
16.412J - Cognitive Robotics 
 

Problem Set #1 
 

Jeremie Pouly 
 
 
 
Part A: 
 
The three topics in reasoning applied to embedded systems I would like to learn more 
about are the following. The first two are related to the project I would like to pursue, and 
the third one to something I already partially study and that is a real key issue for 
incoming space exploration. 
 
• Search algorithms: I don’t know much about this topic which is the most important 

for chess players. Today’s computers allow us to do amazing calculations and to 
explore tons of possibilities in very short times, and it is easy to forget that for even 
pretty simple real-life problems, the pool of answers in so huge that we can’t just 
explore everything. The real issue when we want to solve a problem is not the 
capability of the computer to theoretically solve it, but rather the time it needs to 
solve it. Indeed if it will need six months to find an answer, it can be useless since the 
problem itself could change during these six months. This is even truer for potentially 
infinite problems such as what a chess player should play in a certain chessboard 
configuration. Most of the time there won’t be any solutions that will lead to victory 
whatever the human player choose to play (100% probability victory). In such cases 
we have to decide when to stop the algorithm searching for the best move, knowing 
that it could be a potentially better move that has not been found yet. As the limit is 
usually given by the calculation time – actually it is the deepness of the search but 
this is chosen functioned of the calculation time – the real challenge is to find faster 
search algorithms. Thus the level of a chess player is firstly given by the search 
algorithm that it uses. 

 
• Machine learning: by that I mean the ability of a computer program to evaluate from 

its original state to improve its performance. This is also a real issue in robotics and 
any AI system. Theoretically I believe that if we can develop a good enough learning 
process, we will be able to create human-like robot able to grow up from “childhood-
like state” to adult state and that will really be unique and autonomous as we are. As 
far as current interest, I would like to learn more about this topic because this is the 
real essence of AI and robots. If we are to send robots on Mars, it would be a real 



improvement if those could act more by themselves and not wait all the time for the 
eight minutes communication delay with Earth. However as we don’t really know the 
Martian environment, this could only succeed if the robots are able to learn alone 
from what they see and touch. Closer to my project, it can be useful to develop a 
chess player that can improved itself by playing against the same group of human and 
even against humans in general (for I think humans in general – with the exception of 
world champions – tend to play according to a certain scheme). It could allow the AI 
chess player to define its own heuristic process that will lead it to victory. 

 
• Communication with humans: Future space exploration should involve human / 

robot cooperation since one day we will be bored to send only robots and we will like 
to bring the space exploration to another level, and because, at the same time, it’s 
cheaper and safer to send robots than humans. Then if we want to use both robots and 
humans in cooperation, we must find a way for them to communicate while carrying 
a mission on Mars for example. The robots are currently seen as “extra-hands” for the 
astronauts, therefore they must be able to understand the orders and request the 
humans will tell them. This is the first part of communication and I already worked 
on this problem of voice recognition. I coded a Matlab program able to recognize a 
small dictionary based on voice characteristics. But at the same time robots should be 
able to address concerns, warning or simple answers to the astronauts: we would 
largely improve the cooperation if communication could go both ways. I would be 
glad to conceive a robot able to discuss with humans, play trivia or tell jokes and 
stories in a pretty fluent language – even limited to certain fields. 

 
 
Part D: 
 
I chose three papers on computer chess player dealing with both learning and search 
algorithms as it is the foundation of the AI that I will use. My last paper is not directly 
related to what I will do during my project, but is rather an opening to show what we can 
do with AI chess player beside only play normal chess. 
 
 
“An Evolutionary Approach for the Tuning of a Chess Evaluation Function using 
Population Dynamics”. Graham Kendall, Glenn Whitwell. 
 
I chose this paper because it explains how to use computers real power, which is to be 
able to do the same thing hundreds of time in a really short time with no error, to find the 
best chess evaluation function. It has the advantage of giving an optimal evaluation 
function with a rather low cost. I also chose this article because it shows that even light 
modifications to the base of the chess player, like the weighing of the pieces, can really 
change the way the AI plays. 



The paper presents how to use machine learning in order to find the optimal evaluation 
function just by comparison between all the possibilities. Instead of imposing a certain 
weighing to the evaluation function, the idea of the article is to use machine learning 
techniques to allow the computer to choose the best estimate of the optimal evaluation 
function within a random population. The algorithm first step is to generate the random 
population of evaluation function candidates. Then the members of the population 
compete against each other, to find out which one is the more efficient. When a candidate 
looses a game, it is discarded from the pool and a clone of the winning candidate is added 
to the population instead, in order to accelerate the convergence, until there is only one 
member left in the population. The authors point out that if we apply just a naïve method 
like that, we might end up with the best estimate of the optimal evaluation function 
within the population, but this may still be far from the optimal itself. In order to reach 
this objective, they present another way to replace the discarded candidates by a 
crossover evaluation function child of the two parents with weightings which depends 
upon the result of the game and the standard deviation of the parents’ parameters. This 
allows us to find a final function, toward which the population is converging, closer from 
the optimal evaluation function. If the initial repartition of the population was fair 
enough, we will hopefully find the optimal itself. The final evaluation function that 
comes up at the end of this algorithm is then tested successfully against a commercial 
chess program which proves the efficiency of the method. 
What I liked in this article is the idea that a simple algorithm can lead to a great 
improvement of the chess player. Indeed both the original idea to optimize the evaluation 
function and the way to do it are at the same time simple and smart and the results are 
great. On the other hand, there are maybe some points that need more explanations like 
the fact that the members of the population compete only against some other members 
and not all of them. Maybe one kind of weighting might be efficient against another one 
but worse in average… At the same time this is only validate for three moves ahead, 
which is pretty low for computer chess and one can think that it could for example help 
the bishops against the knights since the latter needs more moves to be efficient. 
Compare to the two other papers, this article is like a first step as it chooses the 
coefficients that will be used in the search algorithm. It is therefore needed if we want the 
search to be efficient and it must be done before trying to improve the search itself. 
It will apply this method to my chess player because it leads straight forward to the 
optimal evaluation function for the search algorithm. 
 
“New Advance in Alpha-Beta Searching”. Jonathan Scaeffer, Aske Plaat. 
 
I chose this article because it describes the core of any computer chess player: the alpha-
beta searching. Indeed most chess players use this pretty simple and brute algorithm. I 
found the paper interesting because it states how this algorithm works, what are its 
strengths and it weaknesses, and above all what can be done to improve it despite the 
years of researches already spent on it. 



After recalling the importance of the Alpha-Beta algorithm in game tree search, the paper 
summarizes its evolution from the earlier version to the actual one. It points out four 
improvements that have already been done and then presents three new enhancements. 
The first four modifications that has been done is the use of transposition tables to reduce 
the complexity of the tree by recognizing previously visited nodes (cutoffs), and buy 
calculation time with memory resources. Then move ordering can maximize cutoffs 
effectiveness (using a transposition table) if we sort the moves at each nodes in a best-to-
worst order instead of a depth order. The heuristic choice of the search window at the 
beginning of the search also helps a lot to eliminate many nodes that with a certain level 
of confidence shouldn’t lead to the best solution. And finally, we can save resources 
using a variable search depth that allocates more resources to the promising nodes and 
leaves aside the weaken ones. The paper then proposes three new enhancements to the 
current version of the Alpha-Beta search used for computer chess. The first idea is useful 
if the search algorithm ends in a fail low - the value of the first move is less than the 
search window - because of an unlucky guess of the search window. The authors propose 
to restart the algorithm using the transposition table to seed a new search which seems to 
improve the quality of the search even if it is hard to evaluate the real value of the 
improvement. The second idea helps to narrow the search window with a guessing of the 
values that we should obtain at the end of the algorithm so that the calculations time is a 
lot smaller. It uses the evaluation function score from previous iterations, according to the 
MTD algorithm, which improves the algorithm by 9%. Finally the last enhancement is an 
attempt to maximize the benefits of the transposition table by doing additional lookups 
after cutoffs. This is called the Enhanced Transposition Cutoffs and it leads to a reduction 
of the search tree by 28%. The results are illustrated with experiments comparing current 
computer chess player with specific one that present these new enhancements and it 
appears that with the three new ideas presented in this article we may be able to reduce 
the search effort in chess by 35%. 
The strengths of this paper are all the tricks it gives to improve the Alpha-Beta search – 
both the old and the new ones – but at the same time this looks a little bit like a laundry 
list. Indeed, there is no link between the tricks and the theoretical justifications are often 
dark. They seem to present empirical process that the reader has to believe rather than 
theoretical analysis. 
This paper is dealing with the main aspect of the chess player which is the search 
algorithm and it is the continuation of the first paper in a sense that it finds some tricks to 
improve the search algorithm using the evaluation function designed in the first paper. 
In my project, the results presented in this paper will be very useful because it will allow 
me to improve the efficiency of the Alpha-Beta search in order to construct deeper trees 
with less time resources. 
 
“Information-Theoretic Advisors in Invisible Chess”. Bud, Albrecht, Nicholson, 
Zukerman. 
 



This article is a little bit different from the two first one because it won’t be useful 
directly for my project. However it gives a good idea on how to use chess as a test for 
decision making strategy in complicated real-life problems. I am really interested in chess 
player by themselves because it is fun to apply my computer science knowledge on a 
game, but at the same time I am also interested in creating a pseudo-AI able to play chess 
because it is the first step to develop more powerful AI for real-life robots. This paper is 
therefore really appropriated since it shows how we could use chess as a test for real-
world strategic situations. 
If games have some properties of real-world situations the main difference between chess 
and most of the real life problems is the level of uncertainty. Indeed, whereas real-life is 
full of uncertainty, chess are known to be one of the only games with no uncertainty at 
all. Therefore, in order to use chess as a test-bed for real-world problems, the article 
introduces the concept of invisible chess. This is basically a normal chess game except 
that each player has a certain number of pieces that his opponents can’t see. This is 
interesting because by choosing the number of pieces that are unknown, we can change 
the degree of uncertainty of the game – to match real-world situation – and as it is still 
chess we can keep a high strategic level. Since each player can’t see some pieces of the 
other player, if we were to use only normal chess trees to find the best move, there would 
be a combinatorial explosion. The authors propose to counterbalance the new strategic 
complexity of invisible chess by adding an Information Theoretic Advisor to the Strategic 
Advisor. Indeed the early results – tests using only the strategic advisor – tend to show 
that the player with more information about the game will win more often, which seems 
pretty obvious. We can therefore increase the chances of success by using a weighed 
combination of the two kinds of advisor. According to the results presented in the 
articles, the efficiency of the algorithm is better if we use a combination of the two 
advisors; however, if the weightings are too much in favor of one advisor the results 
become quickly worse. 
Thus this paper proves that we can use chess to demonstrate results about more 
complicated problems closer to real-world situations. I liked this idea of using chess as a 
demonstration field for something (uncertainty in this article) that has nothing to do with 
this game, because it illustrates why chess has been such an important step in AI 
development. However, the paper misses some details about the strategic advisor they 
used and what could be the applications in real-world situations of these results. 
Moreover, I think that more experimental data on the advisors, with maybe more that 
only three ratios for the relative influence of the advisors could have brought interesting 
subtle differences in the results. 
This paper is like an opening after the two first articles, showing that we can test with 
chess more that only strategic issues. This is the main reason why I chose it. 
This paper won’t really help me in my project, but it could help me after my project if I 
want to use what I did in another context. 
 
 



Part E: 
 
During the last third of the class I would like to conceive a chess player applying 
improved search algorithms – based on my computer knowledge – and heuristic 
processes – based on my chess experience. I would also like to include machine learning 
to have the AI improving its level with games. This project could be done by a group of 
students designing the core of the AI together, but each developing his own version of the 
chess player so that we can have them play against each other at the end of the term to 
see the relative efficiency of the heuristic processes. 


