16.400/453J
 Human Factors Engineering

Design of Experiments II

Review

- Experiment Design and Descriptive Statistics
- Research question, independent and dependent variables, histograms, box plots, etc.
- Inferential Statistics (in Bluman Chapt 6 \& 7)
- Parameter estimates for a population given sample mean $(\bar{X}) \&$ sample variance $\left(s^{2}\right)$
- Distributions
- Normal, $\mathrm{N}(\mu, \sigma)$, vs. standard normal, $\mathrm{N}(0,1)$
- Student's t (degrees of freedom)
- Binomial (in text \& problem set)
- Probabilities of occurrence
- Confidence Intervals
- Sample sizes

Formulas

Population

$$
\begin{aligned}
& \mu \\
& \sigma^{2}=\frac{\sum(X-\mu)^{2}}{N} \\
& \sigma
\end{aligned}
$$

Mean

Variance

Standard Deviation

Sample, (Estimators for the population)

More Formulas

> Estimators for Population of Sample Means

Population of Sample Means
(Central Limit Theorem)
Mean

Variance

$$
\sigma^{2} / N
$$

$$
\sigma / \sqrt{N}
$$

aka "Standard Error of the Mean"

$$
\mu
$$

Standard
Deviation

$$
\bar{X}
$$

$$
s^{2} /(n-1)
$$

$$
s / \sqrt{n-1}
$$

Other Topics in Bluman

- Chapter 8
- Hypothesis Testing
- Proportions (z test statistic)
- Variances (Chi-square statistic)
- Chapter 9
- Two-sample tests for means, variance, and proportion
- Large samples, small samples
- Dependent and independent means

Blue items will be covered in this lecture...

Hypothesis Testing

16.400/453

- Null hypothesis $\left(\mathrm{H}_{\mathrm{o}}\right)$: the independent variable has no effect
- Alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$: any hypothesis that differs from the null
- Significance (p-value)
- How likely is it that we can reject the null hypothesis?

Hypothesis Testing \& Errors

16.400/453

True in the World

Outcome
H_{o}
H_{a}

Reject H_{o}

Type I Error α	Correct Decision $(1-\beta)($ power $)$
Correct	Type II Error
Decision	β
$(1-\alpha)$	

7

Alpha \& Beta

http://www.intuitor.com/statistics/T1T2Errors.html http://www.intuitor.com/statistics/CurveApplet.html

Hypothesis \& Tails

	One-Tailed Left	One-Tailed Right	Two-Tailed
H_{o}	$\mu \geq \mathrm{k}$	$\mu \leq \mathrm{k}$	$\mu=\mathrm{k}$
H_{a}	$\mu<\mathrm{k}$	$\mu>\mathrm{k}$	$\mu \neq \mathrm{k}$
Example	If people try your diet, they will lose weight.	If people try your exercise routine, their muscle mass will increase.	If you test students more often, their grades will change.(maybe up, maybe down)

- Your hypothesis will guide your selection
- Two-tailed test tells you if values are or are not different; you have no a priori expectations for the direction of the difference.

One-Tailed vs. Two-Tailed Tests

$H_{o}: \mu \leq 0$ versus $H_{a}: \mu>0$
$\mathrm{H}_{\mathrm{o}}: \mu=0$ versus $\mathrm{H}_{\mathrm{a}}: \mu \neq 0$

How to Use Confidence Intervals

- Confidence Level $=1-\alpha$
$-\alpha$, Type I error, rejecting a hypothesis when it is true
- Commonly used confidence intervals and critical values for the standard normal distribution
$-90 \% \quad z_{\alpha / 2}=1.65$
$-95 \% \quad z_{\alpha / 2}=1.96$
$-99 \% \quad \mathrm{z}_{\alpha / 2}=2.58$
- Whether a hypothesis "is true" translates to how likely or unlikely it is that the data were obtained due to chance
- Adjusting the size of the confidence interval adjusts the likelihood that the data could have occurred by chance.

Original Procedure

16.400/453

- State hypothesis and identify claim
- Find critical value
- Compute test statistic
- Decide whether or not to accept or reject
- Summarize results
- Applies to z \& t tests for means

Test statistic $=\frac{\text { observed value }- \text { expected value }}{\text { standard error }}$

$$
z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

$$
t=\frac{\bar{X}-\mu}{s / \sqrt{n}}
$$

Hypothesis Testing Example

- A researcher claims the average salary of assistant professors > \$42,000 - is this true?

Sample of 30 has a mean salary of $\$ 43,260, \sigma=\$ 5,230$

$$
\begin{aligned}
& (\alpha=.05) \\
& H_{0}: \mu \leq \$ 42,000 \\
& H_{a}: \mu>\$ 42,000
\end{aligned}
$$

- Critical value?
- Right tailed test, z = 1.65
- Test value $=1.32$
- Can't reject the null
- What if sample <30 ?

$$
z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

A More Useful Procedure

16.400/453

- State hypothesis and identify claim
- Find critieal value Compute test statistic
- Compute test statistic Find p-value
- Decide whether or not to accept or reject
- Summarize results
- You get a little more information from this approach...

Hypothesis Testing Example Again

16.400/453

- A researcher claims the average salary of assistant professors > \$42,000 - is this true
Sample of 30 has a mean salary of $\$ 43,260, \sigma=\$ 5,230$

$$
(\alpha=.05)
$$

$$
\begin{aligned}
& H_{0}: \mu \leq \$ 42,000 \\
& H_{a}: \mu>\$ 42,000
\end{aligned}
$$

$$
z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

Test Statistic $=1.32$
p-value of $1.32=.0934(0.5-0.4066)$

- Using standard normal table
- Also cannot reject (but marginal!)

Hypothesis Testing: t Tests for a Mean

- Use when σ is unknown and/or $\mathrm{n}<30$

$$
t=\frac{\bar{X}-\mu}{s / \sqrt{n}} \quad D O F=\mathrm{n}-1
$$

- Example: Job placement director claims average nurse starting salary is $\$ 24 \mathrm{~K}$, is this true?
Sample of 10 nurses has a mean of $\$ 23,450, \mathrm{SD}=$ $\$ 400(\alpha=.05)$
- H_{o} vs. H_{a} ?
-Critical value $=+/-2.26 \ldots$ why?
-Test statistic $=-4.35$
-Reject - draw a picture!
- 2 tailed appropriate?

Two Tailed t-Test

Sample of 10 nurses, mean of $\$ 23,450, S D=\$ 400(\alpha=.05)$

- Critical value $=+/-2.26 \ldots$.why?
- Test statistic $=-4.35$

Two Sample Tests for Large Populations

- Assumptions:
- Independent samples, between subjects
- Population normally distributed
- SD known or sample size > 30
$\mathrm{H}_{\mathrm{o}}: \mu_{1}=\mu_{2}$ and $\mathrm{H}_{\mathrm{a}}: \mu_{1} \neq \mu_{2}$ can be restated as

$$
\mathrm{H}_{\mathrm{o}}: \mu_{1}-\mu_{2}=0 \text { and } \mathrm{H}_{\mathrm{a}}: \mu_{1}-\mu_{2} \neq 0
$$

$$
z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right)}}
$$

Pooled variance $=$ sum of the variances for each population

Two Sample for Small Populations

- t tests
- Assumptions:
- Independent samples
- Population normally distributed
- Sample size <30
- Unequal vs. equal variances of population
- To determine whether variances are different, use F test
- If variances are equal, use pooled variance. (Otherwise, out of scope)

$$
t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)}}
$$

DOF $=$ smaller of $\left(n_{1}-1\right)$ or $\left(n_{2}-1\right)$

$$
t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}\right)} \sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

$$
\mathrm{DOF}=\mathrm{n}_{1}+\mathrm{n}_{2}-2
$$

Pooled variance $=$ sum of the variances for each population If sample sizes are very different, use a weighted average.

t-tests for Matched (Dependent) Samples

- Matched samples (within subjects)
- Learning, medical trials, etc.
- ~ normally distributed data

$\mathrm{D}=\mathrm{X}_{1}-\mathrm{X}_{2}, \quad \mathrm{DOF}=\mathrm{n}-1, \mu_{\mathrm{D}}$ is part of the hypothesis

Comparing Variances

- F-test is one option
- Independent samples, normally distributed population
- Ratio of two Chi-square distributions
- Other, more complicated, but better options exist
- DOF for numerator: $\mathrm{n}_{1}-1$,
- DOF for denominator: $\mathrm{n}_{2}-1$
- s_{1} is larger of 2 variances

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}
$$

- http://www.statsoft.com/textbook/sttable.html
- If DOF not listed, use lower (to be conservative)

Comparing Variances - Example

- Hypothesis: SD for exam grade for males is larger for males than females - is this true $(\alpha=0.01)$?
- Males: $\mathrm{n}=16, \mathrm{~s}=4.2$

- Females: $\mathrm{n}=18 \mathrm{~s}=2.3$

$$
H_{0}: \sigma_{1}^{2} \leq \sigma_{2}^{2} \quad H_{a}: \sigma_{1}^{2}>\sigma_{2}^{2}
$$

$\operatorname{DOF}(\mathrm{n})=15, \operatorname{DOF}(\mathrm{~d})=17$, table critical value $=3.31$

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{4.2^{2}}{2.3^{2}}
$$

$$
=3.33, \text { so reject the null }
$$

Other Tests

- Linear regression
- Correlations
- Analysis of variances (ANOVA)
- Testing the differences between two or more independent means (or groups) on one dependent measure (either a single or multiple independent variables).
- Uses the F test to test the ratio of variances
- Most flexible tests (for mixed models, repeated measures etc.)

Correlations Example

16.400/453

Correlations among the pilot characteristics and experience from Chandra (2009) DOT-VNTSC-FAA-09-03.

			FAA Chart Experience (177)					$\begin{aligned} & \text { 으 } \\ & \text { 후 } \\ & \text { 든 } \\ & \text { 흪 } \end{aligned}$
VFR/IFR Pilots	1	0.74	0.56	-0.46	-0.46	-0.55	-0.65	-0.73
Private VFR	0.74	1	0.60	-0.44	-0.52	-0.56	-0.72	-0.68
FAA Chart Experience	0.56	0.60	1	-0.55	-0.45	-0.54	-0.67	-0.63
Jeppesen Experience	-0.46	-0.44	-0.55	1	0.34	0.35	0.43	0.53
Flight Length	-0.46	-0.52	-0.45	0.34	1	0.59	0.57	0.57
International	-0.55	-0.56	-0.54	0.35	0.59	1	0.60	0.64
Air Transport	-0.65	-0.72	-0.67	0.43	0.57	0.60	1	0.71
Flight Hours	-0.73	-0.68	-0.63	0.53	0.57	0.64	0.71	1

All values are significant at $p<0.01$. Strong positive correlations appear in the top left and bottom right. Strong negative correlations appear in the bottom left and top right.

Sample sizes are given in parentheses in top row.

Flight length has 4 categories ranging from short to long.

ANOVA

16.400/453

Image by MIT OpenCourseWare.

Aeronautical Charting Example Continued

Accuracy in Identifying Air Traffic
Control Center Boundary

Jeppesen
FAA
Chart Users
Chart Users

N	50	117
Mean	0.08	0.22

Std Dev $0.274 \quad 0.418$
Std Error $0.039 \quad 0.039$

Variance
0.075
0.174

Pooled variance $=0.145$

Z score, assuming equal sample size $=2.56, p<0.01$
Z score corrected for unequal sample sizes $=2.18, p<0.05$

ANOVA	Output From SPSS	Sum of Squares	df	Mean Square	F	Sig.
ARTCC	Between Groups	0.709	1	0.709	4.891	0.028
	Within Groups	23.902	165	0.145		
		Sum of Squares	df	Mean Square	F	Sig.

Practical Questions

- What confidence level (α) should I use?
- Number of simultaneous tests performed
- Statistical significance vs. operational significance
- Relative differences between effects when many comparisons are made
- Ability to explain the effect aside from the statistics
- What test should I use when...?
- How many subjects should I test?
- Face validity, resource considerations, power calculations

In an imperfect world...

- Complex designs
- Repeated measures
- Mixed models
- Combination of within \& between subjects
- Lots of "trials" required
- Lots of subjects required
- Unplanned complexities
- Missing data
- Unequal cell sizes
- Experiment confounds
- Additional course work
- Mathematical and/or practical perspectives

MIT OpenCourseWare
|http://ocw.mit.edu

16.400 / 16.453 Human Factors Engineering

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

