseWare.

Motion parallax Human Vision - Perception

Image courtesy of Cameron Chamberlain on Flickr. **Aerial perspective**

Linear Perspective & Gradient of Texture Image courtesy of Patrick M. on Flickr.

Image courtesy of Patrick M. on Flickr.

Linear perspective

Ambient Depth Cues

- Linear perspective/foreshortening
- Gradient of texture
- Motion parallax
- Illumination
- Aerial perspective

Image by MIT OpenCourseWare.

Motion parallax Human Vision - Perception

Image courtesy of Cameron Chamberlain on Flickr.

Aerial perspective

Motion Parallax

Image by MIT OpenCourseWare.

Image courtesy of Patrick M. on Flickr.

Linear perspective

Ambient Depth Cues

- Linear perspective/foreshortening
- Gradient of texture
- Motion parallax
- Illumination
- Aerial perspective

Image by MIT OpenCourseWare.

Motion parallax Human Vision - Perception

Image courtesy of Cameron Chamberlain on Flickr.

Aerial perspective

VISUAL ORIENTATION Focal Visual Effects

Size and Shape Constancies

Rigidity is considered to be a fundamental property of objects; therefore, deviations in the size and shape of ground objects are perceived as changes in our orientation


```
Image by MIT OpenCourseWare.
```

relative to the ground

VISUAL ORIENTATION Focal Visual Effects

Size and Shape Constancies

Rigidity is considered to be a fundamental property of objects; therefore, deviations in the size and shape of ground objects are perceived as changes in our orientation


```
Image by MIT OpenCourseWare.
```

relative to the ground

VISUAL ORIENTATION Focal Visual Effects

Size and Shape Constancies

Rigidity is considered to be a fundamental property of objects; therefore, deviations in the size and shape of ground objects are perceived as changes in our orientation


```
Image by MIT OpenCourseWare.
```

relative to the ground

Contents

- Introduction
- Contrast & Frequency
- Visual Pathway, Visual Image
- Receptive Fields, Gestalt
- Color, Color deficits, after images
- Size of objects

Spatial Frequency and Contrast

Spatial frequency of grid

This image is in the public domain. For more examples: http://visiome.neuroinf.jp/modules/xoonips/detail.php?item_id=3181.

Optic nerve - from eye to brain

- Left visual field
 -> right brain side
- Right visual field
 -> left brain side
- Retina 11cm²
- Optic nerve diameter 2mm
- <u>convergence</u> receptors ->ganglion
- <u>divergence</u> optic nerv -> visual cortex

Image by MIT OpenCourseWare.

Rod and cone density

Image of rods and cones removed due to copyright restrictions.

Image by MIT OpenCourseWare.

- On average 120 rods converge on 1 ganglion cell
- On average 6 cones converge on 1 ganglion cell

Image properties

 ${\rm \mathbb{C}}$ source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- Image quality created by retina is not homogenous
- Color vision mainly in fovea
- Resolution decreases in periphery
 - Best resolution for color in the fovea
 - Best resolution for b/w 20° parafovela

Questions

- How come that we perceive such a nice and homogenous image of our surrounding?
- What happened to the blind-spot hole?
- Why do we perceive color in the periphery?

Receptive Fields

Filling the blind spot

- Close your left eye and fixated with the right eye the X. Which number is missing? What is the color pattern at the psotion of the missing number?
- The blind spot is filled with the surrounding pattern.

35

Figure and background

- The total visual input is organized into figures and background.
- The Gestalt-laws describe principles how figure and ground are separated.
- **<u>Figures</u>** are in front, have a border, connected, "things".
- The <u>background</u> is behind the figure, withour border, uninterrupted, homogenous.

Gestalt-laws

Perceptual categories

Image by MIT OpenCourseWare.

- The shapes in-between are neither square nor diamond.
- Our perception is organized in categories, even if the stimuli are continuos.

Perceptual categories: Reproducing shapes

• Figure in B is the drawing when the shape of the Figure A is given as a tactile stimulus (without vision).

Emergence

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- The dog is perceived as a whole, all at once.
- We do not construct the "dog" by first identifying its parts, e.g. combining feet, ears, nose, tail, etc.

Invariance

- simple geometrical objects are recognized independent of rotation, translation, and scale, (and other deformations)
- Objects in A are immediately recognized as the same shape,
- are different from those in B,
- are the same as in C despite perspective and elastic deformations,
- and can be depicted using different graphic elements as in D.

This image is in the public domain. Source: Wikipedia.

Reification

- The perceived object can contain more information as given by the sensory input. (e.g. ball in C)
- Mostly for spatial information.

This image is in the public domain. Source: Wikipedia.

Multistable perception

Necker cube

Rubin's Figure / Vase

Ambiguous perceptual experiences (2 figures share a common • border) lead to multistable perception. The experiences pop back and forth between two or more alternative interpretations.

What are the components?

Image by MIT OpenCourseWare.

Some of the combinations

Color

Image removed due to copyright restrictions. Original image can be viewed on Wikimedia.

- Wavelength physics
- Color perception

Image removed due to copyright restrictions. Original image can be viewed on Wikimedia.

Color blindness

- Normal color vision is **trichormat**, 3 cone types are used.
- Dichromacy, most common Red-Green color blindness lacking or reduced long-wavelength or medium-wavelength cones (4-8% of the male population!) includes: Protanopia (rare), Deuteranopia (1% m), Protanomaly (1% m), Deuteranomaly (6% m)
- Monochromacy, complete inability to distinguish any colors cone monochromacy (only 1 cone type) rod monochromacy (only rods)
- <u>Human Factors</u> Color codes (Maps, Signals, etc)

Image removed due to copyright restrictions. Original image can be viewed on Wikimedia.

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Color vision - after images 1

• Fixate center dot on flag for 1 minute, then look at a white surface

Color vision - after images 2

 \bigcirc

Image by MIT OpenCourseWare.

Perceived size

• How to estimate the distance of person?

Image by MIT OpenCourseWare.

Additional Slides

Image by MIT OpenCourseWare.

Major parts

- Occipital lobe: visual perception system
- E.g., visuospatial processing, discrimination of movement and colour discrimination

Adapted from Stangor, C. *Introduction to Psychology*. Flatworld Knowledge, 2010. Courtesy of Flatworld Knowledge.

Sensory Maps - Homunculus

Image of Homunculus removed due to copyright restrictions.

Image removed due to copyright restrictions. Original image can be viewed on Scientific American.

Figure 6.3 removed due to copyright restrictions. Source: Proctor, Robert W., and Trisha Van Zandt. *Human Factors in Simple and Complex Systems*. CRC Press, 2008. Preview image with Google Books.

Figure 6.8 removed due to copyright restrictions. Source: Proctor, Robert W., and Trisha Van Zandt. *Human Factors in Simple and Complex Systems*. CRC Press, 2008. Preview image with Google Books.

Figure 6.9 removed due to copyright restrictions. Source: Proctor, Robert W., and Trisha Van Zandt. *Human Factors in Simple and Complex Systems*. CRC Press, 2008. Preview image with Google Books. Figure 6.12 removed due to copyright restrictions. Source: Proctor, Robert W., and Trisha Van Zandt. *Human Factors in Simple and Complex Systems*. CRC Press, 2008.

Figure 6.15 removed due to copyright restrictions. Source: Proctor, Robert W., and Trisha Van Zandt. *Human Factors in Simple and Complex Systems*. CRC Press, 2008.

Figure 6.16 removed due to copyright restrictions. Source: Proctor, Robert W., and Trisha Van Zandt. *Human Factors in Simple and Complex Systems*. CRC Press, 2008.

Figure 6.17 removed due to copyright restrictions. Source: Proctor, Robert W., and Trisha Van Zandt. *Human Factors in Simple and Complex Systems*. CRC Press, 2008.

Figure 6.17 removed due to copyright restrictions. Source: Proctor, Robert W., and Trisha Van Zandt. *Human Factors in Simple and Complex Systems*. CRC Press, 2008.

Figure 6.22 removed due to copyright restrictions. Source: Proctor, Robert W., and Trisha Van Zandt. *Human Factors in Simple and Complex Systems*. CRC Press, 2008. Preview image with Google Books.

Figure 6.23 removed due to copyright restrictions. Source: Proctor, Robert W., and Trisha Van Zandt. *Human Factors in Simple and Complex Systems*. CRC Press, 2008. Preview image with Google Books.

16.400 / 16.453 Human Factors Engineering Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.