

Outline

Outline
- Review: Constraint -based Interval Planning
- Simple Temporal Networks
- Temporal Consistency and Scheduling
- Execution Under Uncertainty

Outline

- Review: Constraint-based Interval Planning
- Simple Temporal Networks
- Temporal Consistency and Scheduling
- Execution Under Uncertainty

TCSP Queries

(Dechter , Meiri, Pearl, AlJ91)

To Query an STN, Map to a Distance Graph $\mathrm{G}_{\mathrm{d}}=\left\langle\mathrm{V}, \mathrm{E}_{\mathrm{d}}\right\rangle$

- Edge encodes an upper bound on distance to target from source.
- Negative edges are lower bounds.
- Is the TCSP consistent?

Planning

- What are the feasible times for each X_{i} ? Planning
- What are the feasible durations between Planning each X_{i} and X_{j} ?
- What is a consistent set of times? Scheduling
- What are the earliest possible times? Scheduling
- What are the latest possible times?

Schedulability: Plan Consistency

No negative cycles: $-5>\mathrm{T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{A}}=0$

Scheduling: Earliest Solution
Node 0 is the reference.
$\mathrm{S}_{1}=\left(-\mathrm{d}_{10}, \ldots,-\mathrm{d}_{\mathrm{n} 0}\right)$

0			1	2	3	4
$\mathbf{0}$	0	20	50	30	70	
$\mathbf{1}$	-10	0	40	20	60	
$\mathbf{2}$	-40	-30	0	-10	30	
$\mathbf{3}$	-20	-10	20	0	50	
$\mathbf{4}$	-60	-50	-20	-40	0	
d-graph						

Solution by Decomposition

- Can assign variables in any order, without backtracking.

Solution by Decomposition

Solution by Decomposition

- Can assign variables in any order, without backtracking.
- Can assign variables in any order, without backtracking.

Solution by Decomposition

- Can assign variables in any order, without backtracking.
- Tighten bound of Y using all selected $X: \quad Y \in X+|X Y|$

| | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 20 | 50 | 30 | 70 |
| $\mathbf{1}$ | -10 | 0 | 40 | 20 | 60 |
| $\mathbf{2}$ | -40 | -30 | 0 | -10 | 30 |
| $\mathbf{3}$ | -20 | -10 | 20 | 0 | 50 |
| $\mathbf{4}$ | -60 | -50 | -20 | -40 | 0 |
| d-graph | | | | | |

- Select value for 1

$$
\rightarrow 15
$$

- Select value for 2 , consistent with 1
$\rightarrow 45 \quad[45,50]$
d-graph
$3-20-10 \quad 20 ~ 0-50$
-

Solution by Decomposition

- Can assign variables in any order, without backtracking
- Tighten bound of Y using all selected $\mathrm{X}: \quad \mathrm{Y} \in \mathrm{X}+|\mathrm{XY}|$

Solution by Decomposition

- Can assign variables in any order, without backtracking.
- Tighten bound of Y using all selected $\mathrm{X}: \quad \mathrm{Y} \in \mathrm{X}+|\mathrm{XY}|$

Solution by Decomposition

- Can assign variables in any order, without backtracking.
- Tighten bound of Y using all selected $\mathrm{X}: \quad \mathrm{Y} \in \mathrm{X}+|\mathrm{XY}|$

Solution by Decomposition

- Can assign variables in any order, without backtracking
- Tighten bound of Y using all selected $X: \quad Y \in X+|X Y|$

	0	1	2	3	4
$\mathbf{0}$	0	20	50	30	70
$\mathbf{1}$	-10	0	40	20	60
$\mathbf{2}$	-40	-30	0	-10	30
$\mathbf{3}$	-20	-10	20	0	50
$\mathbf{4}$	-60	-50	-20	-40	0
d-graph					$\mathbf{O}\left(\mathbf{N}^{2}\right.$

> - Select value for 1 $\quad \rightarrow 15$

Outline

- Review: Constraint-based Interval Planning
- Simple Temporal Networks
- Temporal Consistency and Scheduling
- Execution Under Uncertainty

Executing Flexible Temporal Plans
[Muscettola, Morris, Pell et al.]
Handling delays and fluctuations in task duration:

- Least commitment temporal plans leave room to adapt.

Flexible execution adapts through dynamic scheduling. - Assigns time to event when executed.

Time Propagation Can Be Costly

Time Propagation Can Be Costly

Time Propagation Can Be Costly

Issues in Flexible Execution

1. How do we minimize execution latency?
\rightarrow Propagate through a small set of neighboring constraints.
2. How do we schedule at execution time?

Compile to Efficient Network

Compile to Efficient Network

Issues in Flexible Execution

1. How do we minimize execution latency?
\rightarrow Propagate through a small set of neighboring constraints.
2. How do we schedule at execution time?

Issues in Flexible Execution

1. How do we minimize execution latency?
\rightarrow Propagate through a small set of neighboring constraints.
2. How do we schedule at execution time?
\rightarrow Through decomposition?

Assignment by Decomposition

- Select executable timepoint and assign
- Propagate assignment to neighbors

Assignment by Decomposition

- Select executable timepoint and assign
- Propagate assignment to neighbors

Dispatching Execution Controller

Execute an event when enabled and active

- Enabled - APSP Predecessors are completed
- Predecessor - a destination of a negative edge that starts at event.
- Active - Current time within bound of task.

Dispatching Execution Controller

Initially:

- $\mathrm{E}=$ Time points w/o predecessors
- $\mathrm{S}=\{ \}$

Repeat:

1. Wait until current_time has advanced st
a. Some TP in E is active
b. All time points in E are still enabled.
. Set TP's execution time to current_time.
Add TP to S .
Propagate time of execution to TP's APSP immediate neighbors.
Add to A, all immediate neighbors that became enabled.
a. TPx enabled if all negative edges starting at TPx have their destination in S .

Propagation is Focused

- Propagate forward along positive edges to tighten upper bounds.
- forward prop along negative edges is useless.
- Propagate backward along negative edges to tighten lower bounds.
-Backward prop along positive edges useless.

Edge Domination

- AB lower-dominates AC if in every consistent execution, $T_{B}-b(A, B) \geq T_{C}-b(A, C)$
- Enablement of node A is always determined by thread running through A-B-C

- Edge Dominance
- Eliminate edge that is redundant due to the triangle inequality $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$
- Edge Dominance
- Eliminate edge that is redundant due to the triangle inequality $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$

- Edge Dominance
- Eliminate edge that is redundant due to the triangle inequality $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$

An Example of Edge Filtering

- Start at A-B-C triangle

An Example of Edge Filtering

- Look at D-A-C triangle

An Example of Edge Filtering

- Look at B-C-D triangle

Additional Filtering

- Node Contraction
- Collapse two events with fixed time between them

Additional Filtering

- Node Contraction
- Collapse two events with fixed time between them

Avoiding Intermediate
 Graph Explosion

Problem:

- APSP consumes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space.

Solution:

- Interleave process of APSP construction with edge elimination
- Never have to build whole APSP graph

