16.400/453J Human Factors Engineering

Design of Experiments I

Human Factors Experiments

- Why do a human factors experiment?
 - To find out whether a hypothesis about a question "is true"
 - To explore the relationship between variables
 - To develop and validate model to predict performance
 - Concept validation
 - Improve product design
- When not to do a human factors experiment
 - Question can be resolved by analysis or based on existing data
 - There are no critical consequences
 - Deeper understanding is not required

Research Methods

16.400/453

- Quantitative
 - With or without humans
 - Natural phenomenon
 - Physical Experiments
 - Mathematical modeling
 - Optimization
 - With Humans
 - Performance models
 - Surveys
 - Experiments

• Qualitative (w/humans)

- Observation
 - e.g., observe pilots flying
- Case studies
 - e.g., NASA ASRS reports
- Usability testing
 - e.g., Electronic Flight Bag
 - Can be quantitative
- (Open-response) surveys
- Focus groups
- Interviews

The Basics

- Understanding the relationship between objectives (research question) and variables is critical for quantitative research
 - Clearly map your goals to your test
 - Field vs. laboratory research
 - Tradeoffs between realism vs. control, generalizability
- Planning in advance is a must
 - Includes how data will be analyzed
- The importance of statistics

The Experimental Design Process

DOE Terminology I

- Independent variables vs. Dependent Variables
 What you are manipulating vs. What you are measuring
- Measuring a variable (discrete vs. continuous)
 - Nominal/Categorical (e.g., label, multiple choice answer)
 - Ordinal (e.g., military rank, self-report rating)
 - Interval (e.g., temperature, date)
 - Ratio scale (e.g., length, time)
- Descriptive Statistics vs. Inferential Statistics
 - Describing your data vs. drawing inferences

Types of Independent Variables

16.400/453 -

- Control condition
 - Baseline is not necessarily "no treatment" (e.g., placebo)
- Levels of a variable
 - 2 levels, can use simple "t-test" for statistical inference
 - e.g., 2 levels of "Experience" (novice, expert)
 - 3 or more levels, more complicated tests
 - e.g., 3 levels of "Air Traffic Density" (low, medium, high)
 - ANOVA, paired comparisons, etc.
 - Next lecture & other courses
- Within-subjects and Between-subjects
 - e.g., Air Traffic Density vs. Experience

Types of Dependent Variables

16.400/453 •

- Performance-based, e.g.,
 - Reaction time (< 1 sec) or Response time (> 1 sec)
 - Accuracy or errors
- Subjective, e.g.,
 - Preference
 - Free response
- Psychophysiologic response, e.g.,
 - Pulse rate, blood pressure
- Meta-metrics (inferred), e.g.,
 - Workload, Situation Awareness

DOE Terminology II

- Computer Programs
 - Excel, SAS, SPSS, MatLab, R
 - Plan your data recording format for the software
- Samples vs. populations
 - Avoid sampling bias

Exercise: Design of Stove Top Control

- Motivation?
- Research Question?
 - Independent variables?
 - Within/between?
 - Continuous or discrete?
 - Dependent variables?
 - Subjective, objective?
- User task/instructions?
 - What does the subject see? What does the subject do?
 - Any particular emphasis to motivate the subject?
 - How long/hard is this task?
- Data analysis?
- Example conclusion that could be drawn?

Descriptive Statistics

16.400/453

• Measures of central tendency

– Mean, median, mode, (range)

"Subject age ranged from 20 to 70 years, with a mean age of 32."

"Pilots had a median experience of 9775 flight hours."

- "Most of the pilots held Air Transport Ratings (100), but some held only Instrument Ratings (30), and a few held only Visual Flight Ratings (6)."
- Measures of "spread"
 - Variance, standard deviation

"Pilots had a mean experience of 9775 flight hours with a standard deviation of 550 hours."

Measures of Central Tendency

16.400/453

- A fancy way to say average
- Roman letters represent *statistics* (samples)
- Greek letters represent *parameter* (populations)

Mean
$$\overline{X} = \frac{\sum X}{n} \quad \mu = \frac{\sum X}{N}$$

Median \widetilde{X} Halfway point in data arrayMedian of 1, 3, 4, 2, 3, 5, 1?What about 1, 3, 4, 2, 5, 1?2.5

• Don't forget about skew!

Measures of Central Tendency, cont.

16.400/453

Mode: Value that occurs most often

The only measure of central tendency for nominal/categorical data (e.g., response to a multiple choice question)

How many pets do you own?

Sample responses 0, 1, 2, 1, 2, 2, 3. Mode = 2

Sample responses 1, 3, 4, 2, 5, 6. Mode = \aleph ?

Sample responses 1, 3, 0, 2, 3, 5, 1 1,3 - Bimodal

Midrange = rough estimate =
$$\frac{X_{\min} + X_{\max}}{2}$$

Measures of Variance

- Variance = average of the squares of the distance of each value from the mean
 - If individual data points are near the mean, then variance is small.
 - Standard deviation is square root of the variance

Visualizing the Data Set - Histogram

Visualizing the Data Set - Box plot

A Simple Experiment

- Motivation
 - To illustrate experiment design and data analysis
- Specific research question
 - Are men taller than women on average?
 - $H_0: \mu_m \leq \mu_f vs. \ H_a: \mu_m > \mu_f$
- Independent Variable
 - Between subjects, male/female
- Dependent Variable
 - Height in inches (or cm)
- Number of subjects?
- Distributions? Sample means? Inferences?

Example Experiment: Aeronautical Charting Standards

- Motivation
 - Need to develop industry standards/recommendations for electronic chart symbols, lines, and linear patterns
 - What line patterns on charts should be standardized, and what specific patterns should be recommended?
- Specific research questions
 - What line patterns are used regularly? (by type of operation, pilot experience etc.)
 - What line patterns are well recognized? (by pilot experience)
 - First cut based on subject matter expert input

Example: Standards for Lines on Charts

16.400/453

- Independent Variables
 - Within-subjects: Specific line patterns of interest (7)
 - Between-subjects: Pilot experience (type of chart used)
- Dependent Variables
 - Accuracy (correct/incorrect) (judged written response)
- Task

	Line pattern (or ?):						
· <u>······</u>	1	2	3	4	5	6	7
	Low		Medium			High	
	Confidence		Confidence			Confidence	

Controlled Airspace

Descriptive Statistics - Example

*See Chandra, 2009 DOT-VNTSC-FAA 09-03 for full results

Inferential Statistics

- Continuous probability distribution
- Probability that some variable is <, >, or between 2 values
 - How do we determine what is a statistically significant finding?

Standard Score

- Normal distribution N(μ,σ²) vs.
 Standard Normal distribution N(0,1)
 - Comparing apples to oranges
 - Also known as z-score
 - http://www.statsoft.com/textbook/sttable.html
- The number of of standard deviations that a value falls above or below
- Test statistic

X - X	observed value - expected valu	le
S	²² standard error	

Standard Score Example

16.400/453

- The average reaction time for a search task is 28 secs +/-2 secs. What is the probability that someone randomly selected to perform the task will be 1) between 27 & 31 secs and 2) > 30.2 secs?
- Part 1 Draw!

$$z_1 = \frac{27 - 28}{2} = -.5 \quad z_2 = \frac{31 - 28}{2} = 1.5$$

Area $z_1 = .1915$

Area $z_2 = .4332$

P[27 < X < 31] = .1915 + .4332 = .6247

Standard Score Example, Part II

16.400/453

- The average reaction time for a search task is 28 secs +/-2 secs. What is the probability that someone randomly selected to perform the task will be 1) between 27 & 31 secs and 2) > 30.2 secs?
- Draw!

$$z_1 = \frac{30.2 - 28}{2} = 1.1$$

Area $z_1 = .3643$

P[X>30.2] = .5 - .3643 = .1357

Confidence Intervals: Means

- Interval estimate
 - Range of values that estimates a parameter
- Confidence level probability that estimate will contain the parameter
- Standard error standard deviation of the sampling distribution of a statistic.

$$\overline{X} - z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right) < \mu < \overline{X} + z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

Standard Error - Example

*See Chandra, 2009 DOT-VNTSC-FAA 09-03 for full results

Confidence Interval Example

16.400/453

- Estimate the average age of a student population with 95% confidence:
 - SD is known to be 2 yrs (previous studies)
 - Mean of sample of 50 students is 23.2 yrs

$$\overline{X} - z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right) < \mu < \overline{X} + z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

 $22.6 \le \mu \le 23.8$

But what is the catch?

Small Samples: Student's t Distribution

- 16.400/453
 - Use Standard normal when:
 - $-\sigma$ known, normal distribution
 - $-\sigma$ unknown, $n \ge 30$
 - If these conditions are not met, use t distribution (aka "Student's t")
 - For t distribution:
 - variance > 1
 - A family of curves based on degrees of freedom approaching standard normal as sample size increases
 - DOF = Number of values that are free to vary after a sample statistic has been computed
 - Which curve to use http://wwwstat.stanford.edu/~naras/jsm/TDensity/TDensity.html

For more practice and information: http://simon.cs.vt.edu/SoSci/converted/T-Dist/activity.html

Confidence Intervals, revisited.

16.400/453

- Sample size still must be approximately normal
- t tables: http://www.statsoft.com/textbook/sttable.html

$$\overline{X} - t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right) < \mu < \overline{X} + t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$$

DOF = n-1

Confidence Interval Example Revisited

- Estimate the average age of a student population with 95% confidence:
 - SD is known to be 2 yrs
 - Mean of sample of 8 students is 23.2 yrs

$$\overline{X} - t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right) < \mu < \overline{X} + t_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$$

$$22.6 < \mu < 23.8 (N=50)$$

 $21.5 < \mu < 24.9 (N=8)$

t vs. z?

- Next lecture on hypothesis testing and more advanced statistical tests
- Pset due Sept 27th

MIT OpenCourseWare http://ocw.mit.edu

16.400 / 16.453 Human Factors Engineering Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.