16.400/453J
 Human Factors Engineering

Design of Experiments I

Human Factors Experiments

- Why do a human factors experiment?
- To find out whether a hypothesis about a question "is true"
- To explore the relationship between variables
- To develop and validate model to predict performance
- Concept validation
- Improve product design
- When not to do a human factors experiment
- Question can be resolved by analysis or based on existing data
- There are no critical consequences
- Deeper understanding is not required

Research Methods

- Quantitative
- With or without humans
- Natural phenomenon
- Physical Experiments
- Mathematical modeling
- Optimization
- With Humans
- Performance models
- Surveys
- Experiments
- Qualitative (w/humans)
- Observation
- e.g., observe pilots flying
- Case studies
- e.g., NASA ASRS reports
- Usability testing
- e.g., Electronic Flight Bag
- Can be quantitative
- (Open-response) surveys
- Focus groups
- Interviews

The Basics

- Understanding the relationship between objectives (research question) and variables is critical for quantitative research
- Clearly map your goals to your test
- Field vs. laboratory research
- Tradeoffs between realism vs. control, generalizability
- Planning in advance is a must
- Includes how data will be analyzed
- The importance of statistics

The Experimental Design Process

Experiment Plan

Impact?
Try again?
Related questions?

Draw Conclusions

DOE Terminology I

- Independent variables vs. Dependent Variables
- What you are manipulating vs. What you are measuring
- Measuring a variable (discrete vs. continuous)
- Nominal/Categorical (e.g., label, multiple choice answer)
- Ordinal (e.g., military rank, self-report rating)
- Interval (e.g., temperature, date)
- Ratio scale (e.g., length, time)
- Descriptive Statistics vs. Inferential Statistics
- Describing your data vs. drawing inferences

Types of Independent Variables

- Control condition
- Baseline is not necessarily "no treatment" (e.g., placebo)
- Levels of a variable
- 2 levels, can use simple "t-test" for statistical inference
- e.g., 2 levels of "Experience" (novice, expert)
- 3 or more levels, more complicated tests
- e.g., 3 levels of "Air Traffic Density" (low, medium, high)
- ANOVA, paired comparisons, etc.
- Next lecture \& other courses
- Within-subjects and Between-subjects
- e.g., Air Traffic Density vs. Experience

Types of Dependent Variables

16.400/453

- Performance-based, e.g.,
- Reaction time ($<1 \mathrm{sec}$) or Response time ($>1 \mathrm{sec}$)
- Accuracy or errors
- Subjective, e.g.,
- Preference
- Free response
- Psychophysiologic response, e.g.,
- Pulse rate, blood pressure
- Meta-metrics (inferred), e.g.,
- Workload, Situation Awareness

DOE Terminology II

16.400/453

- Computer Programs
- Excel, SAS, SPSS, MatLab, R
- Plan your data recording format for the software
- Samples vs. populations
- Avoid sampling bias

Exercise: Design of Stove Top Control

16.400/453

- Motivation?
- Research Question?
- Independent variables?
- Within/between?
- Continuous or discrete?
- Dependent variables?
- Subjective, objective?
- User task/instructions?
- What does the subject see? What does the subject do?
- Any particular emphasis to motivate the subject?
- How long/hard is this task?
- Data analysis?
- Example conclusion that couild be drawn?

Descriptive Statistics

- Measures of central tendency
- Mean, median, mode, (range)
"Subject age ranged from 20 to 70 years, with a mean age of 32 ."
"Pilots had a median experience of 9775 flight hours."
"Most of the pilots held Air Transport Ratings (100), but some held only Instrument Ratings (30), and a few held only Visual Flight Ratings (6)."
- Measures of "spread"
- Variance, standard deviation
"Pilots had a mean experience of 9775 flight hours with a standard deviation of 550 hours."

Measures of Central Tendency

- A fancy way to say average
- Roman letters represent statistics (samples)
- Greek letters represent parameter (populations)

$$
\text { Mean } \quad \bar{X}=\frac{\sum X}{n} \quad \mu=\frac{\sum X}{N}
$$

Median
Halfway point in data array
Median of $1,3,4,2,3,5,1$?
What about $1,3,4,2,5,1$? 2.5

- Don’t forget about skew!

Measures of Central Tendency, cont.

16.400/453

Mode: Value that occurs most often
The only measure of central tendency for nominal/categorical data (e.g,. response to a multiple choice question)

How many pets do you own?
Sample responses $0,1,2,1,2,2,3$. Mode $=2$
Sample responses $1,3,4,2,5,6$. Mode $=\quad$? $?$
Sample responses 1, 3, 0, 2, 3, 5, $1 \quad 1,3$ - Bimodal

$$
\text { Midrange }=\text { rough estimate }=\frac{X_{\min }+X_{\max }}{2}
$$

Measures of Variance

16.400/453

- Variance $=$ average of the squares of the distance of each value from the mean
- If individual data points are near the mean, then variance is small.
- Standard deviation is square root of the variance

$$
\sigma^{2}=\frac{\sum(X-\mu)^{2}}{n T} \quad \sigma=\sqrt{\sigma^{2}}
$$

Population vs. sample

$$
s^{2}=\frac{\sum(X-\bar{X})^{2}}{n-1}=\frac{\sum X^{2}-\left(\sum X\right)^{2} / n}{n-1}
$$

Visualizing the Data Set - Histogram

Sample Test Score Data

What is plotted on the y-axis? ${ }_{15} \quad$ Number of cases (frequency)

Visualizing the Data Set - Box plot

16.400/453

A Simple Experiment

16.400/453

- Motivation
- To illustrate experiment design and data analysis
- Specific research question
- Are men taller than women on average?
$\mathrm{H}_{0}: \mu_{\mathrm{m}} \leq \mu_{\mathrm{f}}$ Vs. $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{m}}>\mu_{\mathrm{f}}$
- Independent Variable
- Between subjects, male/female
- Dependent Variable
- Height in inches (or cm)
- Number of subjects?
- Distributions? Sample means? Inferences?

Example Experiment: Aeronautical Charting Standards

- Motivation
- Need to develop industry standards/recommendations for electronic chart symbols, lines, and linear patterns
- What line patterns on charts should be standardized, and what specific patterns should be recommended?
- Specific research questions
- What line patterns are used regularly? (by type of operation, pilot experience etc.)
- What line patterns are well recognized?
(by pilot experience)
- First cut based on subject matter expert input

Example: Standards for Lines on Charts

- Independent Variables
- Within-subjects: Specific line patterns of interest (7)
- Between-subjects: Pilot experience (type of chart used)
- Dependent Variables
- Accuracy (correct/incorrect) (judged written response)
- Task

Controlled Airspace

ARTCC
Time Zone

$\dashv-\dashv-\dashv-\dashv-\dashv-1-$
FIR

Comm Boundary
International Boundary
Special Use Airspace
Boundary

Descriptive Statistics - Example

\% of Pilots Who Correctly Identified Test Line Patterns by Type of Chart Used (Pilot Experience)

Inferential Statistics

16.400/453

- Continuous probability distribution
- Probability that some variable is $<,>$, or between 2 values
- How do we determine what is a statistically significant finding?

Standard Score

- Normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$ vs. Standard Normal distribution $\mathrm{N}(0,1)$
- Comparing apples to oranges
- Also known as z-score
- http://www.statsoft.com/textbook/sttable.html
- The number of of standard deviations that a value falls above or below
- Test statistic

$$
z=\frac{X-\bar{X}}{s} \quad \frac{\text { observed value }- \text { expected value }}{x \quad \text { standard error }}
$$

Standard Score Example

16.400/453

- The average reaction time for a search task is 28 secs +/2 secs. What is the probability that someone randomly selected to perform the task will be 1) between 27 \& 31 secs and 2) > 30.2 secs?
- Part 1 - Draw!

$$
z_{1}=\frac{27-28}{2}=-.5 \quad z_{2}=\frac{31-28}{2}=1.5
$$

Area $\mathrm{z}_{1}=.1915$
Area $z_{2}=.4332$

$$
\mathrm{P}[27<\mathrm{X}<31]=.1915+.4332=.6247
$$

Standard Score Example, Part II

16.400/453

- The average reaction time for a search task is 28 secs +/2 secs. What is the probability that someone randomly selected to perform the task will be 1) between 27 \& 31 secs and 2) > 30.2 secs?
- Draw!

$$
z_{1}=\frac{30.2-28}{2}=1.1
$$

Area $\mathrm{z}_{1}=.3643$

$$
\mathrm{P}[\mathrm{X}>30.2]=.5-.3643=.1357
$$

Confidence Intervals: Means

- Interval estimate
- Range of values that estimates a parameter
- Confidence level - probability that estimate will contain the parameter
- Standard error - standard deviation of the sampling distribution of a statistic.

$$
\bar{X}-z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)<\mu<\bar{X}+z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)
$$

Standard Error - Example

\% of Pilots Who Correctly Identified Test Line Patterns by Type of Chart Used (Pilot Experience)

Confidence Interval Example

16.400/453

- Estimate the average age of a student population with 95% confidence:
- SD is known to be 2 yrs (previous studies)
- Mean of sample of 50 students is 23.2 yrs

$$
\bar{X}-z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)<\mu<\bar{X}+z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)
$$

$$
22.6<\mu<23.8
$$

But what is the catch?

Small Samples:

16.400/453

- Use Standard normal when:
$-\sigma$ known, normal distribution
$-\sigma$ unknown, $\mathrm{n} \geq 30$
- If these conditions are not met, use t distribution (aka "Student's t")
- For t distribution:
- variance > 1
- A family of curves based on degrees of freedom approaching standard normal as sample size increases
- DOF = Number of values that are free to vary after a sample statistic has been computed
- Which curve to use - http://wwwstat.stanford.edu/~naras/jsm/TDensity/TDensity.html

Critical t-value Examples

16.400/453

For tables online:
http://www.statsoft.com/textbook/distribution-tables/\#t
Given $\operatorname{DOF}=9$, find t_{1} given
a) $\mathrm{P}\left[\mathrm{X}>\mathrm{t}_{1}\right]=.05$
1.83 (one-tailed)
b) $\mathrm{P}\left[\mathrm{X}<-\mathrm{t}_{1}\right]+\mathrm{P}\left[\mathrm{X}>\mathrm{t}_{1}\right]=.01$
3.25 (two-tailed)
c) $\mathrm{P}\left[\mathrm{X}<-\mathrm{t}_{1}\right]=.01$

2.82 (one tailed)

For more practice and information: http://simon.cs.vt.edu/SoSci/converted/T-Dist/activity.html

Confidence Intervals, revisited.

- Sample size still must be approximately normal
- t tables: http://www.statsoft.com/textbook/sttable.html

$$
\bar{X}-t_{\alpha / 2}\left(\frac{s}{\sqrt{n}}\right)<\mu<\bar{X}+t_{\alpha / 2}\left(\frac{s}{\sqrt{n}}\right)
$$

DOF $=\mathrm{n}-1$

Confidence Interval Example Revisited

16.400/453

- Estimate the average age of a student population with 95% confidence:
-SD is known to be 2 yrs
- Mean of sample of 8 students is 23.2 yrs

$$
\begin{gathered}
\bar{X}-t_{\alpha / 2}\left(\frac{s}{\sqrt{n}}\right)<\mu<\bar{X}+t_{\alpha / 2}\left(\frac{s}{\sqrt{n}}\right) \\
22.6<\mu<23.8(\mathrm{~N}=50) \\
21.5<\mu<324.9(\mathrm{~N}=8)
\end{gathered}
$$

t vs. z ?

Questions?

- Next lecture on hypothesis testing and more advanced statistical tests
- Pset due Sept $27^{\text {th }}$

MIT OpenCourseWare
|http://ocw.mit.edu

16.400 / 16.453 Human Factors Engineering

Fall 2011

For information about citing these materials or our Terms of Use, visit: \dagger ttp://ocw.mit.edu/terms.

