16.400/453J Human Factors Engineering

Response Selection & & Control of Movement

Massachusetts Institute of Technology

Objectives

- Reaction times for increasing decision complexity
 - Simple, recognition, choice experiments
 - Hick-Hyman Law
- Speed accuracy tradeoff
 - Fitts' law
- Stimulus-Response (S-R) compatibility
- Feedback

Human Information Processing

Image by MIT OpenCourseWare.

The selection of skill based responses

16.400/453

- Reaction Time Studies
- Pioneer reaction time study was conducted by Donders (1868)
 - <u>Simple</u> reaction time is shorter than a <u>Recognition</u> (Go/No Go) reaction time
 - <u>Choice</u> reaction time is longest of all

Donders, F. C. 1868. On the speed of mental processes. Translated by W. G. Koster, 1969. Acta Psychologica 30: 412-431.

Types of reaction time experiments

16.400/453

Simple reaction time experiments

- only one stimulus and one response
- 'X at a known location,' 'spot the dot,' and 'reaction to sound'
- **Recognition** reaction time experiments
 - there are some stimuli that should be responded to (the 'memory set'), and others that should get no response (the 'distractor set').
 - Go/No Go: 'Symbol recognition' and 'tone recognition'
- Choice reaction time experiments
 - User must give a response that corresponds to the stimulus, (e.g., pressing a key corresponding to letter if the letter appears on screen)

Simple and choice reaction time

- In a simple reaction time (RT) situation
 - There is no uncertainty what the signal is
 - There is no uncertainty how to respond
 - Sprinter in the starting blocks
- In a <u>choice reaction time</u> task (combines recognition and choice)
 - There can be more than one signal
 - More than one type of response
 - Each response corresponds to a signal

Factors affecting simple RT

16.400/453 -

Factors affecting simple RT

16.400/453

Factors affecting choice RT

16.400/453

- Factors affecting simple RT also affect choice
- In a choice response time situation
 - user is transmitting information from stimulus to response
- Hick (1952) and Hyman (1953) performed experiments
 - By varying number of stimulus-response alternatives
- Hick-Hyman Law (H-H Law)
 - Choice RT increases linearly with stimulus information

Hick (1952) On the rate of gain of information. *Quarterly JEP*, 4:11-26, 1952 Hyman, R. (1953). Stimulus information as a determinant of reaction time. *JEP*, 45, 423-432.

Hick-Hyman law

16.400/453

Reaction time When alternatives are equally likely $RT=a+b*log_2(N)$ Also holds when probabilities differ Decision complexity advantage (typing vs Morse code; deep vs. shallow menus)

Number of alternatives (N)

Problems with Hick-Hyman

16.400/453

Speed accuracy tradeoff

- Possible to be fast and error prone **OR** slow and precise
- People tend to make more errors when they respond more rapidly and vice versa
- Due to **strategies** that reflect different payoffs between errors and response speed
- Due to **control devices** that induce faster but less precise control

Control device effect

16.400/453

- QWERTY and Dvorak keyboards
 - Qwerty designed to avoid jamming in typewriters (1868)
 - Dvorak (1932)
- QWERTY persists even though Dvorak is claimed to offer a 5-10% advantage

This image is in the public domain.

Further reading: http://wwwpub.utdallas.edu/~liebowit/keys1.html

Speed accuracy tradeoff

- Instructions, auditory vs. visual stimuli, stress
- Regulations in the nuclear industry require workers to wait a certain amount of time before responding

Image by MIT OpenCourseWare.

Speed accuracy tradeoff for aimed movements

16.400/453

Fitts Law

- Movement time= $a+b * log_2(2A/W)$
 - = time required to rapidly move from a starting position to a final target area
- A=movement amplitude
- W=target width
- Very general law
- **a** and **b** depend on device and user characteristics

Fitts' law

16.400/453

• *Modified*:

Movement time= $a+b * log_2(A/W + 1)$

- Index of difficulty

 log₂(A/W + 1) or log₂(2A/W)
- Index of performance:
 IP = 1/b

S-R compatibility

16.400/453 -

Location compatibility

16.400/453 -

Principle of congruence

16.400/453 -

Movement compatibility

16.400/453 -

Movement proximity

16.400/453 -

Movement proximity

16.400/453 -

Modality compatibility

16.400/453 -

Motor system

- Functions
 - movement
 - posture & balance
 - communication
- Guided by sensory systems
 - internal representation of world & self
 - detect changes in environment

3 classes of movement

- Voluntary: reading, writing, playing piano
 - complex actions
 - purposeful, goal-oriented
 - learned: improve with practice
- Reflexes: eye-blink, coughing, knee jerk
 - involuntary, rapid
- Rhythmic motor patterns: chewing, walking, running
 - combines voluntary & reflexive acts
 - initiation & termination voluntary
 - once initiated, repetitive & reflexive

Movement and muscles

16.400/453

- Movement occurs at joints
 - Degrees of freedom (elbow vs. shoulder?)
- Contraction & relaxation of opposing muscles
 - Agonists: prime movers flexion
 - Antagonists: counterbalance agonists extension
 - decelerate movement
 - Activity can be measured through EMG (electromyogram)

Images of EMG removed due to copyright restrictions.

Sensorimotor integration

- Movement control more than contraction & relaxation
 - Accurately time control of many muscles
 - Make postural adjustment during movement
 - Adjust for mechanical properties of joints & muscles
 - inertia, changing positions
- Sensory inputs guide movement
 - visual, auditory, tactile
 - location of objects in space
 - Proprioceptive & vestibular
 - position of our body
- Critical for planning & refining movements
- Closed loop vs. open loop control of movement

Error correction

- Feedback:
 - During or after movement
 - Compare actual position with intended position
 - Slower movements
- Feedforward:
 - Sensory events control movements in advance
 - ballistic movements
 - Prediction: internal model of events
 - e.g. catching ball
 - representation of ball trajectory
 - properties of musculoskeletal system
 - Reevaluation after response completed

Feedback

- Feel of button (deflection of key and click of keyboard vs. membrane keyboard)
- Feedback and delays:
 - less than 100 msec to avoid disrupting motor control
 - less than 1.0 sec to avoid disrupting thought
 - less than 10 seconds to keep user's attention focused on the dialog. Feedback regarding magnitude of delay is critical.

General principles of control design

- Decision complexity
 - Simple choices have faster response than complex
- Response expectancy
 - Reaction Time (RT) much smaller for expected events
- Compatibility
 - Location and movement compatibility should match mental model
- Speed-accuracy tradeoff
 - More errors with speeded response
- Feedback
 - Display of system response

16.400 / 16.453 Human Factors Engineering Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.