

Zeno (Penberthy)	intervals, no CSP			
Trains (Allen)				
Descartes (Joslin)	extreme least commitment			
lxTeT (Ghallab)	functional rep.			
HSTS (Muscettola)	functional rep., activities			
EUROPA (Jonsson)	functional rep., activities			
Kirk (Williams)	HTN			

• Path constraint: $i_0 = i, i_1 = \dots, i_k = j$

$$X_{j} - X_{i} \leq \sum_{j=1}^{n} a_{i_{j-1}, i_{j}}$$

? Conjoined path constraints result in the shortest path as bound: $X_i - X_i \le d_{ii}$

where d_{ij} is the shortest path from i to j

			M	ap '	То	ST	N	Minim	um Ne	etworl	k	
	0	1	2	3	4	[0	1	2	3	4
0	0	20	50	30	70	•	0	[0]	[10,20]	[40,50]	[20,30]	[60,70]
1	-10	0	40	20	60		1	[-20,10]	[0]	[30,40]	[10,20]	[50,60]
2	-40	-30	0	-10	30		2	[-50,-40]	[-40,30]	[0]	[-20,-10]	[20,30]
3	-20	-10	20	0	50		3	[-30, 20]	[-20,10]	[10,20]	[0]	[40,50]
4	-60	-50	-20	-40	0		4	[-70,60]	[-60,-50]	[-30,-20]	[-50,-40]	[0]
		(l-gra	aph				ST	N minin	num net	work	•

	0	1	2	3	4	
0	0	20	50	30	70	Latest Times
1	-10	0	40	20	60	• X ₁ in [10, 20]
2	-40	-30	0	-10	30	• X ₂ in [40, 50]
3	-20	-10	20	0	50	• X ₃ in [20, 30]
4	-60	-50	-20	-40	0	• X ₄ in [60, 70]

- How do we minimize execution latency?
 → Propagate through a small set of neighboring constraints.
- 2. How do we schedule at execution time?

Issues in Flexible Execution

- How do we minimize execution latency?
 → Propagate through a small set of neighboring constraints.
- 2. How do we schedule at execution time?→ Through decomposition?

Dispatching Execution Controller

Execute an event when enabled and active

- Enabled APSP Predecessors are completed – Predecessor – a destination of a negative edge that starts at event.
- Active Current time within bound of task.

Avoiding Intermediate Graph Explosion

Problem:

• APSP consumes O(n²) space.

Solution:

- Interleave process of APSP construction with edge elimination
 - Never have to build whole APSP graph

